

RESEARCH ARTICLE

Regular Γ -irresolvable spaces

Ahmad Al-Omari^{*1}, Takashi Noiri²

¹Al al-Bayt University, Faculty of Sciences, Department of Mathematics, P.O. Box 130095, Mafraq 25113, Jordan

²2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

Abstract

In this paper by using regular open sets and Γ -local functions, we introduce and investigate the notions of \mathcal{I}_R -dense sets, \mathcal{I}_R -hyperconnectedness, \mathcal{I}_R^* -hyperconnectedness, Γ resolvability and regular Γ -irresolvability in ideal topological spaces.

Mathematics Subject Classification (2020). 54A05

Keywords. ideal topological space, regular open set, J_R -dense, R-hyperconnected, Γ -resolvable, regular Γ -irresolbable.

1. Introduction

Throughout the present paper, (X, τ) or X will denote a topological space and Cl(A)(resp. Int(A)) will denote the closure (resp. interior) of a subset A of X. A subset A of Xis said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). We denote by Ro(X) (resp. Rc(X)) the family of all regular open (resp. regular closed) sets in a space (X, τ) . It is well known that Ro(X) is a base for a topology τ_S on X which is coarser than τ . The space (X, τ_S) is called the semi-regularization [12] of (X, τ) and (X, τ) is said to be semi-regular if $\tau = \tau_S$. The closure (resp. interior) of a subset A of (X, τ_s) will be denoted by $Cl_{\tau_s}(A)$ (resp. $Int_{\tau_s}(A)$).

A nonempty collection \mathcal{I} of subsets on a topological space (X, τ) is called a topological ideal on (X, τ) [11] if it satisfies the following two conditions:

- (1) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (heredity).
- (2) If $A \in \mathcal{I}$ and $B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$ (finite additivity).

Let (X, τ, \mathfrak{I}) be an ideal topological space, that is, a topological space (X, τ) with an ideal \mathfrak{I} on X. For a subset A of X, the local function $A^*(\mathfrak{I}, \tau)$ [9] and the $\Gamma^*(A)(\mathfrak{I}, \tau)$ [3] are defined as follows:

 $A^*(\mathfrak{I},\tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(x)\}$ and

 $\Gamma^*(A)(\mathfrak{I},\tau) = \{ x \in X : A \cap U \notin I \text{ for every } U \in Ro(x) \}, \text{ respectively},$

where $\tau(x) = \{U \in \tau : x \in U\}$ and $Ro(x) = \{U \in Ro(X) : x \in U\}.$

Hereafter, $A^*(\mathfrak{I}, \tau)$ and $\Gamma^*(A)(\mathfrak{I}, \tau)$ are simply denoted by A^* and $\Gamma(A)$, respectively. Hatir et al. [7] defined the δ -local function $A^{\delta^*}(\mathfrak{I}, \tau)$ of a subset A of X. However, it is shown in [3] that $A^{\delta^*}(\mathfrak{I}, \tau) = \Gamma^*(A)(\mathfrak{I}, \tau)$ for every subset A of X. A subset A of an ideal topological

^{*}Corresponding Author.

Email addresses: omarimutah1@yahoo.com (A. Al-Omari), t.noiri@nifty.com (T. Noiri)

Received: 14.02.2021; Accepted: 18.08.2021

space (X, τ, \mathfrak{I}) is said to be \mathfrak{I}_R -dense (resp. \mathfrak{I} -dense) if every point of X is in $\Gamma(A)$ (resp. A^*), i.e., if $\Gamma(A) = X$ (resp. $A^* = X$). If $Ro(X) \cap \mathfrak{I} = \{\emptyset\}$ (resp. $\tau \cap \mathfrak{I} = \{\emptyset\}$), then \mathfrak{I} is said to be regular [5] (resp. codense). Several characterizations of ideal topological spaces were provided in [1, 2, 4].

Remark 1.1. For an ideal space (X, τ, J) , if $D \subseteq X$ is \mathcal{J}_R -dense, then X is also \mathcal{J}_R -dense, i.e., $\Gamma(X) = X$.

