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Abstract. In the present paper, we introduce and explore certain new classes
of meromorphic functions related to closed-to-convexity and q-calculus. Such

results as coefficient estimates, grow the property and partial sums are derived.

It is important to mention that our results are generalization of number of
existing results in literature.

1. Introduction

Let
∑

1 denote the class of meromorphic functions of the form:

f (ω) =
1

ω
+

∞∑
t=1

atω
t, (1)

which are analytic in the punctured open unit disc U∗ = {ω : ω ∈ C and
0 < {ω} < 1} = U\{0}, where U = U∗ ∪ {0}.

In Geometric Function Theory, several subclasses of the meromorphic functions
have already been examined and investigated through many perceptions, see( [9,10,
12,18,21,22]). Ismail et al. [8] were the first to use the q-derivative operator ∆q in
order to study a certain q-analogue of the class T ∗ of starlike functions in U . Certain
basic properties of the q-close-to-convex functions were studied by Raghavendar
and Swaminathan [28], Aral et al. [2] successfully studied the applications of the
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q-calculus in operator theory. In fact, they found significant application of the
q-calculus mainly in the Geometric Function Theory. Moreover, the generalized
q-hypergeometric function was first introduced by Srivastava [26], see also( [1, 3, 5,
6, 14,16,20]).

A function f ∈
∑

1 is said to be meromorphic starlike of order α defined as:

f ∈
MS∑

(α) ⇔ Re

(
ωf

′
(ω)

f (ω)

)
< −α (0 ≤ α < 1; ω ∈ U∗). (2)

A related class of meromorphic convex function
∑MC

(α) is defined as:

f ∈
MC∑

(α) ⇔ Re

(
1 +

ωf
′′

(ω)

f ′ (ω)

)
< −α ( ω ∈ U∗). (3)

By
∑MK

(α), we mean f ∈
∑

1 and the class of all close-to-convex functions
which satisfies the condition

Re

(
ωf

′

(ω)

g (ω)

)
< −α, where g ∈

MS∑
(α). (4)

The study of operators plays main role in the theory of geometric functions.
Many differential and integral operators can be written in terms of convolution of
certain holomorphic functions.

For g (ω) = 1
ω +

∞∑
t=0

btω
t ∈

∑
1 and f given in (1). The Convolution (Hadamard

product) is denoted by f ∗ g and defined as:

(f ∗ g) (ω) = 1

ω
+

∞∑
t=0

atbtω
t = (g ∗ f) (ω) . (5)

A function h analytic in U and of the form

h (ω) = 1 +

∞∑
t=1

rtω
t,

A given function Ψ with Ψ(0) = 1 is said to belong to the class S∗[A,B] if and
only if

Ψ (ω) ≺ 1 +Aω

1 +Bω
(−1 ≤ B < A ≤ 1) .

This class was presented and studied by Janowski [11]. By taking A = 1 and
B = −1, we obtain the class P of functions with a positive real part. It is important
to mention that Ψ (ω) ∈ S∗[A,B] if and only if there exists r ∈ P such that

Ψ (ω) =
(A+ 1)R (ω)− (A− 1)

(B + 1)R (ω)− (B − 1)
(−1 ≤ B < A ≤ 1) .
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Motivated by the works of Srivastava et al. see( [7, 17, 19, 23, 25, 27])also see(
[4,13,15,24,29]). In this paper, we shall consider new subfamilies of q meromorphic
close-to-convex functions with respect to Janowski functions.

Throughout in this paper, we assume

0 ≤ η < 1,−1 ≤ B < A ≤ 1, 0 ≤ q < 1, ω ∈ U∗, f, g ∈
∑
1

,

Λ(t, η, A, q) = [|bt| |(2[t]qη + 2(1− η) + η(A+ 1))− (A+ 1)(1− η)|] ,
Λ(t, B, q) = [t]q(2 +B + 1),

and

γ(η,A,B, q) = |(B + 1) + (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)(1− q),

unless otherwise mentioned.

