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Abstract: We present a graphical tool that was primarily proposed by Michiels et al. [18] and later modified
by Durante et al. [4]. We also improve this method to select the better fit of the given data among some
extreme value copulas based on the Pickands dependence function. We conduct a Monte Carlo simulation
study to investigate its performance. Also, the graphical method is illustrated by a real data example.
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1. Introduction
A copula is a joint distribution of the random variables U and V , each of which is marginally

uniformly distributed as U(0,1). Sklar’s [20] theorem states that for any bivariate random variables
X,Y with a cumulative distribution function (CDF)

H(x, y) = P (X ≤ x,Y ≤ y)

and the marginal CDF F (x) = P (X ≤ x) and G(y) = P (Y ≤ y) then there exist a copula such as:

H(x, y) =C(F (x),G(y)) =C(u, v),

where u= F (x) and v= g(y). From the modelling perspective, Sklar’s Theorem allows us to sepa-
rate the modelling of the marginal distributions F (x),G(y) from the dependence structure, which
is expressed in C.

One of the most important fields of statistics is the extreme value (EV) theory. The estimation of
the events outside the range of data should be estimated by the EV distributions such as the daily
maximum air temperature, and annual maximum sea levels. The EV distribution is the limiting
distribution for the minimum or the maximum of random observations. Pickands [19] states that
the pair (X,Y ) has an EV dependence if and only if its copula C can be expressed for all u, v ∈ (0,1)

C(u, v) = exp
(

log(uv)A(
log(v)

log(uv)
)
)
,

where A(.) is the Pickands dependence function defined on [0,1]→ [1/2,1]. The Pickand’s depen-
dence function has some properties as follows:

� A(0) =A(1) = 1.
� A is the convex function.
� max(1− t, t)≤A(t)≤ 1 for all t∈ [0,1].
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The non-parametric estimation of the Pickands dependence is an important issue when dealing
with extreme events. Let {Xi, Yi}ni=1 be a n random observation from the random variables X and Y
with the joint distribution function H(x, y), copula C(u, v) and the marginal distribution functions
F (x) and G(y). Also, let Ui = F (xi) and Vi =G(yi) then put Si =− log(Ui) and Ti =− log(Vi). For
every t∈ [0,1]

ξi(t) = min(
Si

1− t
,
Ti
t

).

Pickands [19] introduced the non-parametric Pickands dependence function estimator as follows:

ÂP =
( 1

n

n∑
i=1

ξi(t)
)−1

.

This estimator does not satisfy the conditions of the Pickands dependence function A(.). Capéraá
et al. [3] proposed an estimator called the CFG as follows:

ÂCFG = exp
(
− γ− 1

n

n∑
i=1

ξi(t)
)−1

,

where γ is Euler’s constant that is γ = −
∫ inf

0
log(x) exp(x)dx. In practice, marginals are rarely

known. Thus, F and G should be estimated by their empirical counterparts F̂n and Ĝn (Genest
et al. [9]). In this paper, we use the corrected estimator ÂCFG that is studied in Gudendorf et al.
[10].

In the past few years, a certain number of papers have emerged which use Bernstein polynomials
for the modelling of the extremal dependence, i.e. (Marcon et al. [16]; Guillotte et al. [11]; Marcon
et al. [17]), to name a few. Also, Ahmadabadi et al. [1] investigated a new nonparametric approach
using the Bernstein copula approximation. They used the Kernel regression method in order to
derive an intrinsic estimator satisfying all the properties of the Pickands dependence function. See
(Vettori et al. [21]) for a review.

The selection of EV copulas is an important issue when dealing with extreme situations. For this
reason, many authors developed a tool for EV copulas selection. Michiels et al. [18] introduced a
graphical tool for copula selection, based on the principal coordinate analysis. The main idea of this
paper is that calculating the distance between the empirical copula and the parametric families of
copulas then the calculated distances are visualized in 2D space via principal coordinate analysis.
Also, Durante et al. [4] proposed the graphical tool in order to detect which families of copulas are
closer to the empirical copula in tail dependence behavior.