Theorem 1.2. Let (X, τ, J) be an ideal space, then the following properties are equivalent:

- (1) \Im is regular;
- (2) If $I \in \mathcal{I}$, then $\delta Int(I) = \phi$;
- (3) For every $G \in Ro(X)$, $G \subseteq \Gamma(G)$;
- (4) $X = \Gamma(X)$.

In this paper by using regular open sets and Γ -local functions, we introduce and investigate the notions of \mathcal{I}_R -dense sets, \mathcal{I}_R -hyperconnectedness, \mathcal{I}_R^* -hyperconnectedness, Γ -resolbability and regular Γ -irresobability in ideal topological spaces. Hereafter, an ideal topological space (X, τ, \mathcal{I}) will be simply called an ideal space.

2. \mathcal{I}_R -hyperconnected spaces

Definition 2.1. An ideal space (X, τ, \mathcal{I}) is said to be

- (1) R-hyperconnected if every pair of nonempty regular open sets of X has nonempty intersection.
- (2) \mathcal{J}_R -hyperconnected if every nonempty regular open set is \mathcal{J}_R -dense in X.
- (3) *R*-hyperconnected modulo J if the intersection of every two nonempty regular open sets is not in J.

Lemma 2.2. For an ideal space (X, τ, J) , the following statements are equivalent:

- (1) (X, τ, \mathfrak{I}) is *R*-hyperconnected modulo \mathfrak{I} ;
- (2) There are no proper regular closed sets G and H such that $X (G \cup H) \in \mathfrak{I}$.

Proof. Suppose that there are proper regular closed G and H such that $X - (G \cup H) \in \mathfrak{I}$. If H is empty, then $X - G \in \mathfrak{I}$. Since X - G and X are nonempty regular open sets with $X \cap (X - G) = (X - G) \in \mathfrak{I}$. This is a contradiction. Hence, G and H both are nonempty proper regular closed sets. Then X - G and X - H are nonempty regular open sets. However, $(X - G) \cap (X - H) = X - (G \cup H) \in \mathfrak{I}$ which contradicts to (1).

Conversely, let A and B be any nonempty regular open sets in X. Then X - A and X - B are proper regular closed sets in X and $X - [(X - A) \cup (X - B)] \notin J$. This implies that $X - [X - (A \cap B)] \notin J$. Thus, $(A \cap B) \notin J$.

Theorem 2.3. Let (X, τ, \mathfrak{I}) be an ideal space and \mathfrak{I} be a regular ideal in X. Then X is R-hyperconnected modulo \mathfrak{I} if and only if X is R-hyperconnected.

Proof. Let X be R-hyperconnected modulo J. Then, since $\emptyset \in J$, X is R-hyperconnected. Conversely, let X be R-hyperconnected and $\emptyset \neq A, B \in Ro(X)$. Then $\emptyset \neq A \cap B \in Ro(X)$. Since J is regular, $A \cap B \notin J$. Thus, X is R-hyperconnected modulo J.

Theorem 2.4. An ideal space (X, τ, J) is *R*-hyperconnected if and only if the union of two not τ_s -dense sets is a not τ_s -dense set.

Proof. Let (X, τ, \mathfrak{I}) be *R*-hyperconnected and *E*, *F* be two not τ_s -dense sets in (X, τ, \mathfrak{I}) . Then there exist two nonempty regular open sets *U* and *V* such that $U \cap E = \emptyset$ and $V \cap F = \emptyset$. Since (X, τ, \mathfrak{I}) is *R*-hyperconnected, $U \cap V \neq \emptyset$. But $(U \cap V) \cap (E \cup F) = \emptyset$ and hence $E \cup F$ is not τ_s -dense in (X, τ, \mathfrak{I}) .

Conversely, let the condition hold in (X, τ, \mathfrak{I}) but (X, τ, \mathfrak{I}) is not *R*-hyperconnected. Then there exist $\emptyset \neq U, V \in Ro(X)$ such that $U \cap V = \emptyset$. Hence $U \subseteq X - V$ and $V \subseteq X - U$. Then X - U and X - V are not τ_s -dense in (X, τ, \mathfrak{I}) . But $(X - U) \cup (X - V) = X$ which contradicts the fact that the union of two not τ_s -dense sets is a not τ_s -dense set. Hence the theorem is now proved.

