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GRAPHICAL ABSTRACT

HIGHLIGHTS
= The semantic and metric maps
are generated that first-

responders can easily read in
post-disaster indoor
environments.

= A point-based deep learning
architecture is employed to
produce the semantic map.

= Octree-based 3D metric map
composes  voxels not only
occupied and free but also walls,
terrain, and ramps.

= The experimental results show
that the proposed method can
produce accurate maps.
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Conclusion :
semantic and metric maps incrementally so that it decreases computational complexity.

This study aims to create semantic and metric maps of a post-disaster indoor environment
similar to standard the National Institute of Standards and Technology (NIST) search and
rescue test arenas that first-responders can easily read. We prefer to use point cloud data
acquired with an RGB-D camera since it does not be affected by post-disaster environments’
dusty and dull nature. Besides, each point cloud data is processed separately so that the
semantic and metric maps grow incrementally. The Dynamic Graph Convolutional Neural
Network (DGCNN) is used to classify points as sematic categories such as walls, terrain, and
inclined and straight ramps. RTAB-Map and the semantic map are utilized to generate the
octree-based 3D metric map. The experiments are conducted in a simulated environment
modelled with Gazebo similar to NIST test arenas to show the effectiveness of the proposed
method.

Figure A. The metric(left) and semantic(right) maps of the environment

Aim of Article: This study aims to construct semantic and metric maps of a search and rescue
test arena with a mobile robot.

Theory and Methodology: The point cloud data is used to generate semantic and metric maps.
DGCNN architecture is applied to determine the semantic class of points. The RTAB-Map and
semantic map are utilized to generate an octree-based 3D metric map.

Findings and Results: Figure A shows our experimental results. As seen from the figure, the
proposed method produced accurate semantic and metric maps.

The proposed method process each point cloud data separately and grows the
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HIGHLIGHTS/ONE CIKANLAR

Afet sonrasi bina i¢i ortamlarda ilk yardim ekiplerinin kolaylikla kullanabilecegi anlamsal ve metik harita tiretilmistir.

Anlamsal haritanin ¢ikarilmast i¢in nokta tabanl derin 6grenme mimarisinden faydalanilmigtir.

8-li agag¢ yapisinda 3B metrik haritada sadece dolu ve bos vokseller degil duvar, zemin ve rampalara ait olan vokseller de yer
almaktadir.

Test sonuglar: 6nerilen yontemin dogrulugu yiiksek haritalar tiretebilecegini gostermigtir.

Article Info / Makale Bilgi ABSTRACT / OZET

Gelis Tarihi : 16.02.2021

Kabul Tarihi : 08.03.2021 Bina i¢i ortamlarda zehirli madde yayilimi, sel, yangin ve deprem gibi afetlerden sonra robotlar
Yayim Tarihi: 21.06.2021 kullanilarak arama ve kurtarma yapilmasina yonelik ¢aligmalar son yillarda hiz kazanmigtir. Bu

calismanin ana motivasyonu, ilk yardim ekiplerinin kolaylikla kullanabilecegi afet sonrasi bina

DOI:10.5281/zenodo.4589489 ici ortamin metrik ve anlamsal haritalarini olusturmaktir. Bu ¢alismada, afet ortaminda

*Corresponding Author /
Sorumlu Yazar:

karsilagilabilecek toz, duman ve yetersiz 1siklandirma gibi faktorlerden etkilenmeyen ve
nesnelerin geometrik yapisin1 yiiksek dogrulukta temsil edebilen nokta bulutu verilerinin
kullanilmasina karar verilmistir. Her bir adimda alinan nokta bulutu ayr1 ayri islenerek dnerilen
yontemin hesaplama karmasikliginin diisiiriilmesi amaglanmistir. Anlamsal haritanin iretilmesi