Definition 1. (see [9] and [10] ) The q-derivative (q-difference) ∆q of a function
f is defined in a given subset of C by

(∆qf) (ω) =

{
f(ω)−f(qω)

(1−q)ω ( ω ̸= 0) ,

f
′
(0) ( ω = 0) ,

where 0 < q < 1. This implies the following.

lim
q→1−

(∆qf) (ω) = lim
q→1−

f (ω)− f(qω)

(1− q)ω
= f

′
(ω) ,

provided that f
′
(0) exists.

The function ∆qf has Maclaurin’s series representation

(∆qf)(ω) =

∞∑
t=0

[t]qatω
t−1,

where q ∈ (0, 1) and define the q-number [γ]q by

[γ]q =

{
1−qγ

1−q ( γ ∈ C) ,∑t−1
k=0 q

γ = 1 + q2 + q3 + ...+ qt−1 (t ∈ N) .

For more details about q-derivatives, we refer the reader to (see [6]).

Definition 2. For f ∈
∑

1, let the q-derivative operator (q-difference operator) be
defined by

(∆qf)(ω) =
f(qω)− f (ω)

(q − 1)ω
= − 1

qω2
+

∞∑
t=0

[t]qatω
t−1 (ω ∈ U∗) . (6)

Similarly

(∆qg)(ω) =
g(qω)− g (ω)

(q − 1)ω
= − 1

qω2
+

∞∑
t=0

[t]qbtω
t−1 (ω ∈ U∗) . (7)
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Definition 3. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η)[A,B] if

and only if ∣∣∣∣∣∣
(B − 1)

(
−ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω)

)
− (A− 1)

(B + 1)
(

−ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

Where g ∈
∑MS

(α), It is easily observed that

lim
q→1−

T ∗
(q,0)[A,B] = SMK

q [A,B],

secondly we have
lim

q→1−
T ∗
(q,0)[1,−1] = SMK

q ,

where SMK
q [A,B] is the well-known function of meromorphic close-to-convex

function.

2. Main Results

2.1. Coefficient estimates.

Theorem 1. A function f ∈
∑

1 of the form given by (1) is in the class T ∗
(q,η)[A,B]

if it satisfies the following condition.
∞∑
t=1

(Λ(t, B, q) |at| q + (t, η, A, q) |bt| q) ≤ γ(η,A,B, q), (8)

where
Λ(t, B, q) = [t]q(2 +B + 1), (9)

Λ(t, η, A, q) = [|bt| |(2[t]qη + 2(1− η) + η(A+ 1))− (A+ 1)(1− η)|] (10)

and

γ(η,A,B, q) = |(B + 1) + (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)(1− q). (11)

Proof. Assuming that (8) holds, it suffices to show that∣∣∣∣∣∣
(B − 1)

(
−ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω)

)
− (A− 1)

(B + 1)
(

−ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

Consider we have∣∣∣∣∣∣
(B − 1)

(
−ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω)

)
− (A− 1)

(B + 1)
(

−ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣
which implies

=

∣∣∣∣−(B − 1)ω∆qf (ω)− (A− 1) [(1− η)g (ω) + ηω∆qg (ω)]

−(B + 1)ω∆qf (ω)− (A+ 1) [(1− η)g (ω) + ηω∆qg (ω)]
− 1

∣∣∣∣+ q

1− q
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Thus

2

∣∣∣∣ ω∆qf (ω) + (1− η)g (ω) + ηω∆qg (ω)

−(B + 1)ω∆qf (ω)− (A+ 1) [(1− η)g (ω) + ηω∆qg (ω)]

∣∣∣∣+ q

1− q

Using (1), (6) and (7) in above equation.∣∣∣∣∣∣∣∣
2(1− η)(q − 1)

+2
∑∞

t=1 [[t]q(at + ηbt) + (1− η)bt] qω
t+1

(B + 1) + (A+ 1)η − (A+ 1)(1− η)q
−
∑∞

t=1 [[t]q((B + 1)at + η(A+ 1)bt)− (A+ 1)(1− η)bt] qω
t+1

∣∣∣∣∣∣∣∣ ≤ 1,

we get
∞∑
t=1

[t]q |at| (2 +B + 1)q +

∞∑
t=1

[|bt| |(2[t]qη + 2(1− η) + η(A+ 1))− (A+ 1)(1− η)|] q

≤ |(B + 1) + (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)(1− q). (12)

The last expression become
∞∑
t=1

Λ(t, B, q) |at| q +
∞∑
t=1

Λ(t, η, A, q) |bt| q ≤ γ(η,A,B, q).

