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Abstract

In this paper, we present some new �xed point results for a well-known class of generalized nonexpansive
type mappings and associated Krasnosel'ski�� type mappings in Banach spaces. Further, we consider Mann
type iteration procedure for �nding a common �xed point of a nonexpansive type semigroup. We also present
a couple of nontrivial examples to illustrate facts and show numerical convergence.
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1. Introduction and Preliminaries

The classical Banach contraction principle is an important result in metric �xed point theory because of its
simplicity and applicability to various domains [11, 24]. Nonexpansive mappings are natural generalization
of contraction mappings. These mappings are important due to their connection with the monotonicity
methods and also appear in applications for initial value, variational inequality, optimization, equilibrium
and many other problems in nonlinear analysis [24]. It is well-known that a nonexpansive self-mapping of
a complete metric space need not have a �xed point. Also, even though a nonexpansive mapping has a
�xed point, it is possible that the sequence of iterates (the Picard sequence) may not converge to a �xed
point of the mapping, unlike the contraction mappings. Therefore the study of existence and convergence of
�xed points of nonexpansive mappings is an important subject. In 1965, using the geometric properties of
Banach spaces, �rst existence results for nonexpansive mappings were obtained by Browder [2], Göhde [9] and
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Kirk [10], independently. A number of extensions and generalizations of their theorems and nonexpansive
mappings, appeared in [1, 6, 29, 28, 27, 7, 8, 12, 14, 13, 16, 19, 20, 22, 23] and elsewhere.

In 2008, Suzuki [23] introduced a new class of nonexpansive type mappings known as mappings satisfying
condition (C) and obtained some important �xed point results for these mappings. He showed that this class
of mappings need not be continuous on their domains, unlike the nonexpansive mappings. In 2011, Garcïa-
Falset et al. [6] considered a generalization of Suzuki's type nonexpansive mappings. These mappings
are known as mappings satisfying condition (E). We also studied some �xed points results for mappings
satisfying condition (E) in [19, 21]. In this paper, we continue our study and present certain new �xed point
results for mappings satisfying condition (E) and associated Krasnosel'ski�� type mappings. One can �nd
some convergence results of Krasnosel'ski��- Mann iteration procedure of nonexpansive mappings in [25, 26]
and references therein. We also consider Mann type iteration procedure for �nding common �xed points of
nonexpansive type semigroups and obtain a strong convergence theorem. To illustrate our results, we present
a couple of nontrivial examples. Finally, we present numerical convergence analysis for di�erent choices of
coe�cients and initial guesses.

Now, we recall some useful notations, de�nitions and results from the literature.

De�nition 1.1. [11]. A Banach space X is said to be uniformly convex if for each ε ∈ (0, 2] ∃ δ > 0 such

that

∥∥∥∥u+ v

2

∥∥∥∥ ≤ 1− δ for all u, v ∈ X with ‖u‖ = ‖v‖ = 1 and ‖u− v‖ > ε. The Banach space X is strictly

convex if ∥∥∥∥u+ v

2

∥∥∥∥ < 1,

whenever u, v ∈ X with ‖u‖ = ‖v‖ = 1, u 6= v.

Lemma 1.2. ([24]p.484). Let X be a uniformly convex Banach space, and two sequences (un) and (vn) in
X such that

lim
n→∞

‖un‖ ≤ d, lim
n→∞

sup ‖vn‖ ≤ d, and lim
n→∞

‖αnun + (1− αn)vn‖ = d,

where 0 < η1, η2 < 1, {αn} ⊂ [η1, η2] and d ≥ 0. Then lim
n→∞

‖un − vn‖ = 0.

De�nition 1.3. [18]. A Banach space X satis�es Opial property if, for every weakly convergent sequence
(un) with weak limit u ∈ X it holds:

lim inf
n→∞

‖un − u‖ < lim inf
n→∞

‖un − v‖

for all v ∈ X with u 6= v.

All �nite dimensional Banach spaces, all Hilbert spaces and `p (1 ≤ p < ∞) satisfy the Opial property.
A Banach space having a weakly sequentially continuous duality mapping also satis�es the Opial condition.
But Lp (0 < p <∞, p 6= 2) do not have the Opial property [5] .

De�nition 1.4. [11]. Let (X, ‖·‖) be a Banach space and K a nonempty subset of X. A mapping T : K → K
is said to be nonexpansive if for all u, v ∈ K,

‖T (u)− T (v)‖ ≤ ‖u− v‖.

A point w ∈ K is said to be a �xed point of T if T (w) = w. We denote the set of all �xed points of T by
F (T ).

De�nition 1.5. [6]. The mapping T : K → K is said to satisfy condition (Eµ) on K if there exists µ ≥ 1
such that for all u, v ∈ K,

‖u− T (v)‖ ≤ µ‖u− T (u)‖+ ‖u− v‖.

We say that T satis�es condition (E) on K whenever T satis�es (Eµ) for some µ ≥ 1.
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De�nition 1.6. [11]. The mapping T : K → K is said to be a quasi-nonexpansive if

‖T (u)− w‖ ≤ ‖u− w‖

for all u ∈ K and w ∈ F(T ).

It is well-known that a nonexpansive mapping with a �xed point is quasi-nonexpansive. However the
converse need not be true.

De�nition 1.7. [3]. The mapping T : K → K is called asymptotically regular if for all u ∈ K

lim
n→∞

‖Tn(u)− Tn+1(u)‖ = 0.

Proposition 1.8. [6]. Let K be a nonempty subset of a Banach space X. If T : K → K is a mapping
satisfying condition (E) with F (T ) 6= ∅ then T is quasi-nonexpansive.

De�nition 1.9. [15]. Let K be a nonempty convex subset of a Banach space X and T : K → K a mapping.
A mapping Tα : K → K is said to be an α-Krasnosel'ski�� mapping associated with T if there exists α ∈ (0, 1)
such that

Tα(u) = (1− α)u+ αT (u)

for all u ∈ K.

Lemma 1.10. Let K be a nonempty convex subset of a Banach space X and T, Tα : K → K are mappings
with α ∈ (0, 1). Then F (T ) = F (Tα).

Proof. From the de�nition of mapping Tα, it evident that a �xed point of T is also a �xed point of Tα, So,
F (T ) ⊆ F (Tα). Conversely, let w ∈ F (Tα). Then Tα(w) = w. Now

w = Tα(w) = (1− α)w + αT (w)

w = w − αw + αT (w),

which implies T (w) = w. Hence F (Tα) ⊆ F (T ). This completes the proof.

Lemma 1.11. (Demiclosedness principle [4]). Let K be a nonempty closed convex subset of a uniformly
convex Banach space X and T : K → X be a mapping with F (T ) 6= ∅. Suppose (un) is a sequence in X such
that (un) converges weakly to u and lim

n→∞
‖un − T (un)‖ = 0. Then T (u) = u. That is, I − T is demiclosed at

zero.

Theorem 1.12. [21]. Let K be a nonempty convex subset of a uniformly convex Banach space X. If T :
K → K is a mapping satisfying condition (E) with F (T ) 6= ∅, then the α-Krasnosel'ski�� mapping Tα for
α ∈ (0, 1) is asymptotically regular.

De�nition 1.13. [11]. Let K be a nonempty bounded subset of Banach space X. Then the asymptotic radius
r and the asymptotic centre c of a sequence (un) relative to K are respectively:

r = inf{ lim
n→∞

sup ‖un − u‖ : u ∈ K},

c = {u ∈ K : lim
n→∞

sup ‖un − u‖ = r}.

De�nition 1.14. [21]. Let K be a nonempty closed convex subset of a Banach space X. Let S = {S(ζ) : ζ >
0} be a family of mappings with domain D(S) = ∩

ζ>0
D(S(ζ)) and range R(S), where D(S(ζ)), R(S) ⊆ K.

A one parameter Eµ nonexpansive semigroup is a family S = {S(ζ) : ζ > 0} of mappings satisfying the
following conditions:
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1. For each ζ > 0, S(ζ) is a mapping satisfying condition (E), i.e. there exists µ ≥ 1 and for all
u, v ∈ D(S)

‖u− S(ζ)(v)‖ ≤ µ‖u− S(ζ)(u)‖+ ‖u− v‖; (1)

2. S(0)(u) = u for all u ∈ D(S);

3. S(ζ + ξ)(u) = S(ζ) · S(ξ)(u) for all ζ, ξ > 0 and u ∈ D(S).

De�nition 1.15. [17]. Let K be a nonempty subset of a Banach space X. Let S and {Sn} be two families
of mappings of K with ∩∞n=1F (Sn) = F (S) 6= ∅, where F (S) is the set of all common �xed points of all
mappings in S. The family of mappings {Sn} is said to satisfy NST*- condition with S if for every bounded
sequence (un) in K

lim
n→∞

‖un − Sn(un)‖ = 0 and lim
n→∞

‖un − un+1‖ = 0,

imply that lim
n→∞

‖un − S(un)‖ = 0 for all S ∈ S.

Example 1.16. [17] Let H = R2 and K = [0, 1]× [0, 1]. De�ne T1, T2 : K → K as follows

T1(u, v) = (u, 1− v), T2(u, v) = (1− u, v)

for all (u, v) ∈ K. Hence, T1, T2 are nonexpansive mappings with

F (T1) ∩ F (T2) =
(
[0, 1]×

{
1

2

})
∩
({

1

2

}
× [0, 1]

)
=

{(
1

2
,
1

2

)}
6= ∅.

Here Tn for n = 1, 2 satis�es NST*-condition but fails to satisfy NST-condition (I) and NST-condition (II).

De�nition 1.17. Let K be a nonempty subset of a Banach space X. Let S = {S(ζ) : ζ > 0} be a family of
mappings from K into itself with F (S) 6= ∅, where F (S) is the set of all common �xed points of mappings
in S. Let {S(ζn)} be a subclass of S. The family of mappings {S(ζn)} is said to satisfy NST***- condition
with S if for every bounded sequence (un) in K

lim
n→∞

‖un − S(ζn)(un)‖ = 0 and lim
n→∞

‖un − un+1‖ = 0,

imply that lim
n→∞

‖un − S(ζ)(un)‖ = 0 for all ζ > 0.

2. Main Results

We begin with the following strong convergence theorem.

Theorem 2.1. Let X be a Banach space and T : X → X be a mapping satisfying condition (E). For a given
u0 ∈ X and α ∈ (0, 1), if the sequence of iterates (Tnα (u0)) converges strongly to u†, then u† ∈ F (T ).

Proof. De�ne un = Tnα (u0), n ∈ N ∪ {0}. Then

‖un+1 − un‖ = ‖Tn+1
α (u0)− un‖

= ‖Tα(Tnα (u0))− un‖
= ‖Tα(un)− un‖
= ‖(1− α)un + αT (un)− un‖
= α‖un − T (un)‖.

Now,

‖un+1 − T (u†)‖ = ‖(1− α)un + αT (un)− T (u†)‖
≤ ‖un − T (u†)‖+ α‖un − T (un)‖.
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From the de�nition of T and above inequalities, we get

‖un+1 − T (u†)‖ ≤ µ‖un − T (un)‖+ ‖un − u†‖+ α‖un − T (un)‖
= (µ+ α)‖un − T (un)‖+ ‖un − u†‖

=
(µ+ α)

α
‖un − un+1‖+ ‖un − u†‖

≤ (µ+ α)

α
‖un − u†‖+

(µ+ α)

α
‖u† − un+1‖+ ‖un − u†‖

=
(µ+ 2α)

α
‖un − u†‖+

(µ+ α)

α
‖u† − un+1‖.