In this study, we present a graphical tool that was firstly proposed by Michiels et al. [18] and
later modified by Durante et al. [4]. We also improve this method to select the better fit of the
given data among some extreme value copulas based on the Pickands dependence function. The
EV copulas exhibit a similar upper tail dependence structure in terms of the tail concentration
function. Thus, the tail concentration function proposed in Durante et al. [4] may fail to detect
the tail dependence structure for the extreme value copulas for the same dependence level. In
Figure 1, tail concentration functions of five EV copulas with the same Kendall’s tau (τ = 0.5)
are presented. From this figure, it is hard to distinguish tail concentration function visually for
the same dependence level among all EV copulas. For this reason, we prefer using the Pickands
function in order to select the best suited extremely distributed random variables in the graphical
method proposed in Durante et al. [4]. The extreme value copula is characterized by the Pickands
dependence function; therefore, it can be useful in determining the best-fitted model for the bivari-
ate extreme events. Although the test statistic proposed by Genest et al. [8] are consistent and
effective tools for distinguishing between the symmetric and asymmetric extreme value copulas,
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the processing time is drawn out when dealing with big data because the test procedure involves
the bootstrap method for estimating the p-values of the test statistic. For all these reasons, the
graphical method based on the Pickands function can be used for determining the best-fitted EV
copula for underlying data.
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Figure 1. Tail concentration function for EV copulas with τ = 0.5

The remainder of the study is organized as follows. In section 2, some EV copulas with Pickands
dependence functions are introduced. In section 3, a graphical method to select EV copulas is
presented. Some advantages of the proposed methods are discussed. Also, we performed a graphical
method to show how accurately it works for a simulated data set from the EV copulas. In section
4, we apply the proposed method to the Danube dataset. Finally, the conclusion is given in the
last section.

2. Some parametric extreme value copulas
Constructing a Pickands dependence function is one of the popular methods to obtain an EV

copula. In this section, five EV copulas are introduced. Logistic (L) or Gumbel-Hougaard copula
dating back to Gumbel [12] and Hougaard [13] can be considered as one of the oldest bivariate
extreme value models. The logistic copula is the only copula that is at the same time as the extreme
value and Archimedean copula. The Pickands dependence function of the Logistic copula with the
dependence parameter θ given by:

AL(t) = (tθ + (1− t)θ) 1
θ .

The bivariate Asymmetric Logistic (AL) copulas Pickands dependence function with the depen-
dence parameter 1≤ θ <∞ and asymmetry parameters α, β is given by

AAL(t) = (1−α)(1− t) + (1−β)t+
(
(αt)θ + (β(1− t))θ

) 1
θ ,

where 0≤ α, β ≤ 1. the Asymmetric Logistic copula adds further exibility to the Logistic copula.
Note that by taking α = β = 1, we can obtain the Logistic model, and by allowing α = β, the
Asymmetric Logistic copula is symmetric. The complete dependence is obtained. The complete
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dependence is obtained when α= β = 1 and θ→ 0. And, also the independence is obtained when
θ= 1 and α= 0 or β = 0.

The bivariate Pickands function of the Negative Logistic (NL) model dating back to Galambos
[7] is given by

ANL(t) = 1− (t−θ + (1− t)−θ)− 1
θ ,

where θ ∈ [0,∞). Independence is obtained as θ = 0 and complete dependence is obtained when
θ→∞.

The bivariate Asymmetric Negative Logistic copula dating back to Joe [15] is an extension of
the Negative Logistic copula. The Joe copula has two parameters α and β which allow the model
to be asymmetric. Pickands dependence function of Asymmetric Negative Logistic copula is given
by

AANL(t) = 1− ((αt)−θ + (β(1− t))−θ)− 1
θ ,

where 0≤ α, β ≤ 1 and θ ∈ (0,∞). Note that if α= β = 1, we obatain the Negative Logistic copula.
If α= β, then the Asymmetric Negative Logistic copula is symmetric. Independence is obtained as
α= β = 0 or θ→ 0 and complete dependence is obtained when α= β = 1 and θ→∞.

The Pickands dependence function of the bivariate Húsler-Reiss copula with parameter θ > 0 is

AHR(t) = (1− t)φ(Z1−t) + tφ(Zt),

where φ(.) is the standard normal distribution function and Zt = 1
θ

+ θ
2

log( t
1−t). Independence is

obtained as θ→ 0 and complete dependence is obtained when θ→∞. For more details, see Húsler
[14].

