
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 51 (1) (2022), 95 – 100
DOI : 10.15672/hujms.879518

Research Article

Regular Γ-irresolvable spaces

Ahmad Al-Omari∗1, Takashi Noiri2
1Al al-Bayt University, Faculty of Sciences, Department of Mathematics, P.O. Box 130095, Mafraq

25113, Jordan
22949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

Abstract
In this paper by using regular open sets and Γ-local functions, we introduce and inves-
tigate the notions of IR-dense sets, IR-hyperconnectedness, I∗

R-hyperconnectedness, Γ-
resolbablity and regular Γ-irresobability in ideal topological spaces.

Mathematics Subject Classification (2020). 54A05

Keywords. ideal topological space, regular open set, IR-dense, R-hyperconnected,
Γ-resolvable, regular Γ-irresolbable.

1. Introduction
Throughout the present paper, (X, τ) or X will denote a topological space and Cl(A)

(resp. Int(A)) will denote the closure (resp. interior) of a subset A of X. A subset A of X
is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))).
We denote by Ro(X) (resp. Rc(X)) the family of all regular open (resp. regular closed)
sets in a space (X, τ). It is well known that Ro(X) is a base for a topology τS on X which
is coarser than τ . The space (X, τS) is called the semi-regularization [12] of (X, τ) and
(X, τ) is said to be semi-regular if τ = τS . The closure (resp. interior) of a subset A of
(X, τs) will be denoted by Clτs(A) (resp. Intτs(A)).

A nonempty collection I of subsets on a topological space (X, τ) is called a topological
ideal on (X, τ) [11] if it satisfies the following two conditions:

(1) If A ∈ I and B ⊆ A, then B ∈ I (heredity).
(2) If A ∈ I and B ∈ I, then A ∪ B ∈ I (finite additivity).

Let (X, τ, I) be an ideal topological space, that is, a topological space (X, τ) with an
ideal I on X. For a subset A of X, the local function A∗(I, τ) [9] and the Γ∗(A)(I, τ) [3]
are defined as follows:

A∗(I, τ) = {x ∈ X : A ∩ U /∈ I for every U ∈ τ(x)} and
Γ∗(A)(I, τ) = {x ∈ X : A ∩ U /∈ I for every U ∈ Ro(x)}, respectively,

where τ(x) = {U ∈ τ : x ∈ U)} and Ro(x) = {U ∈ Ro(X) : x ∈ U}.
Hereafter, A∗(I, τ) and Γ∗(A)(I, τ) are simply denoted by A∗ and Γ(A), respectively. Hatir
et al. [7] defined the δ-local function Aδ∗(I, τ) of a subset A of X. However, it is shown in
[3] that Aδ∗(I, τ) = Γ∗(A)(I, τ) for every subset A of X. A subset A of an ideal topological
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space (X, τ, I) is said to be IR-dense (resp. I-dense) if every point of X is in Γ(A) (resp.
A∗), i.e., if Γ(A) = X (resp. A∗ = X). If Ro(X) ∩ I = {∅} (resp. τ ∩ I = {∅} ), then I is
said to be regular [5] (resp. codense). Several characterizations of ideal topological spaces
were provided in [1, 2, 4].

Remark 1.1. For an ideal space (X, τ, I), if D ⊆ X is IR-dense, then X is also IR-dense,
i.e., Γ(X) = X.

Theorem 1.2. Let (X, τ, I) be an ideal space, then the following properties are equivalent:
(1) I is regular;
(2) If I ∈ I, then δInt(I) = ϕ;
(3) For every G ∈ Ro(X), G ⊆ Γ(G);
(4) X = Γ(X).

In this paper by using regular open sets and Γ-local functions, we introduce and in-
vestigate the notions of IR-dense sets, IR-hyperconnectedness, I∗

R-hyperconnectedness,
Γ-resolbablity and regular Γ-irresobability in ideal topological spaces. Hereafter, an ideal
topological space (X, τ, I) will be simply called an ideal space.

2. IR-hyperconnected spaces
Definition 2.1. An ideal space (X, τ, I) is said to be

(1) R-hyperconnected if every pair of nonempty regular open sets of X has nonempty
intersection.