Since limn→∞ un → u†, we have limn→∞ ‖un+1 − T (u†)‖ = 0. Therefore u† = T (u†).

Theorem 2.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space X and
T : K → K be a mapping satisfying condition (E) with F (T ) = {u†}. Assume that the mapping I − Tα is
demiclosed at zero, where Tα is the α-Krasnosel'ski�� mapping associated with T , and α ∈ (0, 1). Then for
each u0 ∈ K the sequence of iterates (Tnα (u0)) converges weakly to u†.

Proof. De�ne un = Tnα (u0), n ∈ N ∪ {0}. Let u† ∈ K be a �xed point of T. From Proposition 1.8, we have

‖u1 − u†‖ ≤ (1− α)‖u0 − u†‖+ α‖T (u0)− u†‖
≤ ‖u0 − u†‖.

Consequently,
‖un − u†‖ ≤ ‖u0 − u†‖, for all n ∈ N ∪ {0},

and the sequence (un) is bounded. Let lim
n→∞

‖un − u†‖ = r ≥ 0. If r = 0, then there is nothing to prove.

Now, we have

un+1 − u† = Tα(un)− u†

= (1− α)un + αT (un)− u†

= (1− α)(un − u†) + α(T (un)− u†).

From Proposition 1.8 it follows that ‖T (un)−u†‖ ≤ ‖un−u†‖. Also lim
n→∞

‖un−u†‖ = r = lim
n→∞

‖un+1−u†‖.
Since Tα is asymptotically regular from Theorem 1.12, we have

lim
n→∞

‖un+1 − un‖ = lim
n→∞

‖Tn+1
α (u0)− Tnα (u0)‖ = 0. (2)

Since X is re�exive and (un) is bounded, there exists a subsequence (uni) of (un) converges weakly to ũ.
From (2)

lim
i→∞
‖T i+1

α (u0)− T iα(u0)‖ = lim
i→∞
‖T iα(u0)− Tα(T iα(u0))‖ = 0,

and thus the demiclosedness of I − Tα we have Tα(ũ) = ũ. By Lemma 1.10, F (Tα) = F (T ) and since F (T )
is singleton, ũ = u†. This implies that every weakly convergent subsequence of (un) converges weakly to ũ.
If (un) does not converge weakly to ũ then there is a weak neighbourhood U of ũ and a subsequence (unl

) of
(un) with the property that unl

/∈ U, l = 1, 2, . . . . Again by re�exivity of X and boundedness of (unl
), there

exists a subsequence of (unl
) converges weakly. By the same procedure, we can show that this subsequence

must converge weakly to ũ. It follows that terms of the subsequence (unl
) must lie in U , a contradiction.

Thus (Tnα (u0)) converges weakly to ũ. This completes the proof.

Theorem 2.3. Let K be a nonempty closed convex subset of a uniformly convex Banach space X which has
the Opial property. Let T : K → K be a mapping satisfying condition (E) with F (T ) 6= ∅. Then for each
u0 ∈ K, the sequence of iterates (Tnα (u0)) converges weakly to a �xed point of T.
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Proof. We have shown in Theorem 2.2 that, the sequence (un) de�ned by un = Tnα (u0), n ∈ N ∪ {0} is
bounded and lim

n→∞
‖un − u†‖ exists for each u† ∈ F (T ). Thus there exists a subsequence (unk

) of (un) such

that unk
⇀ ũ ∈ K. By de�nition of mapping Tα, we have

‖unk
− Tα(ũ)‖ = ‖unk

− (1− α)ũ+ αT (ũ)‖
≤ (1− α)‖unk

− ũ‖+ α‖unk
− T (ũ)‖.

Since T satis�es condition (E), we have

‖unk
− Tα(ũ)‖ ≤ (1− α)‖unk

− ũ‖+ αµ‖unk
− T (unk

)‖+ α‖unk
− ũ‖.

Using the fact that ‖unk
− Tα(unk

)‖ = α‖unk
− T (unk

)‖, we get

‖unk
− Tα(ũ)‖ ≤ ‖unk

− ũ‖+ µ‖unk
− Tα(unk

)‖.

From (2), we get
lim inf
k→∞

‖unk
− Tα(ũ)‖ ≤ lim inf

k→∞
‖unk

− ũ‖.

By the Opial property, it is evident that, Tα(ũ) = ũ, and ũ ∈ F (Tα). Hence ũ ∈ F (T ). In order to show the
weak convergence of sequence (un) to a point in F (T ), it is su�ces to show that the set of all weak limits
of (un) is singleton. Arguing by contradiction, let (uni) and (unj ) be two subsequences of (un) such that
uni ⇀ ũ and unj ⇀ ṽ, respectively with ũ 6= ṽ. Since lim

n→∞
‖un − u†‖ exists for each u† ∈ F (T ), from the

Opial property, we have

lim
n→∞

‖un − ũ‖ = lim
i→∞
‖uni − ũ‖

< lim
i→∞
‖uni − ṽ‖ = lim

j→∞
‖unj − ṽ‖

< lim
j→∞

‖unj − ũ‖ = lim
n→∞

‖un − ũ‖,

a contradiction. This completes the proof.

Theorem 2.4. Let X be a Banach space and (un) be a sequence in X. Let T : X → X be a mapping
satisfying condition (E) and vn be the unique solution of the equation un = w− T (w). If lim

n→∞
‖un‖ → 0 and

sequence (vn) converges to some v ∈ X then v is a solution of the equation w = T (w).

Proof. By assumptions (vn) is a sequence in X which is the unique solution to equation un = w − T (w).
Now, by the triangle inequality, we have

‖v − T (v)‖ ≤ ‖v − vn‖+ ‖vn − T (vn)‖+ ‖T (vn)− T (v)‖
≤ ‖v − vn‖+ ‖vn − T (vn)‖+ ‖T (vn)− vn‖+ ‖vn − T (v)‖
≤ ‖v − vn‖+ 2‖vn − T (vn)‖+ µ‖vn − T (vn)‖+ ‖vn − v‖
= 2‖v − vn‖+ (2 + µ)‖vn − T (vn)‖.

Since lim
n→∞

‖vn − T (vn)‖ = 0 and lim
n→∞

vn = v, we get ‖v − T (v)‖ = 0. Therefore, v is a solution of the

equation w = T (w).

Theorem 2.5. Let K be a closed convex and bounded subset of a uniformly convex Banach space X and the
mapping T : K → K be satisfying condition (E). If u ∈ K and c is the asymptotic centre of {Tn(u) : n ∈
N ∪ {0}}, then r(c) = inf{‖Tn(u)− c‖ : n ∈ N ∪ {0}} ≤ inf{‖Tn(u)− u†‖ : n ∈ N ∪ {0}}, where u† ∈ F (T ).
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Proof. De�ne rn(u
†) = ‖Tn(u)− u†‖, n ∈ N ∪ {0}. Then

rn+1(u
†) = ‖Tn+1(u)− u†‖ = ‖T (Tn(u))− u†‖ ≤ µ‖u† − T (u†)‖+ ‖Tn(u)− u†‖

= ‖Tn(u)− u†‖ = rn(u
†).

rn+1(u
†) ≤ rn(u†), for all u† ∈ F (T ).

Thus {rn(u†)} is monotonically decreasing and convergent to r(u†) = inf{‖Tn(u) − u†‖. Since c is the
asymptotic centre, it implies r(c) ≤ r(u) for all u ∈ K. Thus r(c) = inf{‖Tn(u) − c‖ : n ∈ N ∪ {0}} ≤
inf{‖Tn(u)− u†‖ : n ∈ N ∪ {0}} for each u† ∈ F (T ).

Now, we present a strong convergence theorem for one parameter semigroup of mappings satisfying
condition (E).

Theorem 2.6. Let K be a convex and compact subset of a uniformly convex Banach space X. Let S =
{S(ζ) : ζ > 0} be a semigroup of Eµ-nonexpansive mappings from K into itself with F (S) 6= ∅. Suppose there
exists a subclass {S(ζn)} of S such that the subclass {S(ζn)} satis�es NST***-condition with S. For a given
u0 ∈ K, de�ne a sequence (un) in K as follows:

un+1 = (1− αn)un + αnS(ζn)(un),

for n ∈ N ∪ {0} and αn ∈ (0, 1). Then (un) converges strongly to a �xed point of one parameter semigroup
of Eµ− nonexpansive mapping {S(ζ) : ζ ≥ 0}.
Proof. Let u† ∈ F (S). Then

‖un+1 − u†‖ = ‖(1− αn)un + αnS(ζn)(un)− u†‖
= ‖(1− αn)un + αnS(ζn)(un) + αnu

† − αnu† − u†‖
≤ (1− αn)‖un − u†‖+ αn‖S(ζn)(un)− u†‖
≤ (1− αn)‖un − u†‖+ αn‖un − u†‖
= ‖un − u†‖.

So, lim
n→∞

‖un − u†‖ exists for all u† ∈ F (S). Let lim
n→∞

‖un − u†‖ = d for some d ≥ 0.

d = lim
n→∞

‖un+1 − u†‖ = lim
n→∞

‖(1− αn)(un − u†) + αn(S(ζn)(un)− u†)‖,

lim
n→∞

‖S(ζn)(un)− u†‖ ≤ ‖un − u†‖ = d.

Using Lemma 1.2, we get
lim
n→∞

‖S(ζn)(un)− un‖ = 0.

Now, it follows that
lim
n→∞

‖un+1 − un‖ = lim
n→∞

αn‖S(ζn)(un)− un‖ = 0.

Since {S(ζn)} satis�es the NST***-condition, so we get

lim
n→∞

‖un − S(ζ)(un)‖ = 0 for all ζ > 0.

Since K is compact, (uni) ⊂ K be a subsequence of (un) converges strongly to u† ∈ K. Now for any ζ > 0,
we have

lim
i→∞
‖uni − S(ζ)(u†)‖ ≤ lim

i→∞
µ‖uni − S(ζ)(uni)‖+ lim

i→∞
‖uni − u†‖

= 0 for all ζ > 0.

Hence (uni) converges to S(ζ)(u
†). It implies that S(ζ)(u†) = u†. Therefore u† is a �xed point of {S(ζ) : ζ >

0}. It completes the proof.
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3. Examples

In this section, we present a couple of nontrivial examples for mappings which are not nonexpansive but
does satisfy condition (E). Further, we illustrate our results by showing convergence behaviour for di�erent
choices of initial guesses and coe�cients.

Example 3.1. Let T : [0, 1]→ [0, 1] be a mapping de�ned as

T (p) =

{
p
3 , p ∈

[
0, 23
)
,

p
6 + 1

5 , p ∈
[
2
3 , 1
]
.

For this we consider following cases:

Case(a): p, q ∈
[
0, 23
)
. Then |T (p)− T (q)| = 1

3 |p− q| < |p− q| and we have,

|p− T (q)| ≤ |p− T (p)|+ |p− q|.

Case(b): p, q ∈
[
2
3 , 1
]
. Then |T (p)− T (q)| = 1

6 |p− q| < |p− q| and we have,

|p− T (q)| ≤ |p− T (p)|+ |p− q|.

Case(c): p ∈
[
0, 23
)
, q ∈

[
2
3 , 1
]
. Then we have,

|q − T (p)| =
∣∣∣q − p

3

∣∣∣ ≤ ∣∣∣∣5q − 6

5

∣∣∣∣+ |p− q|
= 6

∣∣∣∣q − q

6
− 1

5

∣∣∣∣+ |p− q| = 6|q − T (q)|+ |p− q|.

|p− T (q)| =
∣∣∣∣p− q

6
− 1

5

∣∣∣∣ ≤ |p|+ ∣∣∣∣q6 +
1

5

∣∣∣∣ ≤ |p|+ ∣∣∣∣16 +
1

5

∣∣∣∣
≤ |p|+ 11

30
.