This complete the proof of Theorem 2.1.
□

Corollary 1. If a function f ∈
∑

1 of the form given by (1) is in the class
T ∗
(q,η)[A,B], then

|at| ≤
γ(η,A,B, q)

Λ(t, B, q)
− Λ(t, η, A, q)

Λ(t, B, q)
|bt| (t ∈ N), (13)

with equality for each t, we define the function of the form

ft (ω) =
1

ω
+

(
γ(η,A,B, q)

Λ(t, B, q)
− Λ(t, η, A, q)

Λ(t, B, q)
|bt|
)
ωt,

where Λ(t, B, q), Λ(t, η, A, q) and γ(η,A,B, q) are given by (9), (10) and (11) re-
spectively.

2.2. Distortion inequalities.

Theorem 2. If f ∈ T ∗
(q,η)[A,B], then

1

r
−
(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)
r ≤ |f (ω)|

≤ 1

r
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)
r (|ω| = r) ,

where equality holds for the function

f (ω) =
1

ω
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
ω.
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Proof. Let f ∈ T ∗
(q,η)[A,B]. Then in view of Theorem (2.1), we have

Λ(1, B, q)

∞∑
t=1

|at| ≤
∞∑
t=1

Λ(t, B, q) |at| ≤ γ(η,A,B, q)−
∞∑
t=1

Λ(1, η, A, q) |bt| ,

which yields

|f (ω)| ≤ 1

r
+

∞∑
t=1

|at| rt ≤
1

r
+ r

∞∑
t=1

|at| ≤
1

r
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
r.

(14)
Similarly, we have

|f (ω)| ≥ 1

r
−

∞∑
t=1

|at| rt ≥
1

r
− r

∞∑
t=1

|at| ≥
1

r
−
(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
r

(15)
which is required. □

Theorem 3. If f ∈ T ∗
(q,η)[A,B], then

1

r2
− 2

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)

≤ |f (ω)| ≤ 1

r2
+ 2

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)

(|ω| = r) ,

where equality holds for the function

f (ω) =
1

ω
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
ω.

Proof. Let f ∈ T ∗
(q,η)[A,B]. Then in view of theorem (2.1), we have

Λ(1, B, q)

∞∑
t=1

|at| ≤
∞∑
t=1

Λ(t, B, q) |at| ≤ γ(η,A,B, q)−
∞∑
t=1

Λ(1, η, A, q) |bt| .

Differentiate (14) and (15), we get∣∣∣f ′
(ω)
∣∣∣ ≤ − 1

r2
+

∞∑
t |at| rt−1 ≤ − 1

r2
+

∞∑
t=1

|at| ≤ − 1

r2
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
.

(16)
Similarly, we have∣∣∣f ′

(ω)
∣∣∣ ≥ − 1

r2
−

∞∑
t |at| rt−1 ≥ − 1

r2
−

∞∑
t=1

|at| ≥ − 1

r2
−
(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
.

(17)
Comparing (16) and (17).
We have thus completed the proof of Theorem 2.4. □
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2.3. Partial sums.
In this section, we examine the ratio of a function of the form (1) to its sequence
of partial sums

ft (ω) =
1

ω
+

k∑
t=1

atω
t,

when the coefficients of f are sufficiently small to satisfy condition (8). We will
determine sharp lower bounds for

Re

(
f (ω)

fν (ω)

)
, Re

(
f
ν
(ω)

f (ω)

)
, Re

(
(∆qf) (ω)

(∆qfν ) (ω)

)
and Re

(
(∆qfν

) (ω)

(∆qf) (ω)

)
.