Lemma 2.5. Let (X, τ, J) be an ideal space. Then X is J_R -hyperconnected if and only if X is R-hyperconnected and J is regular.

Proof. Clearly every \mathcal{J}_R -hyperconnected space is R-hyperconnected. Let U be regular open, nonempty and a member of the ideal. Then $\Gamma(U) = X$. On the other hand, since $U \in \mathcal{J}, \Gamma(U) = \emptyset$. Hence $X = \emptyset$. This is a contradiction. Therefore, \mathcal{I} is regular.

Conversely, let $\emptyset \neq U \in Ro(X)$. Let $x \in X$. Due to the *R*-hyperconnectedness of *X*, every regular open set *V* containing *x* meets *U*. Moreover, $U \cap V$ is regular open and $U \cap V \notin \mathcal{I}$ because \mathcal{I} is regular. Thus $x \in \Gamma(U)$. This shows that *U* is \mathcal{I}_R -dense. \Box

Theorem 2.6. Let (X, τ, \mathfrak{I}) be an ideal space, where \mathfrak{I} is regular. Then a set D is \mathfrak{I}_R -dense if and only if $(U - A) \cap D \neq \emptyset$ whenever $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$.

Proof. Let D be \mathfrak{I}_R -dense. Then $U \cap D \notin \mathfrak{I}$ for all nonempty regular open set U. Hence for all $A \in \mathfrak{I}$, $(U-A) \cap D \neq \emptyset$, for otherwise $(U-A) \cap D = \emptyset$ and hence $\emptyset = U \cap (X-A) \cap D = (U \cap D) \cap (X-A)$. Therefore, $U \cap D \subseteq A$. Since $A \in \mathfrak{I}$, $U \cap D \in \mathfrak{I}$ which is contrary to $U \cap D \notin \mathfrak{I}$. Therefore, $(U-A) \cap D \neq \emptyset$.

Conversely let $(U - A) \cap D \neq \emptyset$ whenever $\emptyset \neq U \in Ro(X)$ and $A \in \mathcal{I}$. Then we claim that D is \mathcal{I}_R -dense. Let D be not \mathcal{I}_R -dense. Then there exists some nonempty regular open set U such that $U \cap D \in \mathcal{I}$. Let $U \cap D = A$. Then, since \mathcal{I} is regular, U - A is nonempty but $(U - A) \cap D = \emptyset$. This is contrary to our assumption. \Box

Theorem 2.7. Let (X, τ, \mathfrak{I}) be an ideal space, where \mathfrak{I} is regular. Then X is R-hyperconnected modulo \mathfrak{I} if and only if $(U - A) \cap D \neq \emptyset$ whenever $\emptyset \neq U, D \in Ro(X)$ and $A \in \mathfrak{I}$.

Proof. The proof follows from Lemma 2.5 and Theorem 2.6.

3. Γ-resolvable spaces

A topological space (X, τ) is said to resolvable [8] if X is the union of two disjoint dense subsets. An ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I} -resolvable [6] if X has two disjoint \mathcal{I} -dense subsets. If \mathcal{I} and \mathcal{J} are ideals with $\mathcal{I} \subseteq \mathcal{J}$ and X is \mathcal{J} -resolvable, then X is \mathcal{I} -resolvable. An ideal space (X, τ, \mathcal{I}) is said to be Γ -resolvable if it has two disjoint \mathcal{I}_R -dense sets; otherwise it is said to be Γ -irresolvable.