For the basics of the multivariate extreme value distributions and their Pickands dependence
function see Dutfoy et al. [5] and Breachmann [2].

3. Graphical tool to select extreme value copula
In this section, we present a graphical tool that can help in the selection of the appropriate

EV copula for underlying data set. Let (Xi, Yi)
n
i=1 be a random sample from the EV copulas and

(Ui, Vi)
n
i=1 be associated with the pseudo-observations. Consider a set of m EV copula’s Pickands

dependence function A1(.), . . . ,Am(.) which belong to a different EV copula. A dissimilarity between
the empirical estimate of the Pickands function An(.) and the parametric Pickands function Ai(.)
for i= 1, . . . ,m can be defined by

d(An,Ai) =

∫ 1

0

|An(t)−Ai(t)|2dt, i= 1, . . . ,m. (3.1)

Similarly, the dissimilarity between the i-th and the j-th Pickands function is computed as

d(Ai,Aj) =

∫ 1

0

|Ai(t)−Aj(t)|2dt, 1< i 6= j <m. (3.2)

Let us give the procedure of graphical tool for selection of appropriate extreme value copula for
the given data set. The procedure can be provided by following:

� For i = 1, . . . ,m estimate dependence parameter(s) of a Pickands dependence function Ai(.)
from the family of the EV copula.

� For i= 1, . . . ,m compute the dissimilarity between Ai(.) and the corrected empirical estimate
∆(emp,i) = d(ÂCFG,Ai) by using Eq. (3.1).

� For the m EV copulas Pickands function A1, . . . ,Am compute mutual dissimilarities between
∆(i,j) = d(Ai,Aj) by using Eq. (3.2).
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� Symmetric square matrix of the dimension m+ 1, D= σ(i,j) can be defined as the following:

σ(1,j) = ∆(emp,j+1), j = 2, . . . ,m+ 1,
σ(i,j) = ∆(i−1,j−1), i, j = 2, . . . ,m+ 1, i < j,
σ(i,i) = 0, i= 1, . . . ,m+ 1.

� Using the dissimilarity matrix D, a non-metric multidimensional scaling (NMDS) technique
can be performed.

Dissimilarity matrix D contains L2− type distances which contain the information about the
relation among the An(.) (empirical Pickands function), A1(.), . . . ,Am(.). In order to obtain a
two-dimensional representation through the ranking of distances between An and A1, . . . ,Am, a
a non-metric multidimensional scaling (MDS) technique can be performed on D. Finally, the m
points pi = (xi, yi) corresponding to Pickands function Ai and pemp = (xemp, yemp) corresponding to
the empirical Pickands dependence function estimation An can be visualized in a two dimensional
graph.

For Figures 1-5, we apply the NMDS method based on the Pickands function for each generated
data sets from EV copulas. The procedure provides a graphical representation of the empirical
Pickands function and the five fitted EV copulas (L: Logistic, AL: Asymmetric logistic, NL: Neg-
ative logistic, ANL: Asymmetric negative logistic, and HR: Husler-Reiss) in two dimensions for a
stress a value lower than 100th of a percent of 0.05. As can be seen from Figures 1-5, the charts
are often useful to determine the true data generating process except for asymmetric EV copulas.

Now, in order to assess the performance of graphical method for EV copulas, we conduct simu-
lation study. Let the five points pi = (xi, yi), i= 1, . . . ,5 be corresponding to Pickands dependence
function Ai(.) of five EV copulas and pemp = (xemp, yemp) be corresponding to empirical estimation
of Pickands dependence function, which are obtained by NMDS method in a 2D graph. We may
define an Euclidean distances d2i from the points pi, i= 1, . . . ,5 to pemp given by following:

d2i = (xi;1−xemp,1)2 + (xi;2−xemp,2)2, i= 1, . . . ,5.

Thus, the point pi, corresponding to Pickands function Ai, with smallest distance d2i is the best
choice for given data among all possible five EV copulas. By repeating this process K times for the
randomly generated EV copula then we can measure the performance of the graphical method. Let
(Xi,k, Yi,k)

k=1,...,K
i=1,...,n beK Monte Carlo samples of size n from EV copula. Also, Pi,k = (xi,k, yi,k)

k=1,...,K
i=1,...,5

and Pemp,k = (xemp,k, yemp,k)
k=1,...,K be the points obtained by NMDS method in a 2D graph. The

simulation procedure goes as follows. We can define Euclidean distances in 2D space for K Monte
Carlo samples from EV copula as following:

d2i,k = (xi,k;1−xemp,k;1)2 + (xi,k;2−xemp,k;2)2, i= 1, . . . ,5, k= 1, . . . ,K.