Theorem 4. If f of the form (1) satisfies condition (8), then

Re

(
f (ω)

f
ν
(ω)

)
≥ 1− 1

κν+1
(ω ∈ U∗), (18)

and

Re

(
f
ν
(ω)

f (ω)

)
≥ κν+1

1 + κν+1
(ω ∈ U∗), (19)

where

κν =
γ(η,A,B, q)

Λ(t, B, q)
− Λ(t, η, A, q)

Λ(t, B, q)
|bt| . (20)

Proof. In order to prove inequality (18), we set

κν+1

[
f (ω)

fν (ω)
−
(
1− 1

κν+1

)]
=

1 +
ν∑

t=1
atω

t−1 + κν+1

∞∑
t=ν+1

atω
t+1

1 +
ν∑

t=1
atωt+1

=
1 + h1 (ω)

1 + h2 (ω)
.

Let
1 + h1 (ω)

1 + h2 (ω)
=

1 + g (ω)

1− g (ω)
.

Finally, to prove the inequality in (18), we get

ν∑
t=1

(
1− κ

ν+1

)
|at|+

∞∑
t=ν+1

(
κ

ν+1
− κt

)
|at| ≥ 0.

The proof of inequality in (18) is now completed.
Similarly, we set

1 + κ
ν

[
f
ν
(ω)

f (ω)
−
(

κν+1

1 + κν+1

)]
=

1 +
ν∑

t=1
atω

t−1 − κν+1

∞∑
t=ν+1

atω
t−1

1 +
ν∑

t=1
atωt−1
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=
1 + g (ω)

1− g (ω)
.

We have completed the proof of (19), which complete the proof of Theorem
2.5. □

Theorem 5. If f of the form (1) satisfies condition (8), then

Re

(
(∆qf) (ω)

(∆qfν) (ω)

)
≥ 1−

[ν + 1]q
κν+1

(ω ∈ U∗), (21)

and

Re

(
(∆qfν) (ω)

(∆qf) (ω)

)
≥ κν+1

κν+1 + [ν + 1]q
(ω ∈ U∗), (22)

where κν is given by (20).
The proof of Theorem 2.6, is similar to that of Theorem 2.5.

2.4. Radius of starlikeness.
In the next theorem we find the radius of q-starlikeness for the class T ∗

(q,η)[A,B].

Theorem 6. Let the function f given by (1) be in the class T ∗
(q,η)[A,B]. Then f

is meromorphic starlike of order α in |ω| ≤ r, where

r = inft≥1

[
(1− α)Λ(t, B, q)

(n+ 2− α) [γ(η,A,B, q)− Λ(t, η, A, q) |bt|]

] 1
t+1

,

Proof. In order to prove above result, we must show that∣∣∣∣∣f
′
(ω)

f (ω)
+ 1

∣∣∣∣∣ ≤ 1− α (0 ≤ α < 1) and |ω| ≤ r1,

we have ∣∣∣∣∣f
′
(ω)

f (ω)
+ 1

∣∣∣∣∣ =
∑∞

t=1(t+ 1)atω
t

1
ω +

∑∞
t=1 atω

t
.

≤
∑∞

t=1(t+ 1) |at| |ω|t+1

1−
∑∞

t=1 |at| |ω|
t+1 . (23)

Since the appropriate condition for a function f to be in the class
∑MS

(α) is
given by

∞∑
t=1

(t+ α) |at| < 1− α (0 ≤ α < 1; ω ∈ U∗). (24)

Hence (23) holds true if

∞∑
t=1

(t+ 1) |at| |ω|t+1 ≤ (1− α)

(
1−

∞∑
t=1

|at| |ω|t+1

)
. (25)
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The inequality in (25) can be written as:
∞∑
t=1

(
t+ 2− α

1− α

)
|at| |ω|t+1 ≤ 1. (26)

With the aid of (8), inequality (26) is true if(
t+ 2− α

1− α

)
|ω|t+1 ≤ Λ(t, B, q)

γ(η,A,B, q)− Λ(t, η, A, q) |bt|
. (27)

Solving (27) for |ω|, we have

|ω| =
[

(1− α)Λ(t, B, q)

(n+ 2− α) [γ(η,A,B, q)− Λ(t, η, A, q) |bt|]

] 1
t+1

. (28)

In view of (28) the proof of our theorem is now completed. □

Definition 4. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η,1)[A,B]

if and only if

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)

 ≥ 0.

We call T ∗
(q,η,1)[A,B] the class of q close-to-convex function of Type 1 related with

the Janowski functions.

Definition 5. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η,2)[A,B]

if and only if∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

We call T ∗
(q,η,2)[A,B] the class of q close-to-convex function of Type 2 related

with the Janowski functions.

Definition 6. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η,3)[A,B]

if and only if ∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

∣∣∣∣∣∣ < 1.

We call T ∗
(q,η,3)[A,B] the class of q close-to-convex function of Type 3 related with

the Janowski functions.

For Special Cases.
(1) For η = 0 and g (ω) = f (ω) then T ∗

(q,0,)[A,B], T ∗
(q,0,1)[A,B], T ∗

(q,0,2)[A,B] and

T ∗
(q,0,3)[A,B] classes reduced to S∗

q [A,B], S∗
(q,1)[A,B], S∗

(q,2)[A,B] and S∗
(q,3)[A,B]

studied by Srivastava et al [17,27].
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(2) For η = 0, g (ω) = f (ω) , A = 1 − 2α and B = −1 in T ∗
(q,0,)[A,B],

T ∗
(q,0,1)[A,B], T ∗

(q,0,2)[A,B] and T ∗
(q,0,3)[A,B] we get the classes S∗

q , S
∗
(q,1)(α), S

∗
(q,2)(α)

and S∗
(q,3)(α), which was introduced and studied by Wongsaijai and Sukantamala

(see [30]).

2.5. Main Results and Their Demonstration.
We first derive the presence results for the succeeding generalized q-starlike func-
tions:

T ∗
(q,η,1)[A,B], T ∗

(q,η,2)[A,B] and T ∗
(q,η,3)[A,B],

which are associated with the Janowski functions.

Theorem 7. If −1 ≤ B < A < 1, then

T ∗
(q.η,3)[A,B] ⊂ T ∗

(q.η,2)[A,B] ⊂ T ∗
(q,η,1)[A,B].

Proof. First of all, we suppose that f ∈ T ∗
(q.η,3)[A,B]. Then, by Definition 2.10, we

have ∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

∣∣∣∣∣∣ < 1,

so that∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ωDqf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

∣∣∣∣∣∣+ q

1− q
< 1 +

q

1− q
. (29)

By using the triangle inequality and equation (29), we find that∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣ < 1

1− q
. (30)

The last expression in (30) now implies that f ∈ T ∗
(q.η,2)[A,B], that is, that

T ∗
(q,3)[A,B] ⊂ T ∗

(q,2)[A,B].

Next, we let f ∈ T ∗
(q,η,2)[A,B], so that

f ∈ T ∗
(q,η,2)[A,B] ⇐⇒

∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

As we know

1

1− q
>

∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

1− q
−

(B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ωDqf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)

∣∣∣∣∣∣ ,
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we have

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηωDqg(ω) − (A+ 1)

 > 0 (ω ∈ U∗). (31)

This last equation now shows that f ∈ T ∗
(q,η,1)[A,B], that is, that

T ∗
(q.η,2)[A,B] ⊂ T ∗

(q.η,1)[A,B].

We have thus completed the proof of Theorem 2.11. □

Theorem 8. Let f ∈
∑

1, then f ∈ T ∗
(q,η,2)[A,B] if and only if∣∣∣∣ f (qω)

(1− η)g (ω) + ηg (qω)
− κ

(B − 1) q +B + 3

∣∣∣∣ ≦ (A+ 1) (1− q)

(B − 1) q +B + 3
,

where
κ = (A− 1) q2 + (B −A+ 2) q +B + 1.

Proof. Let

ω∆qf (ω)

(1− η)g (ω) + ηω∆qg (ω)
=

(
1

1− q

)(
1− f (qω)

(1− η)g (ω) + ηg (qω)

)
.

Using Definition 2.9 of the class T ∗
(q,η,2)[A,B] associated with the Janowski func-

tions. ∣∣∣∣∣∣
(B − 1)

(
1

1−q

)(
1− f(qω)

(1−η)g(ω)+ηg(qω)

)
− (A− 1)

(B + 1)
(

1
1−q

)(
1− f(qω)

(1−η)g(ω)+ηg(qω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

We have thus completed the proof of Theorem 2.12. □

Corollary 2. It is worth mentioning that the classes

T ∗
(q,η,1)[A,B], T ∗

(q,η,2)[A,B] and T ∗
(q,η,3)[A,B].

of the generalized q closed-to-convex functions of Type1, Type 2, and Type3, respec-
tively, satisfy the following properties:

∩q∈(0,1)T
∗
(q,η,1)[A,B] = ∩q∈(0,1)T

∗
(q,η,2)[A,B] = T ∗[A,B].

and
∩q∈(0,1)T

∗
(q,η,1)[A,B] = ∩q∈(0,1)T

∗
(q,η,3)[A,B] ⊂ T ∗[A,B].

Let L be a subset of
∑

1 consisting of functions with a negative coefficient, that
is,

f (ω) =
1

ω
−

∞∑
t=1

|at|ωt (at ≥ 0) .

We also let
LT ∗

(q,η,t)[A,B] = T ∗
(q,η,t)[A,B] ∩ L (t = 1, 2, 3).
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Theorem 9. For −1 ≤ B < A < 1, then

LT ∗
(q,η,1)[A,B] = LT ∗

(q,η,2)[A,B] = LT ∗
(q,η,3)[A,B].

Proof. In view of Theorem 2.11, it is sufficient here to show that

LT ∗
(q,η,1)[A,B] ⊂ LT ∗

(q.η,3)[A,B].

Indeed, if we assume that , f ∈ LT ∗
(q.η,1)[A,B], then we have

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)

 ≥ 0,

so that

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

 ≥ −1.

After a simple calculation, we thus find that

2

∣∣∣∣ −ω∆qf (ω) + (1− η)g (ω) + ηω∆qg (ω)

(B + 1)ω∆qf (ω)− (A+ 1) [(1− η)g (ω) + ηω∆qg (ω)]

∣∣∣∣ ≥ −1

Using (1), (6) and (7) in above equation.∣∣∣∣∣∣∣∣
2(2η − 1)− 2(1− η)q+

2
∑∞

t=1 [[t]q(at − ηbt)− (1− η)bt] qω
t+1

−(B + 1) + (A+ 1)η − (A+ 1)(1− η)q
+
∑∞

t=1 [[t]q((B + 1)at − η(A+ 1)bt)− (A+ 1)(1− η)bt] qω
t+1

∣∣∣∣∣∣∣∣ < 1

This implies we get
∞∑
t=1

|at| [t]q(2− (B + 1))q +

∞∑
t=1

[
−2[t]qη + (A+ 1)η

+(A+ 1)(1− η)− 2(1− η)

]
|bt| q

≤ |(B + 1)− (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)q − 2(2η − 1),

which satisfies T ∗
(q,η,3)[A,B]. By Definition 2.10, the proof of Theorem 2.14 is

completed. □

3. Conclusion

In our current investigation, we have presented and studied thoroughly some
new subclasses of q meromorphic close-to-convex functions, which is connected
with the Janowski functions. Then we discussed some interesting properties and
characteristics of these new subclasses, including distortion theorem, radius problem
and partial sum. Some special cases have been discussed as applications of our main
results. The technique and ideas of this paper may stimulate further research in
this dynamic field.
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