Burak KAL_ECL ) asamasinda ge¢mis ¢aligmalardan farkli olarak nokta tabanli derin 6grenme mimarisi DGCNN
burakaleci@gmail.com, kullanilmistir. Béylece nokta bulutunda yer alan her noktanin anlamsal smifi (duvar, zemin,
Tel: +90 555 7375966 egimli ve diiz rampa) belirlenmistir. 3B metrik haritanin olusturulmas: igin RTAB-Map ve

anlamsal harita birlikte kullanilarak 8-1i aga¢ yapisinda bir gosterim elde edilmistir. Bu haritada
onceki caligmalardan farkli olarak sadece dolu ve bos vokseller degil, ayn1 zamanda duvar,
zemin ve rampa smiflarina ait olan vokseller de yer almaktadir. Onerilen ydntemin test edilmesi
icin Gazebo benzetim ortaminda NIST ortamlarina benzer bir test alan1 modellenmis ve bir
Pionner 3-AT gezgin robot teleoperasyon yontemi ile gezdirilmistir. Test sonuglar1 Gnerilen
yontemin bagarili bir sekilde anlamsal ve metrik harita iretebildigini gostermistir.

Anahtar Kelimeler: Arama ve Kurtarma, Gezgin Robot, 3B Anlamsal Harita, 3B Metrik
Harita, Nokta Bulutu, Nokta Tabanli Derin Ogrenme
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I. INTRODUCTION

After disasters such as fire, earthquakes, floods, and toxic
substances, post-disaster indoor environments could be
hazardous for search and rescue teams that include
humans and animals. The main risks in these
environments are the possibility of spreading dangerous
matters and collapsing due to the structural breaking
down. For these reasons, the studies that addressed search
and rescue tasks exploiting robots in these environments
have been gained popularity. Although using robots in
search and rescue tasks could appear an appropriate
solution to avoid risks for humans and animals, post-
disaster environments would be challenging even for
robots to achieve the tasks they are expected to perform.
The primary difficulties in post-disaster environments
that the robot must cope with are uneven terrain and
poorly lightened circumstances due to these
environments’ dusty and dull nature. To deal with these
challenges, the robots that operate in post-disaster
environments must have advanced capabilities such as
interpreting raw data, producing semantic information,
and being aware of circumstances. Thanks to the
improvements  in  perception  technologies and
corresponding algorithms and software, robots approach
to reach these abilities. However, it is necessary to
observe steadily positive and negative aspects of
improved methods for giving direction to future works.
Unfortunately, the researchers generally may not have the
opportunity to test their works since post-disaster indoor
environments are rarely faced, and building these
environments is complicated and expensive. In order to
overcome that problem, DARPA and RoboCup
organizations regularly constituted competitions for
search and rescue missions.

The RoboCup rescue competitions have been conducted
since 2001. The main goal of these competitions is to
increase the performance of the robots in search and
rescue missions. After the first competition, Kitano and
Tadokoro [1] revealed challenges about these missions
and introduced the first standards and evaluation metrics.
Then, Jacoff et al. proposed reference test arenas for
autonomous mobile robots developed by NIST [2]. An
example reference test arena is shown in Fig. 1. Also,
they defined objective performance evaluation criteria
such as the number of locating victims and producing
accurate maps that first-responders can easily read. In
2006, the RoboCup rescue competitions were separated
into two categories: Agent and the virtual robot
competitions. While the agent competitions aimed to
coordinate multi-agents systems that include police
officers, firefighters, and first-responders to handle

disasters in urban scenarios, virtual robot competitions
focused on navigation, mapping, and victim detection [3].
After the first virtual robot competition, Balakirsky et al.
[4] assessed the performance of the participant teams
under specific standards and criteria. In order to evaluate
the maps, they used metrics such as attributions that
indicate crucial points such as victims and obstacles,
accuracy, skeleton and metric quality, and utility that
provides cleared regions, locations that the victims are
trapped for first responders. The participant teams
generally preferred to generate topological maps with 2D
lasers. Over the years, the researchers developed new
methods to improve the mapping capabilities of the
robots. For example, in 2009, teams preferred to use
image processing approaches to produce the
environments’ metric map [5]. These improvements
promoted the administration of the competitions to
introduce more challenging environments for robots. In
2010, active elements such as smoke, elevator, and the
ferry was integrated into the environments. The
champion team at RoboCup 2012 used the simultaneous
localization and mapping (SLAM) approach to generate
geometric map of the environment. The SLAM approach
segmented the laser scans into lines depending on the
distance between successive points. Besides, the
produced line segments were used to construct a semantic
map that separates the environment into spaces such as
small rooms, large rooms, and corridors divided by
doorways. This was the first attempt to construct
semantic maps in the search and rescue domain [6]. Sheh
et al. [7] overviewed the 16 years of Robocup rescue
competitions. The authors emphasized the robots'
progress in terms of mobility, autonomy, perception, and
adaptation to inhospitable environments such as poor
lighting and piles of rubbles. Then, they announced
novelties in the competition for the coming years.
Probably, the most important one was using Robot
Operating System (ROS) together with Gazebo
simulation environment. ROS [8] is a commonly used
framework to perform robotic applications. It contains
libraries (in other words, packages) for a variety of
purposes, from mapping to manipulation of a robot arm.
ROS generally operates with Gazebo [9] simulation
environment, which provides high-performance physics
engines and 2D/3D sensors.
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Figure. 1. An example reference test arena [5].