Case(i): If p ∈
[
0, 9

30

)
,

|p− T (q)| ≤ |p|+ 11

30
≤ 4|p|+ 11

30
≤ 6|p− T (p)|+ |p− q|.

Case(ii): If p ∈
(

9
30 ,

2
3

)
,

6|p− T (p)| = 4|p| ≥ 36

30
,

|p− T (q)| ≤ 2

3
+

11

30
=

31

30
,

|p− T (q)| ≤ 31

30
≤ 36

30
≤ 6|p− T (p)|+ |p− q|.

Therefore in all the cases T satis�es condition (E).

On the other hand, for p = 3
5 , q =

2
3 , we have T (p) = 1

5 , T (q) =
31
100 , and

|T (p)− T (q)| = 0.11 > 0.06 = |p− q|.

Hence T is not a nonexpansive mapping.
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Example 3.2. Let X = R2 and K = {p = (p1, p2) ∈ [0, 1] × [0, 1]} be a subset of X with norm ‖p‖ =
‖(p1, p2)‖ = (|p1|2 + |p2|2)1/2. The mapping T : K → K is de�ned by

T (p1, p2) =

{
(1− p1, 1− p2), (p1, p2) ∈

[
0, 12
]
× [0, 1],

1
3(1 + p1, 1 + p2), (p1, p2) ∈

(
1
2 , 1
]
× [0, 1].

For this we consider following cases:

Case(a): p, q ∈
[
0, 12
]
× [0, 1]. Then

‖p− T (q)‖ ≤ ‖p− T (p)‖+ ‖T (p)− T (q)‖

= ‖p− T (p)‖+
(
|p1 − q1|2 + |p2 − q2|2

)1/2
= ‖p− T (p)‖+ ‖p− q‖.

Case(b): p, q ∈
(
1
2 , 1
]
× [0, 1]. Then

‖p− T (q)‖ ≤ ‖p− T (p)‖+ ‖T (p)− T (q)‖

= ‖p− T (p)‖+ 1

3

(
|p1 − q1|2 + |p2 − q2|2

)1/2
≤ ‖p− T (p)‖+

(
|p1 − q1|2 + |p2 − q2|2

)1/2
= ‖p− T (p)‖+ ‖p− q‖.

Case(c): p ∈
[
0, 12
]
× [0, 1], q ∈

(
1
2 , 1
]
× [0, 1]. Then

‖p− T (q)‖ =
∥∥∥∥(p1, p2)− (1 + q1

3
,
1 + q2

3

)∥∥∥∥
=

∥∥∥∥(p1 − (1 + q1
3

))
,

(
p2 −

(
1 + q2

3

))∥∥∥∥
=

∥∥∥∥(3p1 − q1 − 1

3
,
3p2 − q2 − 1

3

)∥∥∥∥
=

(∣∣∣∣3p1 − q1 − 1

3

∣∣∣∣2 + ∣∣∣∣3p2 − q2 − 1

3

∣∣∣∣2
)1/2

,

and

‖p− T (p)‖ =
(
|2p1 − 1|2 + |2p2 − 1|2

)1/2
.

Since ∣∣∣∣3p1 − q1 − 1

3

∣∣∣∣ ≤ |2p1 − 1 + p1 − q1| ≤ |2p1 − 1|+ |p1 − q1|,∣∣∣∣3p2 − q2 − 1

3

∣∣∣∣ < |2p2 − 1 + p2 − q2| ≤ |2p2 − 1|+ |p2 − q2|.

we have,

‖p− T (q)‖ ≤ ‖p− T (p)‖+ ‖p− q‖.

Therefore in all the cases T satis�es condition (E).

On the other hand, for p = (0, 0) and q =
(

51
100 ,

25
100

)
, we have

‖T (p)− T (q)‖ = 0.766 > 0.567 = ‖p− q‖.

Therefore T is not a nonexpansive mapping.
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Now, we present the convergence behaviour for sequence of iterates of the mapping Tα considered in
Example (3.2). The convergence behaviours are presented in Table 1, 2 and �gures 1, 2 below. In Fig. 1 the
convergence behaviour is illustrated for di�erent choices of initial guesses and in Fig. 2 for di�erent choices
of coe�cients. The stopping criteria is ‖un − u†‖ < 10−8, (where u† ∈ F (T )).

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 1: Convergence behaviour for di�erent choices of initial guesses.

0 10 20 30 40 50 60 70 80
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Figure 2: Convergence behaviour for di�erent choices of coe�cients.
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Table 1: In�uence of initial guess with coe�cient α = 0.3.

Initial guesses Number of iterations

u0 = (0, 0.1) 30

u0 = (0.1, 0.8) 29

u0 = (0.8, 0.4) 29

Table 2: In�uence of coe�cients α = 0.1, 0.4, 0.9 for �xed initial guess.

Coe�cients Number of iterations

α = 0.1 21

α = 0.4 33

α = 0.9 79

Now we compare the α-Krasnosel'ski�� iteration procedure with Picard iteration procedure for the mapping
considered in Example (3.2).

0 10 20 30 40 50 60 70 80

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 3: Comparison between α-Krasnosel'ski�� iteration procedure and Picard iteration procedure for u0 =
(0.5, 0.6).
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Figure 4: Comparison between α-Krasnosel'ski�� iteration procedure and Picard iteration procedure for u0 =
(0.5, 1).

Table 3: The value of ‖un − u†‖2 for u0 = (0.5, 0.6).

No. of Iterations α-Krasnosel'ski�� iteration Picard iteration

1 0.0800000000000000 0.100000000000000

2 0.0640000000000001 0.100000000000000

3 0.0512000000000000 0.100000000000000

4 0.0409600000000000 0.100000000000000

5 0.0327680000000000 0.100000000000000

. . . . . . . . . . . . . . . . . .

68 2.57110086554491e-08 0.100000000000000

69 2.05688068799503e-08 0.100000000000000

70 1.64550455483692e-08 0.100000000000000

71 1.31640364164909e-08 0.100000000000000

72 1.05312291109883e-08 0.100000000000000
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Table 4: The value of ‖un − u†‖2 for u0 = (0.5, 1).

No. of Iterations α-Krasnosel'ski�� iteration Picard iteration

1 0.400000000000000 0.500000000000000

2 0.320000000000000 0.500000000000000

3 0.256000000000000 0.500000000000000

4 0.204800000000000 0.500000000000000

5 0.163840000000000 0.500000000000000

. . . . . . . . . . . . . . . . . .

75 2.69599466085069e-08 0.500000000000000

76 2.15679573090100e-08 0.500000000000000

77 1.72543658250035e-08 0.500000000000000

78 1.38034926822073e-08 0.500000000000000

79 1.10427941235614e-08 0.500000000000000

4. Conclusions

(i) From Table 1, 2 and Fig. 1, 2 we conclude that the convergence behaviour of sequence of iterates of
α-Krasnosel'ski�� mapping depends more on the coe�cients and less on initial guesses. We can see that
while changing the initial guesses there is slightly di�erence in number of iterations but when we are
changing the coe�cient α then there is a huge di�erence in number of iterations.

(ii) In Fig. 3, 4 we presented the comparison between Picard iteration procedure and α-Krasnosel'ski��
iteration procedure and from Table 3, 4 we can conclude that for initial guess u0 = (0.5, 0.6) and
u0 = (0.5, 1) the Picard iteration procedure does not converge but α-Krasnosel'ski�� iteration procedure
is converging.
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