We can calculate the ranks of d2i,k associated to index i for all K Monte Carlo samples given by
ri,k. Hence, the smallest rank of ri,k, k = 1, . . .K indicates that the Pickands dependence function
Ai(.) is as close as to empirical Pickands dependence function An(.) than other Pickands dependence
function for the Monte Carlo samples of k= 1, . . . ,K in 2D graph. For the overall performance, we
define the mean of ranks ri,k as ri =

∑K

k=1 ri,k/K, i= 1, . . . ,5 for all EV copulas.
Let us consider the bivariate random data from the EV copulas. We simulate the bivariate 1000

Monte sample of sizes 250 and 500 from the Logistic, Asymmetric logistic, Negative logistic, Asym-
metric negative logistic, and Húsler-Reiss EV copula models by using the following combinations:
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Table 1. Mean of the ranks for different EV copulas with n= 250

True Copula rL rAL rHR rNL rANL

L(θ= 0.1) 1.4713 2.9713 1.7459 3.8504 4.9610

L(θ= 0.9) 2.4090 3.4545 2.8363 2.5727 3.7272

AL(θ= 0.1, α= 0.2, β = 0.8) 2.19375 4.5687 2.1375 1.6750 4.4250

AL(θ= 0.1, α= 0.8, β = 0.2) 2.2083 4.5416 2.5000 1.5833 4.1666

AL(θ= 0.1, α= 0.5, β = 0.5) 2.870 2.118 4.538 3.223 2.251

AL(θ= 0.9, α= 0.2, β = 0.8) 2.73 2.99 2.92 2.98 3.38

AL(θ= 0.9, α= 0.8, β = 0.2) 2.9629 3.0740 2.6913 2.9135 3.3580
AL(θ= 0.9, α= 0.5, β = 0.5) 2.4375 2.3125 3.1250 3.1875 3.9375

NL(θ= 10) 3.8619 2.9079 2.0083 1.2887 4.9330

NL(θ= 1) 2.4814 4.0370 2.2592 1.9629 4.2592

ANL(θ= 1, α= 0.2, β = 0.8) 2.2777 3.5222 2.6222 2.3888 4.1888

ANL(θ= 1, α= 0.8, β = 0.2) 2.42 3.52 2.46 2.30 4.30

ANL(θ= 1, α= 0.5, β = 0.5) 1.8401 3.3848 3.5555 2.4986 3.7208

ANL(θ= 10, α= 0.2, β = 0.8) 2.1645 4.6195 2.1413 1.7146 4.3598

ANL(θ= 10, α= 0.8, β = 0.2) 2.181 4.614 2.156 1.703 4.346
ANL(θ= 10, α= 0.5, β = 0.5) 2.341 2.909 4.529 3.175 2.046

HR(θ= 0.1) 3.1612 3.2096 2.6935 2.7580 3.1774

HR(θ= 0.9) 2.5116 4.2558 2.1395 2.2558 3.8372

1. Logistic copula with dependence parameters θ = 0.1 (Strong dependence), θ = 0.9 (Mild
dependence)

2. Asymmetric logistic copula
(a) θ= 0.1, α= 0.2, β = 0.8 (Strong dependence and asymmetric Pickands function with α<

β)
(b) θ= 0.1, α= 0.8, β = 0.2 (Strong dependence and asymmetric Pickands function with α>

β)
(c) θ= 0.1, α= 0.5, β = 0.5 (Strong dependence and asymmetric Pickands function with α=

β)
(d) θ= 0.9, α= 0.2, β = 0.8 (Mild dependence and asymmetric Pickands function with α< β)
(e) θ= 0.9, α= 0.8, β = 0.2 (Mild dependence and asymmetric Pickands function with α> β)
(f) θ= 0.9, α= 0.5, β = 0.5 (Mild dependence and asymmetric Pickands function with α= β)

3. Negative logistic copula with the dependence parameters θ = 10 (Strong dependence), θ = 1
(Mild dependence)

4. