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Abstract
Volterra integro-differential equations with constant delay τ > 0 are presented in this
paper. We used a numerical method based on reproducing kernels to investigate well-
known equations. The convergence analysis of the utilized approach is taken into account,
which also provides the theoretical structure of the method. In addition, we derive some
effective error estimates for the proposed method when applied to Volterra delay integro
differential equations. Numerical experiments are carried out to illustrate the efficiency
and applicability of the proposed method.
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1. Introduction
Finding approximate analytic solutions of the DIDEs is extremely significant in engi-

neering and physical sciences. In recent years, there have been some research activities
concerning the numerical solution of the DIDEs. For example, Bellour and Bousselsal in
[2], provided a numerical approach based on using continuous collocation for the numerical
solution of the DIDEs, Horvat [12] constructed a polynomial collocation solution of the
Volterra DIDEs, Makroglou in [13], considered Volterra DIDEs and applied a block-by-
block method based on interpolatory quadrature rules.
In the present paper, we study a numerical method for solving the Volterra DIDEs of the
following form y

′(t) − λy(t) − µy(t − τ) = g(t) +
∫ t

0 H1(t, s)y(s)ds +
∫ t

t−τ
H1(t, s)y(s)ds, t ∈ [0, T ],

y(t) = Φ(t), t ∈ [−τ, 0],
(1.1)

where λ, µ ∈ ℜ, the delay term τ is a positive constant; the initial function Φ(t) is
continuous on [−τ, 0]; H1 : S → ℜ (S := {(t, s)|0 ≤ s ≤ t ≤ T}), and H1 : Sτ → ℜ
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(Sτ := [0, T ] × [−τ, T − τ ]) are weight functions.
We introduce the transformation

x(t) = y(t) − w(t), (1.2)

where w(t) =
{

0, 0 ≤ t ≤ T
Φ(t), −τ ≤ t ≤ 0 .

Then, the equivalent problem of (1.1) can be written as x
′(t) − λx(t) − µx(t − τ) = f(t) +

∫ t

0 H1(t, s)x(s)ds +
∫ t

t−τ
H1(t, s)x(s)ds, t ∈ [0, T ],

x(t) = 0, t ∈ [−τ, 0],
(1.3)

where

f(t) =
{

g(t) + µΦ(t − τ) +
∫ 0

t−τ H1(t, s)Φ(s)ds, 0 ≤ t ≤ τ,
g(t), τ < t ≤ T.

(1.4)

The theory of reproducing kernels was first proposed by Zaremba [1]. This theory has
played an important role in a number of successful applications in numerical analysis and
has successfully been used for constructing approximate solutions to several linear and
nonlinear problems such as singular nonlinear second-order periodic boundary value prob-
lems [9], nonlinear system of second order boundary value problems [10], one-dimensional
variable-coefficient Burgers equation [4], the coefficient inverse problem [6], nonlinear age-
structured population equation [3], the generalized regularized long wave equation [14],
nonlinear delay differential equations of fractional order [11], variational problems depend-
ing on indefinite integrals [8], nonlocal initial-boundary value problems for parabolic and
hyperbolic integro-differential equations [7] and the generalized Black-Scholes equation
[15]. Cui and Lin in [5] provide an excellent overview of the existing reproducing kernel
methods for solving various model problems such as integral and integro-differential equa-
tions.
The present work outlines reliable numerical strategies for solving these equations based
on the reproducing kernel theory.
The advantages of the current method lie in the following facts:

• The method is mesh-free, easily implemented and capable of treating various
boundary conditions

• The method is based on the reproducing kernel theory and does not need the
Gram-Schmidt orthogonalization process.

This paper is organized as follows. A brief review of the reproducing kernel theory is given
in Section 2. In Section 3, a numerical method is presented to construct our numerical
solutions for the Volterra DIDEs. Some test examples are solved and the results are shown
in Section 4. The paper ends with conclusions in Section 5.

2. Preliminaries
In this section, we provide some fundamental definitions and then we introduce some

reproducing kernel Hilbert spaces which will be used later in the paper.

Definition 2.1. (Page 3/Section 1.1/Chapter 1 in [5]). Let H be a real Hilbert space of
functions on a set U . Denote by ⟨x, y⟩H the inner product and let ∥x∥ =

√
⟨x, x⟩H be the

norm in H, for x, y ∈ H. The real valued function R : U ×U −→ ℜ is called a reproducing
kernel of H if the followings are satisfied
(i) For every t, Rt(s) = R(t, s) as a function of s belongs to H.
(ii) The reproducing property: x(t) = ⟨x(.), Rt(.)⟩H for all x ∈ H and all t ∈ U.
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Definition 2.2. (Page 3/Section 1.1/Chapter 1 in [5]). A Hilbert space H of functions
on a set U is called a reproducing kernel Hilbert space if there exists a reproducing kernel
R of H.

Definition 2.3. (Page 4/Section 1.2/Chapter 1 in [5]). If a Hilbert space H of functions
on a set U possesses a reproducing kernel, then the reproducing kernel R is uniquely
determined by the Hilbert space H.

Definition 2.4. (Page 38/Section 2.3/Chapter 2 in [5]). The inner product space H2[0, T ]
is defined as H2[0, T ] = {x(t)|x′(t) is one-variable absolutely continuous real-valued func-
tion in [0, T ], x

′′ ∈ L2[0, T ] and x(0) = 0}. The inner product space in H2[0, T ] is given
by

⟨x(t), y(t)⟩H2[0,T ] = x
′(0)y′(0) +

∫ T

0
x

′′(t)y′′(t)dt, (2.1)

and the norm ∥x∥2
H2[0,T ] is denoted by

∥x∥2
H2[0,T ] = ⟨x(t), x(t)⟩H2[0,T ],

where x, y ∈ H2[0, T ].

It can be proved that the inner product space H2[0, T ] is a reproducing kernel Hilbert
space and its reproducing kernel function M(t, s) is given by [5]

Mt(s) = M(t, s) =

 st + st2

2 − t3

6 , t ≤ s,

st + ts2

2 − s3

6 , s < t.
(2.2)

Definition 2.5. (See [14]) The inner product space H2,σ[−τ, T ] is defined as H2,σ[−τ, T ] =
{x(t)|x(t) ∈ H2[0, T ] ∀t ∈ [0, T ] and x(t) = 0 ∀t ∈ [−τ, 0]}. The inner product in
H2,σ[−τ, T ] is given by

⟨x(t), y(t)⟩H2,σ [−τ,T ] = x
′(0)y′(0) +

∫ T

0
x

′′(t)y′′(t)dt, (2.3)

and the norm ∥x∥H2,σ [−τ,T ] is denoted by

∥x∥H2,σ [−τ,T ] = ⟨x(t), x(t)⟩H2,σ [−τ,T ],

where x, y ∈ H2,σ[−τ, T ].

We can prove that the space H2,σ[−τ, T ] is a reproducing kernel Hilbert space [16] and
its reproducing kernel function R(s, t) can be written as

Rt(s) = R(t, s) =
{

Mt(s), t ∈ [0, T ],
0, t ∈ [−τ, 0]. (2.4)

3. Description of the method
In this section, a linear differential operator and a complete system of the space H2,σ[−τ, T ]

are introduced. Then an iterative method is represented to obtain the analytical solution
of (1.3) in the space H2,σ[−τ, T ].
By defining the linear operator Ł : H2,σ[−τ, T ] −→ L2[0, T ] as

Ł[x(t)] = x
′(t) − λx(t) − µx(t − τ) −

∫ t

0
H1(t, s)x(s) −

∫ t

t−τ
H1(t, s)x(s)ds, (3.1)

model problem (1.3) takes the following form

Ł[x(t)] = f(t). (3.2)
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We assume that (1.3) has a unique solution. In order to represent the approximate solution
of (1.3), it is easy to show that Ł : H2,σ[−τ, T ] → L2[0, T ] is a bounded linear operator
[5].

Lemma 3.1. (see [6]) If {ti}∞
i=1 is dense in [0, T ], then {ρi(t)}∞

i=1 = {ŁsR(t, s)|s=ti}∞
i=1

is the complete system in H2,σ[−τ, T ], where the subscript s of the operator Ł indicates
that the operator Ł applies to the function of s.

Remark 3.2. Completeness of system {ρi}∞
i=1 can be stated as: if < x, ρi >H2,σ = 0, i =

1, · · · , and some x ∈ H2,σ[−τ, T ] then x = 0.

The exact solution and approximate solution can be obtained using the following theo-
rem.

Theorem 3.3. Suppose that x(t) ∈ H2,σ[−τ, T ], then

x(t) =
∞∑

i=1
αiρi(t), (3.3)

where
m∑

i=1
αiŁρi(tk) = f(tk), k = 1, 2, ..., m. (3.4)

Proof. System {ρi(t)}∞
i=1 is complete in H2,σ[−τ, T ], then

x(t) =
∞∑

i=1
αiρi(t). (3.5)

Now, by the n-term intercept of (3.5), the approximate solution is presented by

Pmx(t) = xm(t) =
m∑

i=1
αiρi(t). (3.6)

where Pm : H2,σ[−τ, T ] → Span{ρi(t)}m
i=1 is an orthogonal projection operator.

Since

Ł[xm(tk)] = ⟨xm, ρk⟩H2,σ = ⟨Pmx, ρk⟩H2,σ

= ⟨x, ρk⟩H2,σ = Ł[x(tk)], k = 1, 2, ..., m.

Therefore, we must have

Ł[xm(tk)] = Ł[x(tk)], k = 1, 2, ..., m. (3.7)

Therefore, we must have

Ł[xm(tk)] =
m∑

i=1
αiŁρi(tk) = f(tk), k = 1, 2, ..., m. (3.8)

Then, the approximate solution xm(t) can be obtained by

xm(t) = Pmx(t) =
m∑

i=1
αiρi(t), (3.9)

where the coefficients αi, i = 1, 2, ..., m, can be determined by (3.8). Combining (3.9) and
(1.2) leads to the approximate solution of (1.1)

ym(t) = xm(t) + w(t) =
m∑

i=1
αiρi(t) + w(t). (3.10)

�
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3.1. Convergence and error estimation
In the following, we will consider the convergence and error estimation of the approxi-

mate solution is given by (3.10).
First, we discuss the convergence of the approximate solution xm(t) and its derivative
x

′
m(t). We set ∥x∥∞ = maxt∈[0,T ] |x(t)|.

Theorem 3.4. Let {ti}∞
i=1 be dense in [0, 1] and x(t) be the solution of (3.2), then the

approximate solution xm(t) and x
′
m(t), converge uniformly to the exact solution x(t) and

its derivative x
′(t), respectively.

Proof. Since Rt(t) and ∂2

∂t1∂t2
Rt2(t1)|t1=t2=t are continuous function with respect to t in

[0, T ], we get
|x(t) − xm(t)| = | < x − xm, Rt(.) >H2,σ |

≤
√

Rt(t)∥x − xm∥H2,σ , (3.11)
|x′(t) − x

′
m(t)| = | < x − xm, ∂

∂ tRt(.) >H2,σ |

≤
√

∂2

∂t1∂t2
Rt2(t1)|t1=t2=t∥x − xm∥H2,σ . (3.12)

It follows from

∥x − xm∥H2,σ = ∥
∞∑

i=m+1
αiρi∥H2,σ . (3.13)

that ∥x − xm∥H2,σ → 0 as m → ∞. Thus the approximate solution xm(t) and x
′
m(t)

converge uniformly to the exact solution x(t) and its derivative x
′(t) respectively. �

In the following we will obtain the error estimates for the approximate solution of (3.2)
in H2,σ[−τ, T ].
Theorem 3.5. Let ∆m = {0 = t1 < t2 < ... < tm = T}, be a partition of interval [0, T ]
and also xm(t) be the approximate solution of (3.2) in the space H2,σ[−τ, T ]. The following
relation holds,

∥x − xm∥∞ ≤ c h, h = max
1≤i≤m−1

(ti+1 − ti), (3.14)

where c is a positive constant.
Proof. In each subinterval [ti, ti+1], we can write

x(t) − xm(t) = x(t) − x(ti) + xm(ti) − xm(t) + x(ti) − xm(ti). (3.15)
By means of the mean value Theorem and the continuity of x

′ , one can show that
|x(t) − x(ti)| ≤ a h. (3.16)

We now have
|xm(t) − xm(ti)| ≤

∫ t

ti

|x′
m(s)|ds, (3.17)

and since xm(t) ∈ H2,σ[−τ, T ], it follows that
|xm(t) − xm(ti)| ≤ b h. (3.18)

Using Theorem 3.4, for large m we have
|x(ti) − xm(ti)| ≤ ε. (3.19)

Given the fact that ϵ is arbitrary, after combining Eqs. (3.15)-(3.19) and choosing suffi-
ciently large value of m, we must have

∥x − xm∥∞ ≤ c h, h = max
1≤i≤m−1

(ti+1 − ti). (3.20)
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�
Theorem 3.6. Suppose that the conditions of Theorem 3.5 hold. The approximate solution
ym(t) satisfies

∥y − ym∥∞ ≤ c h, h = max
1≤i≤m−1

(ti+1 − ti). (3.21)

Proof. In view of

ym(t) = xm(t) + w(t) =
m∑

i=1
αiρi(t) + w(t), y(t) = x(t) + w(t), (3.22)

by Theorem 3.5, one can see that
∥y − ym∥∞ ≤ c h, h = max

1≤i≤m−1
(ti+1 − ti). (3.23)

�
Theorem 3.7. Let the partition of the interval [0, 1], denoted by ∆m = {0 = t1 < t2 <
... < tm = T}, also suppose that xm(t) be the approximate solution of (3.2) in the space
H2,σ[−τ, T ] such that ∥x

′
m∥∞ then bounded. If x ∈ C2[0, T ], then following relations hold,

∥x − xm∥C ≤ c h2, ∥x
′ − x

′
m∥C ≤ d h, h = max

1≤i≤m−1
(ti+1 − ti), (3.24)

where c and d are positive constants.

Proof. In each subinterval [ti, ti+1], we can write

x
′(t) − x

′
m(t) = x

′(t) − x
′(ti) + x

′
m(ti) − x

′
m(t) + x

′(ti) − x
′
m(ti). (3.25)

According to the mean value theorem, there exists ξi ∈ (ti, ti+1) such that

x
′(t) − x

′(ti) = (t − ti)x
′′(ξi). (3.26)

Since x(t) ∈ C2[0, T ] then for some a > 0

|x′(t) − x
′(ti)| ≤ a h. (3.27)

Note that
|x′

m(t) − x
′
m(ti)| ≤

∫ t

ti

|x′′
m(t)|dt. (3.28)

Hence
|x′

m(t) − x
′
m(ti)| ≤ b h. (3.29)

Using Theorem 3.4 for large m we have

|x(ti) − xm(ti)| ≤ ϵ, |x′(ti) − x
′
m(ti)| ≤ ϵ. (3.30)

Given the fact that ϵ is arbitrary, after combining Eqs. (3.25)-(3.30) and choosing suffi-
ciently large value of m, we must have

∥x
′ − x

′
m∥∞ ≤ d h, h = max

1≤i≤m−1
(ti+1 − ti). (3.31)

We know

x(t) − xm(t) = x(ti) − xm(ti) +
∫ t

ti

(x′(s) − x
′
m(s))ds, (3.32)

By using (3.30)- (3.32) for large m it is straightforward to see that

∥x − xm∥∞ ≤ c h2, (3.33)
and this completes the proof. �

Similarly, one obtains Theorem 3.8.
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t |y(t) − y40(t)| |y(t) − y50(t)| |y(t) − y60(t)| Bellour and Bousselsal [2]
(m=4,N=4)

0.5 1.5781e-5 4.7476e-6 2.2112e-6 1.04e-6
1.0 2.5459e-5 8.2134e-6 3.6462e-6 2.13e-6
1.5 4.1868e-5 1.3609e-5 6.0291e-6 3.03e-6
2.0 6.1929e-5 2.2479e-5 9.9413e-6 4.12e-6
2.5 1.1410e-4 3.6847e-5 1.6423e-5 6.19e-6
3.0 1.7962e-4 5.8169e-5 2.5756e-5 1.00e-5

CPU-time (s) 10.098(s) 14.714(s) 16.915(s)
t |y′(t) − y

′

40(t)| |y′(t) − y
′

50(t)| |y′(t) − y
′

60(t)|
0.5 8.3546e-5 6.2223e-5 2.6121e-5
1.0 5.7278e-4 8.4822e-5 3.6834e-5
1.5 6.2124e-4 1.4388e-4 6.0556e-5
2.0 6.9134e-4 2.2878e-4 8.9617e-5
2.5 7.2623e-3 3.8112e-4 9.1024e-5
3.0 7.8409e-3 5.8421e-4 9.5439e-5

Table 1. The absolute errors |y(t) − ym(t)| and |y′(t) − y
′

m(t)|
obtained by using the proposed method.

Theorem 3.8. Suppose that the conditions of Theorem 3.7 hold. The approximate solution
ym(t) satisfies

∥y − ym∥∞ ≤ c h2, h = max
1≤i≤m−1

(ti+1 − ti). (3.34)

4. Numerical examples
In this section, we consider two numerical examples that demonstrate the performance

and efficiency of the proposed method for solving Volterra DIDEs. We calculate the
absolute error for different values of m between the exact solution y(t) = x(t) + w(t)
and the approximate solution ym(t) = xm(t) + w(t). The computations were performed
by means of the symbolic software Maple 16 on a PC with a CPU of 2.4 GHz. Results
obtained by the proposed method are compared with the exact solution for each example.
This comparison shows that the approximate solution is in good agreement with the exact
solution.
Example 5.1. Let’s first consider the delay integro-differential equation

y
′(t) = g(t) +

∫ t

t−1
(cos(t + s + 1) + 2)y(s)ds, t ∈ [0, 3], (4.1)

g(t) = 3 cos(t) − 1
4

cos(3t − 1) − 2 + 1
2

sin(t + 1)

+ sin(2t) − 2 cos(t − 1) + 1
4

cos(3t + 1) − sin(2t + 1),

with the initial function Φ(t) = sin(t)+1, t ∈ [−1, 0]. The exact solution is y(t) = sin(t)+1
for all t ∈ [0, 3].
We introduce the transformation x(t) = y(t) − w(t), where

w(t) =
{

0, 0 ≤ t ≤ 3
sin(t) + 1, −1 ≤ t ≤ 0.

Using the transformation, the equivalent problem of (4.1) can be written as:

x
′(t) = f(t) +

∫ t

t−1
(cos(t + s − 1) + 2)x(s)ds, t ∈ [0, 3], (4.2)
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t |y(t) − y55(t)| |y(t) − y65(t)| |y(t) − y75(t)|
0.2 2.1113e-5 6.9389e-6 2.6992e-6
0.4 2.0578e-5 7.3023e-6 3.3541e-6
0.6 2.5853e-5 8.8828e-6 4.0669e-6
0.8 3.1309e-5 1.0880e-5 4.9478e-6
1.0 3.8117e-5 1.3290e-5 6.0345e-6
1.2 4.6447e-5 1.6128e-5 7.3647e-6
1.4 5.6519e-5 1.9645e-5 8.9820e-6
1.6 7.0091e-5 2.4047e-5 1.0923e-5
1.8 7.4347e-5 2.8423e-5 1.3465e-5
2.0 1.1834e-4 4.0901e-5 1.8612e-5

CPU-time (s) 13.745(s) 15.970(s) 19.672(s)
t |y′(t) − y

′
55(t)| |y′(t) − y65(t)| |y′(t) − y

′
75(t)|

0.2 4.6405e-4 1.1206e-4 3.9665e-5
0.4 4.8038e-4 1.0834e-4 2.4508e-5
0.6 5.0942e-4 4.5869e-4 4.0254e-5
0.8 5.7835e-4 4.0673e-4 4.9111e-5
1.0 6.8530e-4 5.3036e-4 5.9575e-5
1.2 6.3496e-4 5.5947e-4 7.3436e-5
1.4 7.2159e-4 6.9443e-4 8.9462e-5
1.6 9.5500e-4 8.7710e-4 1.0149e-4
1.8 1.0511e-3 9.1117e-4 3.0641e-4
2.0 1.1870e-3 9.0989e-4 4.8686e-4

Table 2. The absolute errors |y(t) − ym(t)| and |y′(t) − y
′
m(t)|

obtained by using the proposed method.

In (4.2), put Ł : H2,σ[−1, 3] −→ L2[0, 3] such that

Ł[x(t)] ≡ x
′(t) −

∫ t

t−1
(cos(t + s − 1) + 2)x(s)ds.

It is clear that Ł is a bounded linear operator. The proposed method is tested on this
problem with grid points ti = 3(i−1)

m−1 , i = 1, . . . , m. The absolute errors distribution
obtained by using the proposed method is provided in Table 1. Also, a comparison is
made between the absolute errors obtained by using the proposed method together with
the absolute errors obtained by using the method are presented in [2].
Example 5.2. Consider the delay integro-differential equation

y
′(t) = g(t) − 2y(t) + y(t − 1) +

∫ t

t−1
y(s)ds +

∫ t

0
e−stt2y(s)ds, t ∈ [0, 2], (4.3)

g(t) = e−t2(1 + t2) + 1.5,

with the initial function Φ(t) = t, t ∈ [−1, 0]. The exact solution is y(t) = t for all t ∈ [0, 2].
We introduce the transformation x(t) = y(t) − w(t), where

w(t) =
{

0, 0 ≤ t ≤ 3
x, −1 ≤ t ≤ 0.

Using the transformation, the equivalent problem of (4.3) can be written as:

x
′(t) = f(t) − 2x(t) + x(t − 1) +

∫ t

t−1
x(s)ds +

∫ t

0
e−stt2x(s)ds, t ∈ [0, 2], t ∈ [0, 3]. (4.4)
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In (4.4), put Ł : H2,σ[−1, 2] −→ L2[0, 2] such that

Ł[x(t)] ≡ x
′(t) + 2x(t) − x(t − 1) −

∫ t

t−1
x(s)ds −

∫ t

0
e−stt2x(s)ds, t ∈ [0, 2].

The proposed method is tested on this problem with gri d points ti = 2(i−1)
m−1 , i = 1, . . . , m.

The absolute errors distribution obtained by using the proposed method are provided in
Table 2.

5. Conclusion
In this paper, an efficient method for reproducing kernel space is developed to solve

Volterra DIDEs. The reproducing kernel method was described and tested on two differ-
ent examples. The method’s applicability and accuracy were also assessed by calculating
approximate solutions at the selected grid points. Furthermore, the analytical and numer-
ical solutions were obtained with the help of the Maple software package.
We have come up with the following conclusions:

• The proposed method provides the solution in the form of a convergent series with
easily computed components.

• The approximate solution and its derivatives converge to the exact solution and
its derivatives in a uniform manner.

• It has been discovered that the proposed method produces more accurate numerical
results.

• The method is simple to implement, and its algorithm is efficient in providing an
approximate solution.

• The numerical examples demonstrate that the proposed method is a reliable nu-
merical method for treating Volterra DIDEs.
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