After ROS and Gazebo's introducing, participants of the
virtual robot competition began to use ROS packages
together with Gazebo. For example, in 2017, Chukyo
Rescue A Team [10] employed GMapping [11] and
Hector SLAM [12] packages for mapping. GMapping
[11] is a well-known mapping approach since it was
introduced because it could be employed in both indoor
and outdoor applications. The main advantage of that
method is the ability to create accurate maps with low
computational ~ complexity.  However, GMapping
approach accepts raw 2D laser range data and odometry
to generate a 2D occupancy grid map. Similarly, the
Hector SLAM [12] approach was applied to produce 2D
metric maps. The Hector SLAM's positive aspects are it
does not need to use odometry data and has a high update
rate. YILDIZ Team [13] utilized Octomap [14] to
describe 3D environments. OctoMap was proposed to
build a representation (in other words, map) of 3D
environments based on octree data structure [14]. First,
the data is represented with only one voxel that contains
all points. Then, it splits into eight voxels of the same
size. The process is repeated until the predefined depth,
or voxel size is accomplished. The main contribution of
OctoMap representations is using a probabilistic
occupancy estimation approach to determine free,
occupied, and even unknown voxels. Besides, OctoMap
is @ memory-efficient representation when it is compared
to previous approaches. However, the computational
complexity of OctoMap is not appropriate to produce
fine-detailed maps. For example, as the voxel size
decreases, especially less than 0.05 meters, to describe
details of scenes, OctoMap requires significant durations
for generating maps. Also, it does not take into account
the semantic clues of the scenes. In 2018, SOS RS Team
[15] exploited FastSLAM algorithm [16] for mapping.
FastSLAM algorithm uses the 2D laser range data as
input and generates the geometric map of the

environment. This algorithm decreases computational
complexity of SLAM approaches significantly. In the
same year, AutonOHM Team [17] employed one of the
ROS packages, which is called ohm_tsd_slam [18] to
generate a 2D map of the environment. The main
advantage of this package is to integrate data gathered by
RGB-D cameras and 2D/3D laser range finders within
the same representation. Similar to the OctoMap
approach, ohm_tsd_slam package cannot interpret the
scenes in terms of semantic information. In 2019, ATR
Team [19] utilized Real-Time Appearance-Based
Mapping (RTAB-Map) [20] to create a 2D occupancy
grid of the rescue environment. Besides, RTAB-Map also
provides 3D point cloud data. RTAB-Map ROS package
is integrated with OctoMap so that it can generate the
voxel representation of the environment and separate
voxels as occupied, free, and unknown [21]. Besides,
RTAB-Map contains many feature extractor algorithms
such as SIFT, SURF, BRIEF, FAST etc. to recognize
some objects such as walls, terrain, and other everyday
objects from the visual data. Therefore, it can produce
semantic information. Unfortunately, RTAB-Map cannot
identify ramps that placed NIST's test arenas since it did
not design for search and rescue missions.

As mentioned above, the participant teams of virtual
robot competitions generally focused on mapping
approaches that generate metric, topologic, and geometric
maps. Extracting semantic information or producing
semantic maps were considered from only a few teams.
However, some previous studies that interested in the
semantic classification of walls, terrain, and ramps were
proposed. These studies are generally cast into two
groups. In the first group, the well-known segmentation
methods such as region growing [22] and RANSAC [23]
are applied to obtain planar surfaces. Region growing
uses a predetermined number of neighbors or search
radius to determine the points that belong to the same
planar surface. Therefore, it may not be appropriate for
real-time applications due to its high computational
complexity. On the other hand, RANSAC is a fast and
accurate segmentation method aiming to determine a
mathematical model for planes. However, it can clusters
points that have a similar mathematical model into a
plane. This could be problematic since RANSAC does
not take into account the neighboring relationship. After
planar surfaces are specified, segmented planes are
classified depending on geometric features of planes such
as normals of points. In the second group, learning
approaches are employed for semantic segmentation.
These studies generally prefer to apply the Convolutional
Neural Networks (CNN) approach to visual data. A
recent study proposed by Deng et al. [24] uses CNN to
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determine point-wise semantic labels with RGB and
depth images in NIST test arenas. On the other hand,
Turgut and Kaleci [25] concentrated on directly using
point cloud data instead of visual data. For that reason,
they examined point-based deep learning architectures
and they made a comprehensive comparison for PointNet
[26], PointNet++ [27], PointCNN [28], and DGCNN [29]
architectures that are classified walls, terrain, and ramps
in a simulated environment similar to NIST test arenas.

In this study, we aim to produce the 3D metric and
semantic maps of a simulated environment similar to
NIST reference test arenas with a mobile robot. In this
way, we can provide an accurate semantic map, which
describes walls, terrain, and ramps, that first-responders
can easily read. It is important to note that generating
accurate maps is one of the crucial evaluation criteria in
virtual robot competitions because an accurate map can
significantly decrease searching victim duration and
protect first-responders from accidents. Besides,
producing a semantic map can contribute robot's
autonomous navigation capability. For example, the robot
can navigate more reliable by adjusting its velocity when
it knows the slope of a ramp. Also, the robot can generate
suitable waypoints while traversing ramps to keep its
balance. In fact, the robot can consider ramps to enhance
its path plan.

The previous studies that address the semantic
classification of walls, terrain, and ramps are rare, and
they used generally visual and 2D range data. However,
the visual data may not be appropriate for dusty, dull, and
poorly lightened post-disaster environments. On the other
hand, 2D range data cannot be affected by these
situations. Nevertheless, its capability to describe the 3D
characteristics of the scene is insufficient. At that point,
using point cloud data can be a favorable solution to cope
with the drawbacks of visual and 2D range data.
Therefore, we placed an RGB-D camera on a P3-AT
robot and utilized RTAB-Map ROS package to gather
point cloud data of a scene. One of the contributions of
this study is processing a single scene, which is captured
after each predetermined time interval while the robot
navigates in the environment by teleoperation. In this
way, the semantic and metric maps grow step-by-step,
and the computational complexity of the proposed
method is decreased. The second contribution is applying
a point-based deep learning architecture DGCNN, which
receives a single scene and determines point-wise
semantic classes, instead of using visual data. The weight
of DGNN model generated by Turgut and Kaleci [25]
with data acquired in a different simulated environment is
used to classify each point. The last contribution is

creating a 3D metric map that the robot needs to
navigate. Apart from the previous studies, we utilize
RTAB-Map and the semantic map while producing the
octree-based 3D metric map. In the map, each voxel has a
semantic label so that robot can plan its path more
reliable.

The rest of the paper is organized as follows: In Section
2, the proposed method is explained in detail. The
experimental setup and experiments are presented in
Section 3. The conclusion and future works are given in
Section 4.

Il. METHOD

The proposed method consists of three stages. In the first
stage, RTAB-Map is employed to gather point cloud
data. Besides, we made some modifications to obtain
point cloud data for each scene. In the second stage, we
construct a semantic map of each separate scene with the
aid of point-based deep learning architecture DGCNN.
Then, we merge the current map with the global semantic
map. Lastly, similar to the semantic map, we build a
metric map (in other words, octree map) of the current
scene and merge it with the previously generated metric
map. In this stage, we obtain free and occupied voxels
from RTAB-Map, and then we utilize the semantic map
to classify voxels in terms of wall, terrain, inclined and
straight ramps.

A. Gathering Point Cloud Data

We used the RTAB-Map ROS package to gather point
cloud data. RTAB-Map receives raw point cloud data
acquired with the RGB-D sensor of the robot (Fig. 2(a)).
It is important to note that the raw point cloud data is
obtained according to the robot's local coordinate system
(Fig. 2(b)). Hence, RTAB-Map automatically transforms
the raw point cloud data into the global coordinate
system of Gazebo simulation environment with the aid of
the robot's position and orientation. Then, RTAB-Map
applies the voxel filter depending on the GridCellSize
parameter to downsample the transformed point cloud
data (Fig. 2(c)). In this way, computational complexity
decreases because the number of samples is reduced
without losing the general characteristics of the data.
Another crucial issue about the gathering point cloud data
is that RTAB-Map accumulates point cloud data during
the map producing process as a default property. After
this process is completed, it reveals an entire map of the
environment. However, this default property is not
appropriate for constructing the semantic and metric
maps of a search and rescue environment. The main
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(b) (c)

Figure. 2. Gathering point cloud data. (a) The red, green, and blue lines at the upper-right corner of the image indicate Gazebo’s
global coordinate system. The same colored lines on the robot show robot’s local coordinate system. (b) The raw point cloud data
according to the robot’s local coordinate system. (c) The downsampled point cloud data according to the Gazebo’s global

coordinate system.

reason for that is decreasing computational complexity
while processing point cloud data separately for each
scene. In order to achieve this, we adjusted the
MaxNodes parameter.

B. Constructing Semantic Map

After we obtain point cloud data for a scene, the
duplicated points are removed from the point cloud data
to diminish the computational complexity of the
approach. Then, the DGCNN architecture is used to
classify points as sematic categories such as wall, terrain
inclined, and straight ramps. It is a graph-based
architecture that creates local regions for each point in
the point cloud. In these local regions, K neighbors of a
point (P:) are found. In order to determine these K
neighbors of P, if the point features are exist, the
distance in feature space is used, otherwise spatial
distance is used. DGCNN builds a graph for each local
region, and the points (P. and its K neighbors) that
belong to the local region are considered nodes of the
graph. The edges of the graph are defined only between
Pc and its K neighbors. The weights of the edges are X, y,
and z coordinates of neighbors relative to Pc in the first
layer. In the successive layers, the weights of edges are
features of points relative to the previous layer. After
local regions and corresponding graphs are constructed,
Multi-Layer Perceptron (MLP) is applied to edges for
extracting features of points. The features of a local
region are extracted by applying the maximum pooling
method to the features of all points situated in the local
region. In other words, points are evaluated by
considering K neighbors in local regions instead of
evaluating each point independently. The process steps
mentioned above are called EdgeConv operator, and the
operator can easily integrate into any architecture. The
DGCNN architecture was created by combining the
PointNet architecture and EdgeConv operator. In contrast
to architectures that process edges of the graph of local

regions, the neighborhood relationship between points is
dynamically updated according to feature space. Besides,
the local regions are not expanded hierarchically, unlike
other architectures.

R

©

Figure. 3. An example for construction of semantic map. (a)
Clustering of point depending on class labels. (b) Segmentation
of planar surfaces of class. (c) Merging current map with
global one.
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The DGCNN architecture determines the semantic label
of each point in the point cloud data. After that point, we
cluster the points in terms of their labels. An example
point cloud is shown in Fig. 3(a). In this figure, red,
yellow, blue, and purple indicate wall, terrain, inclined,
and straight ramps classes, respectively. As seen from the
figure, each class could contain different planar surfaces,
just like walls orthogonal to each other. Therefore, we
apply RANSAC [30] segmentation method to segment a
class' points that belong to different planar surfaces. This
process is repeated for each class so that each planar
surface in the scene is determined. The result of the
segmentation process is given in Fig. 3(b). We show each
planar surface with different colors in the figure. Lastly,
segmented planar surfaces are merged with the global
semantic map depending on the position and orientation
of the planar surfaces of the current and global map. The
resultant semantic map is represented in Fig. 3(c). In the
figure, green and orange describe the global and current
semantic maps, respectively.

C. Constructing Metric Map

Robots generally require an appropriate representation of
the environment to achieve the tasks they are expected to
perform. One of these representations is the metric map.
In previous studies, occupancy grids were frequently
applied to obtain 2D metric maps. Occupancy grids
describe the environment with a grid composes of equal-
size cells. Each cell has a probabilistic value between 0
and 1, depending on its amount of occupancy. Besides,
each cell must belong to one of the three states: free,
occupied, and unknown. In the beginning, all cells are
initialized with 0.5 to indicate the unknown state. Then,
as the robot gathers information from the environment,
the cells' probabilistic value is updated [31]. In a similar
manner, the octree data structure is commonly employed
to generate 3D metric maps [14, 21]. An example for the
octree data structure is given in Fig. 4. First, the data is
represented with only one voxel that contains all points.
This is generally called level O or root node. Then, it
splits into eight voxels of the same size (level 1).
Simultaneously, voxels of octree are classified as empty
(free) and non-empty (occupied), whether consisting of at
least one point or not. The process is repeated until the
predefined depth or voxel size (VSIZE) is accomplished.

In this study, we utilized RTAB-Map ROS package to
construct an octree. RTAB-Map can also determine the
state of the voxels as free and occupied since it integrates
with OctoMap. As a default, RTAB-Map ROS package
only provides occupied voxels. However, it has
RayTracing ability that fills the unknown spaces between

Qroot level 0
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O O m O level 1 Olmn»empty node
empty node
COVO0OC® COOCCORD ez D !
point list

point list
(a) Octree hierarchical structure
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(c) Features of an octree
leaf-node

Figure. 4. An example for the octree data structure [32].

the sensor and occupied voxels. Therefore, we enabled
RayTracing ability to obtain free voxels. An example for
constructing the metric map is shown in Fig. 5. In this
example, we used the same scene that is given in Fig. 3.
The white and black colors in Fig. 5(a) depict free and
occupied points taken from the RTAB-Map. The
corresponding metric map is shown in Fig. 5(b). At that
point, we used the semantic map to classify occupied
voxels into walls, terrain, inclined, and straight ramps. To
achieve this, we first identified the points that belong to a
voxel. Then, the semantic class of each point in that
voxel was specified with the aid of the semantic map.
Lastly, we calculated a histogram to count the number of
points for each class and determined the dominant
semantic class, which has the maximum number of
points, of that voxel through the histogram. The semantic
map and the corresponding metric map of the scene are
illustrated in Fig. 5(c) and Fig. 5(d), respectively. In
order to merge the current and global metric maps, we
first determined the boundary voxels of both maps. Then,
we considered the positions and orientations of boundary
voxels. Lastly, we found neighbor voxels and merged the
maps.

I11. EXPERIMENTAL WORKS

A. Experimental Setup

We used ROS and Gazebo to conduct the experiments.
First, we modeled ESOGU Artificial Intelligence &
Robotic Laboratory Search and Rescue Test Arena in
Gazebo simulation environment (Fig. 6(a)). The
dimensions of environment are 6 x 4 meters. Then, we
utilized hector_nist_arenas_gazebo ROS package [33] to
insert ramps in the environment (Fig. 6(b)). A Pioneer 3-
AT mobile robot was launched in the modeled
environment with an Asus XTion Pro RGB-D sensor to
capture point cloud data. We used teleop_twist_keyboard
ROS package [34] for the teleoperation of the mobile
robot.
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© (@)

Figure. 5. An example for construction of metric map. (a) Free (white) and occupied (black) points taken from the RTAB-Map.
(b) Corresponding metric map of (a). (¢) Semantic map of the scene. (d) Corresponding metric map of (c).

After each predetermined time interval (Timelnterval),
point cloud data was gathered with RTAB-Map ROS
package while the robot operates in the simulation
environment. The Timelnterval parameter is selected 1
second in this experiment. Also, GridCellSize and
MaxNodes parameters of RTAB-Map ROS package are
determined as 0.025 and 1, respectively. A preprocessing
step must be applied to the point cloud data for the scene
classification problem of point-based deep learning
architectures. Therefore, the scene is divided into blocks
instead of using the entire scene to avoid losing data and
detect local features. As a result, we separated a point
cloud data into 1 m? blocks in the xy plane independent
from the points' z coordinates. Deep learning
architectures accept a fixed number of points. In this
study, we specified the number of points in a block as
4096. We applied random upsampling or downsampling
to the blocks that contain less than or greater than 4096
points, respectively. Besides, we removed the blocks that
have less than 500 points. DGCNN architecture can
receive coordinates, normalized coordinates, and color
information of points as an input. In this study, we did
not use color information, and points were presented with
6D features (X, y, and z coordinates and normalized X, v,
and z coordinates). We used the default parameters for
scene segmentation of DGCNN architecture.

(b)

Figure. 6. (a) ESOGU AIRLAB search and rescue test arena,
(b) Gazebo model of the test arena.
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The DGCNN architecture is implemented in Python
programming language using TensorFlow library [35].
However, the remaining parts of the method are realized
with C++ programming language. For that reason, we
used pybind11l wrapper [36]. After the points belong to
each class were determined, we clustered the points
depending on the class labels. Besides, we applied
RANSAC segmentation method to segment different
planar surfaces. The DistanceThreshold parameter of
RANSAC is selected 0.02 meters. We used
octree_viewer module [37] of the Point Cloud Library
(PCL) [38] to visualize the metric map. In this step,
VSIZE parameter is chosen 0.05 meters. In order to
generate semantic and metric maps of the environment
given in Fig. 6(b), the robot navigated for 160 seconds.
Therefore, 160 scenes were captured during that process.
The experiments were carried out on a PC with Intel i7
processor with 2.8 Ghz, 16 GB RAM, and operating
system Ubuntu 20.04.

B. Experimental Results

The experimental results are shown in Fig. 7. In the
figure, the left and right columns illustrate the metric and
semantic map of the environment, respectively. The rows
of the figure represent the results at some steps. The
mapping process was completed at 160 steps, and we
preferred to give results at 40, 80, 120, and 160 steps. In
the figure, red, yellow, purple, and blue colors represent
the wall, terrain, straight, and inclined ramp classes,
respectively. We did not visualize points and voxels
belong to the free semantic class to clarify figures. As
seen from the results, our semantic and metric maps grow
incrementally. In this way, the computational complexity
of the proposed method was decreased.

The results for semantic maps indicate that the proposed
method successfully classifies walls, terrain, and ramps
for each scene although the DGCNN model was trained
with data gathered in a different simulated environment.
Besides, the proposed method calculates and stores
properties such as orientation, maximum, and minimum
coordinates of each planar surface even though we did
not visualize these properties. Then, the method utilizes
these properties to merge the current scene and the global
semantic map. The experimental results indicate that our
method successfully merges the maps to generate an
accurate semantic map. In our method, the success of
producing a metric map of a scene highly relies on the

semantic map's accuracy. As seen from the figures, the
metric map of the environment is generated successfully
since the semantic map is accurately created. Then, the
current and global maps are integrated carefully with
determining boundary voxels. The experimental results
for metric maps show that the proposed method merges
the maps successfully.

IV. CONCLUSIONS AND FUTURE WORKS

This study aims to create semantic and metric maps of an
environment similar to standard NIST search and rescue
test arenas. To do that, we utilized RTAB-Map ROS
package and DGCNN architecture. The proposed method
grows semantic and metric maps incrementally to
decrease the computational complexity. Besides, we
prefer to use point cloud data instead of visual data,
which many previous studies employed, since point cloud
data is more suitable for post-disaster environments. In
contrast to previous studies that address producing 3D
metric maps, we classified voxels not only occupied and
free but also walls, terrain, and ramps. The experimental
results indicate that our method successfully generates
accurate semantic and metric maps. For future works, we
plan to develop a new metric map approach and
determine free and occupied voxels without using
RTAB-Map since the computational complexity of
OctoMap that integrated into RTAP-Map is not
appropriate to produce fine-detailed maps. Besides, we
aim to create a topological map utilizing the metric map.
Thus, the robot can efficiently navigate the environment
by preparing the shortest path plan using the topological
map.
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(g) Metric map step 160
Figure. 7. Experimental results.

(b) Semantic map step 40

(d) Semantic map step 80

(f) Semantic map step 120

(h) Semantic map step 160
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