Example 3.1. Let (\mathbb{R}, τ) be the real numbers with the left-ray topology, i.e. $\tau = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}$. Let \mathcal{I}_f be the ideal of all finite subsets of \mathbb{R} . Let A = [0, 1] and B = [2, 3]. We have the following

- (1) $\Gamma(A) = \{x \in \mathbb{R} : A \cap U = A \notin \mathfrak{I}_f \text{ for every } U \in Ro(x)\} = \mathbb{R}.$
- (2) $\Gamma(B) = \{x \in \mathbb{R} : B \cap U = B \notin \mathcal{I}_f \text{ for every } U \in Ro(x)\} = \mathbb{R}.$
- (3) Then A and B are disjoint \mathcal{I}_R -dense. Hence $(\mathbb{R}, \tau, \mathcal{I})$ is Γ -resolvable.
- (4) Also $\mathcal{I} \cap Ro(\mathbb{R}) = \{\emptyset\}$, then \mathcal{I} is regular.

Example 3.2.

Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, c\}, \{d\}, \{a, c, d\}\}, \exists = \{\emptyset, \{c\}\} \text{ and } Ro(X) = \{\emptyset, X, \{a, c\}, \{d\}\}.$ We have the following

- (1) $\mathcal{I} \cap Ro(X) = \{\emptyset\}$, then \mathcal{I} is regular.
- (2) $\Gamma(\{a,d\}) = \Gamma(\{a,b,d\}) = \Gamma(\{a,c,d\}) = \Gamma(X) = X$, then the collection of all \mathcal{I}_R -dense are only $\{a,d\}, \{a,b,d\}, \{a,c,d\}, X$ and it is clear that are not disjoint.
- (3) Hence (X, τ, \mathcal{I}) is Γ -irresolvable.

Lemma 3.3. Let (X, τ, \mathfrak{I}) be an ideal space.

(1) (X, τ, \mathfrak{I}) is Γ -resolvable if and only if X is the union of two disjoint \mathfrak{I}_R -dense sets. (2) If (X, τ, \mathfrak{I}) is Γ -resolvable, then \mathfrak{I} is regular. **Proof.** (1) Let A and B be disjoint \mathcal{I}_R -dense sets. Then $\Gamma(A) = X$ and $X = \Gamma(B) \subseteq \Gamma(X - A)$ and hence $X = \Gamma(X - A)$. Therefore, X is the union of \mathcal{I}_R -dense sets A and X - A. The converse is obvious.

(2) Let A and B be disjoint \mathcal{I}_R -dense sets. Then, by Lemma 2.3(1) of [3], we have $X = \Gamma(A) \subseteq \Gamma(X)$. Therefore, X is \mathcal{I}_R -dense. Thus, by Theorem 1.2, \mathcal{I} is regular. \Box

The converse of Lemma 3.3(2) is not true as shown by Example 3.2.

Theorem 3.4. An ideal space (X, τ, \mathfrak{I}) is Γ -resolvable if and only if (X, τ_{Γ}) is resolvable and \mathfrak{I} is regular.

Proof. Let (X, τ, \mathfrak{I}) be Γ -resolvable. Then, by Lemma 3.3(1), $X = A \cup B$, where A and B are disjoint \mathfrak{I}_R -dense sets of X. Note that $Cl_{\Gamma}(A) = A \cup \Gamma(A) = A \cup X = X$. Hence A and B are τ_{Γ} -dense. Thus, (X, τ_{Γ}) is resolvable. By Lemma 3.3(2), \mathfrak{I} is regular. Conversely, Let (X, τ_{Γ}) be resolvable and \mathfrak{I} be regular. Suppose that $X = A \cup B$, $A \cap B = \emptyset$ and both A and B are τ_{Γ} -dense. Let $x \in X$ and $x \notin \Gamma(A)$, then there exists a regular open set U containing x such that $V = U \cap A \in \mathfrak{I}$. Since B is τ_{Γ} -dense and \mathfrak{I} is regular, V is nonempty and moreover $U \notin A$. It follows from [3, Theorem 2.6] that $\emptyset \neq W = U - V \in \tau_{\Gamma}$ and $W \cap A = \emptyset$. This contradicts that A is τ_{Γ} -dense. Thus $x \in \Gamma(A)$ and hence A is \mathfrak{I}_R -dense. A similar argument shows that B is \mathfrak{I}_R -dense. Thus (X, τ, \mathfrak{I}) is Γ -resolvable.

Theorem 3.5. A space (X, τ, J) is Γ -resolvable if and only if there exists an J_R -dense set D such that for all nonempty $U \in Ro(X)$ and all $A \in J$, $U - A \neq \emptyset$ implies $(U - A) \notin D$.

Proof. Let (X, τ, \mathfrak{I}) be Γ -resolvable. Then, by Remark 1.1 and Theorem 1.2, \mathfrak{I} is regular. Now there exist two disjoint \mathfrak{I}_R -dense sets, say D_1 and D_2 . We show that $(U - A) \notin D_1$ whenever $U - A \neq \emptyset$ for all $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$. If possible let $(U - A) \subseteq D_1$ for some $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$. Then $(U - A) \cap D_2 = \emptyset$. Now since \mathfrak{I} is regular, by Theorem 2.6 D_2 is not \mathfrak{I}_R -dense. This is contrary that D_2 is \mathfrak{I}_R -dense. Hence $(U - A) \notin D_1$ whenever $U - A \neq \emptyset$ for all $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$.

Conversely let the condition hold in (X, τ, \mathfrak{I}) . Then there exists an \mathfrak{I}_R -dense set D such that $(U - A) \not\subseteq D$ if $U - A \neq \emptyset$ for all $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$. We show that X - D is \mathfrak{I}_R -dense. Let X - D be not \mathfrak{I}_R -dense. Then there exists $\emptyset \neq V \in Ro(X)$ such that $V \cap (X - D) \in \mathfrak{I}$. Clearly $V \cap (X - D) \neq \emptyset$, for otherwise $V \subseteq D$, which is contrary to our assumption. Let $A = V \cap (X - D)$. Then $V - A \neq \emptyset$. For if $V - A = \emptyset$ then $V \subseteq A$ and hence $V \in \mathfrak{I}$ which implies $V \cap D \in \mathfrak{I}$. This is contrary that D is \mathfrak{I}_R -dense. Therefore, $V - A \subseteq D$, which is again contrary to our assumption. Thus X - D is \mathfrak{I}_R -dense and hence (X, τ, \mathfrak{I}) is Γ -resolvable.

Corollary 3.6. An ideal space (X, τ, \mathfrak{I}) is Γ -irresolvable if and only if for each \mathfrak{I}_R -dense set D, there exist $U \in Ro(X)$ and $A \in \mathfrak{I}$ such that $\emptyset \neq (U - A) \subseteq D$.

Lemma 3.7. Let Y be a subspace of a topological space X and \mathfrak{I} be an ideal in X. Then $\mathfrak{I}_Y = \{I \in \mathfrak{I} : I \subseteq Y\} = \{I \cap Y : I \in \mathfrak{I}\}$ is an ideal in Y.

Theorem 3.8. Let (X, τ, \mathfrak{I}) be an ideal space such that \mathfrak{I} is regular. If D is \mathfrak{I}_R -dense in (X, τ, \mathfrak{I}) , then for all Y = U - A, where $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}, Y \cap D$ is \mathfrak{I}_R -dense in $(Y, \tau_Y, \mathfrak{I}_Y)$.

Proof. Clearly we suppose \mathfrak{I} is regular. A regular open set in Y is of the form $Y \cap O = (U - A) \cap O = (U \cap O) - A$, where O is regular open in (X, τ) . Let $\emptyset \neq U \cap O - A$. Consider $\emptyset \neq ((U \cap O) - A) - B$, $B \in \mathfrak{I}_Y$. Then since D is \mathfrak{I}_R -dense and $U \cap O$ is regular open in (X, τ) , by Theorem 2.6 $(U \cap O - (A \cup B)) \cap D \neq \emptyset$. Hence $(((U \cap O) - A) - B) \cap D \neq \emptyset$. Therefore again by Theorem 2.6 $Y \cap D$ is \mathfrak{I}_R -dense in $(Y, \tau_Y, \mathfrak{I}_Y)$.

Lemma 3.9 ([10]). Let (X, τ) be a topological space and Y be open or dense in X. Then (1) $Ro(Y) = \{A \cap Y : A \in Ro(X)\}.$

(2)
$$Rc(Y) = \{A \cap Y : A \in Rc(X)\}.$$

(3) $(\tau_Y)_S = (\tau_S)_Y.$

Theorem 3.10. Let (X, τ, \mathfrak{I}) be an ideal space such that \mathfrak{I} is regular and $P \subseteq Y = U - A$, where $\emptyset \neq U \in Ro(X)$, $A \in \mathfrak{I}$, and Y is open or dense in X. Then P is \mathfrak{I}_R -dense in $(Y, \tau_Y, \mathfrak{I}_Y)$ if and only if $P = Y \cap D$, where D is \mathfrak{I}_R -dense in (X, τ, \mathfrak{I}) .

Proof. Let P be \mathcal{J}_R -dense in $(Y, \tau_Y, \mathcal{J}_Y)$. Consider the set $P \cup (X - Y)$. Then $(P \cup (X - Y)) \cap O = (P \cap O) \cup ((X - Y) \cap O)$, where $\emptyset \neq O \in Ro(X)$. Now if $O \subseteq X - Y$, then $P \subseteq Y$ and $P \cap O = \emptyset$ and we have $(P \cup (X - Y)) \cap O = O$ which is not in \mathcal{I} because \mathcal{I} is regular. Finally if $O \cap Y \neq \emptyset$, then since P is \mathcal{J}_R -dense in $(Y, \tau_Y, \mathcal{J}_Y), P \cap (O \cap Y) \notin \mathcal{J}_Y$ and hence $P \cap O \notin \mathcal{I}$. Therefore $(P \cup (X - Y)) \cap O \notin \mathcal{I}$. Thus $(P \cup (X - Y)) = D$ say is \mathcal{J}_R -dense in (X, τ, \mathcal{I}) and hence $P = Y \cap D$. Conversely, let $P = Y \cap D$, where D is \mathcal{J}_R -dense in (X, τ, \mathcal{I}) . Then, by Theorem 3.8, P is \mathcal{J}_R -dense in $(Y, \tau_Y, \mathcal{J}_Y)$. This completes the proof of the theorem.

4. Regular Γ -irresolvable spaces

We shall now define and discuss properties of a regular Γ -irresolvable space.

Definition 4.1. An ideal space (X, τ, \mathcal{I}) is said to be regular Γ -irresolvable if for each \mathcal{I}_R -dense set D and each $\emptyset \neq U \in Ro(X)$ and $A \in \mathcal{I}$ such that $\emptyset \neq U - A$, there exist $\emptyset \neq V \in Ro(X)$ and $B \in \mathcal{I}$ such that $\emptyset \neq (V - B) \subseteq (U - A) \cap D$.

Theorem 4.2. An ideal space (X, τ, \mathfrak{I}) is regular Γ -irresolvable, where \mathfrak{I} is regular, if and only if the intersection of any two $\mathfrak{I}_R(X)$ -dense sets is an $\mathfrak{I}_R(X)$ -dense set.

Proof. Let (X, τ, \mathfrak{I}) be regular Γ -irresolvable and \mathfrak{I} be regular. Let D_1 and D_2 be two $\mathfrak{I}_R(X)$ -dense sets in (X, τ, \mathfrak{I}) . We show that $D_1 \cap D_2$ is $\mathfrak{I}_R(X)$ -dense. Consider U - A, where $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$. We show that $(U - A) \cap D_1 \cap D_2 \neq \emptyset$. Since D_1 is $\mathfrak{I}_R(X)$ -dense, by Theorem 2.6 $(U - A) \cap D_1 \neq \emptyset$. Since (X, τ, \mathfrak{I}) is regular Γ -irresolvable, there exist $\emptyset \neq V_1 \in Ro(X)$ and $B_1 \in \mathfrak{I}$ such that $\emptyset \neq (V_1 - B_1) \subseteq (U - A) \cap D_1$. Again since D_2 is $\mathfrak{I}_R(X)$ -dense, there exist $\emptyset \neq V_2 \in Ro(X)$ and $B_2 \in \mathfrak{I}$ such that $\emptyset \neq (V_2 - B_2) \subseteq (V_1 - B_1) \cap D_2$. Hence $\emptyset \neq V_2 - B_2 \subseteq (U - A) \cap D_1 \cap D_2$. Therefore, $(U - A) \cap (D_1 \cap D_2) \neq \emptyset$ and by Theorem 2.6 $D_1 \cap D_2$ is $\mathfrak{I}_R(X)$ -dense.

Conversely let the intersection of any two $\mathcal{I}_R(X)$ -dense sets is $\mathcal{I}_R(X)$ -dense. Suppose that (X, τ, \mathfrak{I}) is not regular Γ -irresolvable. Then there exist an $\mathcal{I}_R(X)$ -dense set $D_1, \emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$, where $\emptyset \neq U - A$, such that $(U - A) \cap D_1$ does not contain V - B, for any $\emptyset \neq V \in Ro(X)$ and $B \in \mathfrak{I}$. Consider the set $D_2 = (X - (U - A)) \cup ((U - A) - (U - A) \cap D_1)$. By Theorem 2.6, D_2 is $\mathcal{I}_R(X)$ -dense since $(V - B) \cap D_2 \neq \emptyset$. But $(U - A) \cap D_1 \cap D_2 = \emptyset$. This is contrary to the fact that the intersection of two $\mathcal{I}_R(X)$ -dense sets is an $\mathcal{I}_R(X)$ -dense set. Hence (X, τ, \mathfrak{I}) must be regular Γ -irresolvable. This completes the proof of the theorem. \Box

Theorem 4.3. Let (X, τ, \mathfrak{I}) be an ideal space and \mathfrak{I} be regular. If (X, τ, \mathfrak{I}) is regular Γ -irresolvable, then $(Y, \tau_Y, \mathfrak{I}_Y)$ is regular Γ -irresolvable whenever Y = U - A is open or dense in X, for every $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$.

Proof. Let D and G be $\mathcal{J}_R(Y)$ -dense sets in $(Y, \tau_Y, \mathfrak{J}_Y)$. Then, by Theorem 3.10, $D = (U - A) \cap D_1$ and $G = (U - A) \cap D_2$, where D_1 and D_2 are $\mathcal{J}_R(X)$ -dense sets in (X, τ, \mathfrak{I}) . Hence $D \cap G = (U - A) \cap D_1 \cap D_2$ and, since $D_1 \cap D_2$ is an $\mathcal{J}_R(X)$ -dense set in (X, τ, \mathfrak{I}) , again by Theorem 3.10, $D \cap G$ is $\mathcal{J}_R(Y)$ -dense in $(Y, \tau_Y, \mathfrak{I}_Y)$. Hence by Theorem 4.2 $(Y, \tau_Y, \mathfrak{I}_Y)$ is regular Γ -irresolvable.

Definition 4.4. An ideal space (X, τ, \mathfrak{I}) is said to be \mathfrak{I}_R^* -hyperconnected if each $\emptyset \neq U - A$, where $U \in Ro(X)$ and $A \in \mathfrak{I}$, is $\mathfrak{I}_R(X)$ -dense.

Theorem 4.5. An ideal space (X, τ, J) is \mathcal{J}_R^* -hyperconnected if and only if (X, τ, J) is \mathcal{J}_R -hyperconnected and J is regular.

Proof. Let (X, τ, \mathfrak{I}) be \mathfrak{I}_R^* -hyperconnected. Clearly (X, τ, \mathfrak{I}) is \mathfrak{I}_R -hyperconnected. Let $\emptyset \neq U$ be regular open and a member of the ideal. Then $\Gamma(U) = X$ since (X, τ, \mathfrak{I}) is \mathfrak{I}_R -hyperconnected. On the other hand, since $U \in \mathfrak{I}$, $\Gamma(U) = \emptyset$, which is a contradiction. Hence \mathfrak{I} is regular.