(2) IR-hyperconnected if every nonempty regular open set is IR-dense in X.
(3) R-hyperconnected modulo I if the intersection of every two nonempty regular open

sets is not in I.

Lemma 2.2. For an ideal space (X, τ, I), the following statements are equivalent:
(1) (X, τ, I) is R-hyperconnected modulo I;
(2) There are no proper regular closed sets G and H such that X − (G ∪ H) ∈ I.

Proof. Suppose that there are proper regular closed G and H such that X − (G∪H) ∈ I.
If H is empty, then X − G ∈ I. Since X − G and X are nonempty regular open sets
with X ∩ (X − G) = (X − G) ∈ I. This is a contradiction. Hence, G and H both are
nonempty proper regular closed sets. Then X − G and X − H are nonempty regular open
sets. However, (X − G) ∩ (X − H) = X − (G ∪ H) ∈ I which contradicts to (1).
Conversely, let A and B be any nonempty regular open sets in X. Then X − A and X − B
are proper regular closed sets in X and X − [(X − A) ∪ (X − B)] /∈ I. This implies that
X − [X − (A ∩ B)] /∈ I. Thus, (A ∩ B) /∈ I. �
Theorem 2.3. Let (X, τ, I) be an ideal space and I be a regular ideal in X. Then X is
R-hyperconnected modulo I if and only if X is R-hyperconnected.

Proof. Let X be R-hyperconnected modulo I. Then, since ∅ ∈ I, X is R-hyperconnected.
Conversely, let X be R-hyperconnected and ∅ ̸= A, B ∈ Ro(X). Then ∅ ̸= A∩B ∈ Ro(X).
Since I is regular, A ∩ B /∈ I. Thus, X is R-hyperconnected modulo I. �
Theorem 2.4. An ideal space (X, τ, I) is R-hyperconnected if and only if the union of two
not τs-dense sets is a not τs-dense set.

Proof. Let (X, τ, I) be R-hyperconnected and E, F be two not τs-dense sets in (X, τ, I).
Then there exist two nonempty regular open sets U and V such that U ∩ E = ∅ and
V ∩ F = ∅. Since (X, τ, I) is R-hyperconnected, U ∩ V ̸= ∅. But (U ∩ V ) ∩ (E ∪ F ) = ∅
and hence E ∪ F is not τs-dense in (X, τ, I).
Conversely, let the condition hold in (X, τ, I) but (X, τ, I) is not R-hyperconnected. Then
there exist ∅ ̸= U, V ∈ Ro(X) such that U ∩ V = ∅. Hence U ⊆ X − V and V ⊆ X − U .
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Then X − U and X − V are not τs-dense in (X, τ, I). But (X − U) ∪ (X − V ) = X which
contradicts the fact that the union of two not τs-dense sets is a not τs-dense set. Hence
the theorem is now proved. �
Lemma 2.5. Let (X, τ, I) be an ideal space. Then X is IR-hyperconnected if and only if
X is R-hyperconnected and I is regular.
Proof. Clearly every IR-hyperconnected space is R-hyperconnected. Let U be regular
open, nonempty and a member of the ideal. Then Γ(U) = X. On the other hand, since
U ∈ I, Γ(U) = ∅. Hence X = ∅. This is a contradiction. Therefore, I is regular.

Conversely, let ∅ ̸= U ∈ Ro(X). Let x ∈ X. Due to the R-hyperconnectedness of X,
every regular open set V containing x meets U . Moreover, U ∩ V is regular open and
U ∩ V /∈ I because I is regular. Thus x ∈ Γ(U). This shows that U is IR-dense. �
Theorem 2.6. Let (X, τ, I) be an ideal space, where I is regular. Then a set D is IR-dense
if and only if (U − A) ∩ D ̸= ∅ whenever ∅ ̸= U ∈ Ro(X) and A ∈ I.
Proof. Let D be IR-dense. Then U ∩D /∈ I for all nonempty regular open set U . Hence for
all A ∈ I, (U −A)∩D ̸= ∅, for otherwise (U −A)∩D = ∅ and hence ∅ = U ∩(X −A)∩D =
(U ∩ D) ∩ (X − A). Therefore, U ∩ D ⊆ A. Since A ∈ I, U ∩ D ∈ I which is contrary to
U ∩ D /∈ I. Therefore, (U − A) ∩ D ̸= ∅.

Conversely let (U − A) ∩ D ̸= ∅ whenever ∅ ̸= U ∈ Ro(X) and A ∈ I. Then we claim
that D is IR-dense. Let D be not IR-dense. Then there exists some nonempty regular
open set U such that U ∩ D ∈ I. Let U ∩ D = A. Then, since I is regular, U − A is
nonempty but (U − A) ∩ D = ∅. This is contrary to our assumption. �
Theorem 2.7. Let (X, τ, I) be an ideal space, where I is regular. Then X is R-hyperconnected
modulo I if and only if (U − A) ∩ D ̸= ∅ whenever ∅ ̸= U, D ∈ Ro(X) and A ∈ I.
Proof. The proof follows from Lemma 2.5 and Theorem 2.6. �

3. Γ-resolvable spaces
A topological space (X, τ) is said to resolvable [8] if X is the union of two disjoint dense

subsets. An ideal space (X, τ, I) is said to be I-resolvable [6] if X has two disjoint I-dense
subsets. If I and J are ideals with I ⊆ J and X is J-resolvable, then X is I-resolvable. An
ideal space (X, τ, I) is said to be Γ-resolvable if it has two disjoint IR-dense sets; otherwise
it is said to be Γ-irresolvable.
Example 3.1. Let (R, τ) be the real numbers with the left-ray topology, i.e. τ =
{(−∞, a) : a ∈ R} ∪ {R, ∅}. Let If be the ideal of all finite subsets of R. Let A = [0, 1]
and B = [2, 3]. We have the following

(1) Γ(A) = {x ∈ R : A ∩ U = A /∈ If for every U ∈ Ro(x)} = R.
(2) Γ(B) = {x ∈ R : B ∩ U = B /∈ If for every U ∈ Ro(x)} = R.
(3) Then A and B are disjoint IR-dense. Hence (R, τ, I) is Γ-resolvable.
(4) Also I ∩ Ro(R) = {∅}, then I is regular.

Example 3.2.
Let X = {a, b, c, d}, τ = {∅, X, {a, c}, {d}, {a, c, d}}, I = {∅, {c}} and Ro(X) =

{∅, X, {a, c}, {d}}. We have the following
(1) I ∩ Ro(X) = {∅}, then I is regular.
(2) Γ({a, d}) = Γ({a, b, d}) = Γ({a, c, d}) = Γ(X) = X, then the collection of all

IR-dense are only {a, d}, {a, b, d}, {a, c, d}, X and it is clear that are not disjoint.
(3) Hence (X, τ, I) is Γ-irresolvable.

Lemma 3.3. Let (X, τ, I) be an ideal space.
(1) (X, τ, I) is Γ-resolvable if and only if X is the union of two disjoint IR-dense sets.
(2) If (X, τ, I) is Γ-resolvable, then I is regular.
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Proof. (1) Let A and B be disjoint IR-dense sets. Then Γ(A) = X and X = Γ(B) ⊆
Γ(X − A) and hence X = Γ(X − A). Therefore, X is the union of IR-dense sets A and
X − A. The converse is obvious.

(2) Let A and B be disjoint IR-dense sets. Then, by Lemma 2.3(1) of [3], we have
X = Γ(A) ⊆ Γ(X). Therefore, X is IR-dense. Thus, by Theorem 1.2, I is regular. �

The converse of Lemma 3.3 (2) is not true as shown by Example 3.2.

Theorem 3.4. An ideal space (X, τ, I) is Γ-resolvable if and only if (X, τΓ) is resolvable
and I is regular.

Proof. Let (X, τ, I) be Γ-resolvable. Then, by Lemma 3.3(1), X = A∪B, where A and B
are disjoint IR-dense sets of X. Note that ClΓ(A) = A∪Γ(A) = A∪X = X. Hence A and
B are τΓ-dense. Thus, (X, τΓ) is resolvable. By Lemma 3.3(2), I is regular. Conversely,
Let (X, τΓ) be resolvable and I be regular. Suppose that X = A ∪ B, A ∩ B = ∅ and both
A and B are τΓ-dense. Let x ∈ X and x /∈ Γ(A), then there exists a regular open set U
containing x such that V = U ∩A ∈ I. Since B is τΓ-dense and I is regular, V is nonempty
and moreover U * A. It follows from [3, Theorem 2.6] that ∅ ̸= W = U − V ∈ τΓ and
W ∩ A = ∅. This contradicts that A is τΓ-dense. Thus x ∈ Γ(A) and hence A is IR-dense.
A similar argument shows that B is IR-dense. Thus (X, τ, I) is Γ-resolvable. �
Theorem 3.5. A space (X, τ, I) is Γ-resolvable if and only if there exists an IR-dense set
D such that for all nonempty U ∈ Ro(X) and all A ∈ I, U − A ̸= ∅ implies (U − A) * D.

Proof. Let (X, τ, I) be Γ-resolvable. Then, by Remark 1.1 and Theorem 1.2, I is regular.
Now there exist two disjoint IR-dense sets, say D1 and D2. We show that (U − A) * D1
whenever U − A ̸= ∅ for all ∅ ̸= U ∈ Ro(X) and A ∈ I. If possible let (U − A) ⊆ D1 for
some ∅ ̸= U ∈ Ro(X) and A ∈ I. Then (U − A) ∩ D2 = ∅. Now since I is regular, by
Theorem 2.6 D2 is not IR-dense. This is contrary that D2 is IR-dense. Hence (U −A) * D1
whenever U − A ̸= ∅ for all ∅ ̸= U ∈ Ro(X) and A ∈ I.

Conversely let the condition hold in (X, τ, I). Then there exists an IR-dense set D such
that (U − A) * D if U − A ̸= ∅ for all ∅ ̸= U ∈ Ro(X) and A ∈ I. We show that X − D
is IR-dense. Let X − D be not IR-dense. Then there exists ∅ ̸= V ∈ Ro(X) such that
V ∩ (X − D) ∈ I. Clearly V ∩ (X − D) ̸= ∅, for otherwise V ⊆ D, which is contrary to
our assumption. Let A = V ∩ (X − D). Then V − A ̸= ∅. For if V − A = ∅ then V ⊆ A
and hence V ∈ I which implies V ∩ D ∈ I. This is contrary that D is IR-dense. Therefore,
V − A ⊆ D, which is again contrary to our assumption. Thus X − D is IR-dense and
hence (X, τ, I) is Γ-resolvable. �
Corollary 3.6. An ideal space (X, τ, I) is Γ-irresolvable if and only if for each IR-dense
set D, there exist U ∈ Ro(X) and A ∈ I such that ∅ ̸= (U − A) ⊆ D.

Lemma 3.7. Let Y be a subspace of a topological space X and I be an ideal in X. Then
IY = {I ∈ I : I ⊆ Y } = {I ∩ Y : I ∈ I} is an ideal in Y .

Theorem 3.8. Let (X, τ, I) be an ideal space such that I is regular. If D is IR-dense in
(X, τ, I), then for all Y = U − A, where ∅ ̸= U ∈ Ro(X) and A ∈ I, Y ∩ D is IR-dense in
(Y, τY , IY ).

Proof. Clearly we suppose I is regular. A regular open set in Y is of the form Y ∩ O =
(U −A)∩O = (U ∩O)−A, where O is regular open in (X, τ). Let ∅ ̸= U ∩O−A. Consider
∅ ̸= ((U ∩ O) − A) − B, B ∈ IY . Then since D is IR-dense and U ∩ O is regular open in
(X, τ), by Theorem 2.6 (U ∩ O − (A ∪ B)) ∩ D ̸= ∅. Hence (((U ∩ O) − A) − B) ∩ D ̸= ∅.
Therefore again by Theorem 2.6 Y ∩ D is IR-dense in (Y, τY , IY ). �
Lemma 3.9 ([10]). Let (X, τ) be a topological space and Y be open or dense in X. Then

(1) Ro(Y ) = {A ∩ Y : A ∈ Ro(X)}.
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(2) Rc(Y ) = {A ∩ Y : A ∈ Rc(X)}.
(3) (τY )S = (τS)Y .

Theorem 3.10. Let (X, τ, I) be an ideal space such that I is regular and P ⊆ Y = U −A,
where ∅ ̸= U ∈ Ro(X), A ∈ I, and Y is open or dense in X. Then P is IR-dense in
(Y, τY , IY ) if and only if P = Y ∩ D, where D is IR-dense in (X, τ, I).

Proof. Let P be IR-dense in (Y, τY , IY ). Consider the set P ∪ (X − Y ). Then (P ∪ (X −
Y )) ∩ O = (P ∩ O) ∪ ((X − Y ) ∩ O), where ∅ ̸= O ∈ Ro(X). Now if O ⊆ X − Y , then
P ⊆ Y and P ∩ O = ∅ and we have (P ∪ (X − Y )) ∩ O = O which is not in I because I

is regular. Finally if O ∩ Y ̸= ∅, then since P is IR-dense in (Y, τY , IY ), P ∩ (O ∩ Y ) /∈ IY

and hence P ∩ O /∈ I. Therefore (P ∪ (X − Y )) ∩ O /∈ I. Thus (P ∪ (X − Y )) = D say
is IR-dense in (X, τ, I) and hence P = Y ∩ D. Conversely, let P = Y ∩ D, where D is
IR-dense in (X, τ, I). Then, by Theorem 3.8, P is IR-dense in (Y, τY , IY ). This completes
the proof of the theorem. �

4. Regular Γ-irresolvable spaces
We shall now define and discuss properties of a regular Γ-irresolvable space.

Definition 4.1. An ideal space (X, τ, I) is said to be regular Γ-irresolvable if for each
IR-dense set D and each ∅ ̸= U ∈ Ro(X) and A ∈ I such that ∅ ̸= U − A, there exist
∅ ̸= V ∈ Ro(X) and B ∈ I such that ∅ ̸= (V − B) ⊆ (U − A) ∩ D.

Theorem 4.2. An ideal space (X, τ, I) is regular Γ-irresolvable, where I is regular, if and
only if the intersection of any two IR(X)-dense sets is an IR(X)-dense set.

Proof. Let (X, τ, I) be regular Γ-irresolvable and I be regular. Let D1 and D2 be two
IR(X)-dense sets in (X, τ, I). We show that D1 ∩ D2 is IR(X)-dense. Consider U − A,
where ∅ ̸= U ∈ Ro(X) and A ∈ I. We show that (U − A) ∩ D1 ∩ D2 ̸= ∅. Since D1 is
IR(X)-dense, by Theorem 2.6 (U − A) ∩ D1 ̸= ∅. Since (X, τ, I) is regular Γ-irresolvable,
there exist ∅ ̸= V1 ∈ Ro(X) and B1 ∈ I such that ∅ ̸= (V1 − B1) ⊆ (U − A) ∩ D1.
Again since D2 is IR(X)-dense, there exist ∅ ̸= V2 ∈ Ro(X) and B2 ∈ I such that
∅ ̸= (V2 − B2) ⊆ (V1 − B1) ∩ D2. Hence ∅ ̸= V2 − B2 ⊆ (U − A) ∩ D1 ∩ D2. Therefore,
(U − A) ∩ (D1 ∩ D2) ̸= ∅ and by Theorem 2.6 D1 ∩ D2 is IR(X)-dense.

Conversely let the intersection of any two IR(X)-dense sets is IR(X)-dense. Suppose
that (X, τ, I) is not regular Γ-irresolvable. Then there exist an IR(X)-dense set D1, ∅ ̸=
U ∈ Ro(X) and A ∈ I, where ∅ ̸= U − A, such that (U − A) ∩ D1 does not contain
V − B, for any ∅ ̸= V ∈ Ro(X) and B ∈ I. Consider the set D2 = (X − (U − A)) ∪
((U − A) − (U − A) ∩ D1). By Theorem 2.6, D2 is IR(X)-dense since (V − B) ∩ D2 ̸= ∅.
But (U − A) ∩ D1 ∩ D2 = ∅. This is contrary to the fact that the intersection of two
IR(X)-dense sets is an IR(X)-dense set. Hence (X, τ, I) must be regular Γ-irresolvable.
This completes the proof of the theorem. �

Theorem 4.3. Let (X, τ, I) be an ideal space and I be regular. If (X, τ, I) is regular Γ-
irresolvable, then (Y, τY , IY ) is regular Γ-irresolvable whenever Y = U −A is open or dense
in X, for every ∅ ̸= U ∈ Ro(X) and A ∈ I.

Proof. Let D and G be IR(Y )-dense sets in (Y, τY , IY ). Then, by Theorem 3.10, D =
(U − A) ∩ D1 and G = (U − A) ∩ D2, where D1 and D2 are IR(X)-dense sets in (X, τ, I).
Hence D∩G = (U −A)∩D1∩D2 and, since D1∩D2 is an IR(X)-dense set in (X, τ, I), again
by Theorem 3.10, D ∩ G is IR(Y )-dense in (Y, τY , IY ). Hence by Theorem 4.2 (Y, τY , IY )
is regular Γ-irresolvable. �

Definition 4.4. An ideal space (X, τ, I) is said to be I∗
R-hyperconnected if each ∅ ̸= U −A,

where U ∈ Ro(X) and A ∈ I, is IR(X)-dense.



100 A. Al-Omari, T. Noiri

Theorem 4.5. An ideal space (X, τ, I) is I∗
R-hyperconnected if and only if (X, τ, I) is

IR-hyperconnected and I is regular.
Proof. Let (X, τ, I) be I∗

R-hyperconnected. Clearly (X, τ, I) is IR-hyperconnected. Let
∅ ̸= U be regular open and a member of the ideal. Then Γ(U) = X since (X, τ, I) is
IR-hyperconnected. On the other hand, since U ∈ I, Γ(U) = ∅, which is a contradiction.
Hence I is regular.

Conversely let (X, τ, I) be IR-hyperconnected and I be regular. Consider U − A, where
∅ ̸= U ∈ Ro(X) and A ∈ I. Then ∅ ̸= U − A because I is regular. We show that U − A is
IR(X)-dense. Let x ∈ X and V be a regular open set containing x. By Lemma 2.5, (X, τ)
is R-hyperconnected and V ∩ (U − A) ̸= ∅ because V ∩ (U − A) = V ∩ U − A ̸= ∅ and I is
regular. Thus (X, τ, I) is I∗

R-hyperconnected. �
Theorem 4.6. If an ideal space (X, τ, I) is I∗

R-hyperconnected and Γ-irresolvable, then it
is regular Γ-irresolvable.
Proof. By Theorem 4.5, I is regular. Let D1 and D2 be two IR(X)-dense sets in (X, τ, I).
We show that D1 ∩ D2 is IR(X)-dense. By Theorem 2.6 it is sufficient to prove that
(D1 ∩D2)∩ (U −A) ̸= ∅ for all ∅ ̸= U ∈ Ro(X) and A ∈ I. Since (X, τ, I) is Γ-irresolvable,
by Corollary 3.6 there exist ∅ ̸= V ∈ Ro(X) and B ∈ I such that ∅ ̸= V − B ⊆ D1.
Similarly there exist ∅ ̸= W ∈ Ro(X) and C ∈ I such that ∅ ̸= W − C ⊆ D2. Now (X, τ)
is R-hyperconnected by Theorem 4.5 and V ∩W ̸= ∅. Since I is regular, (V −B)∩(W −C) =
(V ∩ W ) − (B ∪ C) ̸= ∅ and hence (V ∩ W ) − (B ∪ C) ⊆ D1 ∩ D2. Therefore, by I∗

R-
hyperconnectedness of (X, τ, I), (V ∩ W ) − (B ∪ C) is IR(X)-dense and, by Theorem 2.6,
we have ∅ ̸= (U − A) ∩ [(V ∩ W ) − (B ∪ C)] and hence (U − A) ∩ (D1 ∩ D2) ̸= ∅. Therefore,
D1 ∩ D2 is IR(X)-dense. Thus by Theorem 4.2, (X, τ, I) is regular Γ-irresolvable. �
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