Conversely let (X, τ, \mathfrak{I}) be \mathfrak{I}_R -hyperconnected and \mathfrak{I} be regular. Consider U - A, where $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$. Then $\emptyset \neq U - A$ because \mathfrak{I} is regular. We show that U - A is $\mathfrak{I}_R(X)$ -dense. Let $x \in X$ and V be a regular open set containing x. By Lemma 2.5, (X, τ) is R-hyperconnected and $V \cap (U - A) \neq \emptyset$ because $V \cap (U - A) = V \cap U - A \neq \emptyset$ and \mathfrak{I} is regular. Thus (X, τ, \mathfrak{I}) is \mathfrak{I}_R^* -hyperconnected. \Box

Theorem 4.6. If an ideal space (X, τ, J) is \mathcal{J}_R^* -hyperconnected and Γ -irresolvable, then it is regular Γ -irresolvable.

Proof. By Theorem 4.5, \mathfrak{I} is regular. Let D_1 and D_2 be two $\mathfrak{I}_R(X)$ -dense sets in (X, τ, \mathfrak{I}) . We show that $D_1 \cap D_2$ is $\mathfrak{I}_R(X)$ -dense. By Theorem 2.6 it is sufficient to prove that $(D_1 \cap D_2) \cap (U - A) \neq \emptyset$ for all $\emptyset \neq U \in Ro(X)$ and $A \in \mathfrak{I}$. Since (X, τ, \mathfrak{I}) is Γ -irresolvable, by Corollary 3.6 there exist $\emptyset \neq V \in Ro(X)$ and $B \in \mathfrak{I}$ such that $\emptyset \neq V - B \subseteq D_1$. Similarly there exist $\emptyset \neq W \in Ro(X)$ and $C \in \mathfrak{I}$ such that $\emptyset \neq W - C \subseteq D_2$. Now (X, τ) is R-hyperconnected by Theorem 4.5 and $V \cap W \neq \emptyset$. Since \mathfrak{I} is regular, $(V - B) \cap (W - C) = (V \cap W) - (B \cup C) \neq \emptyset$ and hence $(V \cap W) - (B \cup C) \subseteq D_1 \cap D_2$. Therefore, by \mathfrak{I}_R^+ -hyperconnectedness of $(X, \tau, \mathfrak{I}), (V \cap W) - (B \cup C)$ is $\mathfrak{I}_R(X)$ -dense and, by Theorem 2.6, we have $\emptyset \neq (U - A) \cap [(V \cap W) - (B \cup C)]$ and hence $(U - A) \cap (D_1 \cap D_2) \neq \emptyset$. Therefore, $D_1 \cap D_2$ is $\mathfrak{I}_R(X)$ -dense. Thus by Theorem 4.2, (X, τ, \mathfrak{I}) is regular Γ -irresolvable.

Acknowledgment. The authors are highly grateful to editor and referees for their valuable comments and suggestions for improving the paper.

References

- A. Al-Omari, Soft topology in ideal topological spaces, Hacet. J. Math. Stat. 48 (5), 1277-1285, 2019.
- [2] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43 (2), 139-149, 2013.
- [3] A. Al-Omari and T. Noiri, Local function Γ^{*} in ideal topological spaces, Sci. Stud. Res. Ser. Math. Inform. 26 (1), 5-16, 2016.
- [4] A. Al-Omari and T. Noiri, On operators in ideal minimal spaces, Mathematica 58 (81), 3-13, 2016.
- [5] J. Dontchev and M. Ganster, On compactness with respect to countable extensions of ideals and the generalized Banach Category Theorem, Acta. Math. Hungar. 88 (1-2), 53-58, 2000.
- [6] J. Dontchev, M. Ganster and D. Rose, *Ideal resolvability*, Topology Appl. 93 (1), 1-16, 1999.
- [7] E. Hatir, A. Al-Omari and S. Jafari, δ -Local functions and its properties in ideal topological spaces, Fasc. Math. 53, 53-64, 2014.
- [8] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10, 309-333, 1943.
- [9] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97, 295-310, 1990.
- [10] D. Jankovic and Ch. Konstadilaki, On covering properties by regular closed sets, Math. Pannon. 7, 97-111, 1996.
- [11] K. Kuratowski, Topology I, Warszawa, 1933.
- [12] M. Mršević, I. L. Reilly and M. K. Vamanamurthy, On semi-regularization topologies, J. Austral. Math. Soc. Ser. A 38 (1), 40-54, 1985.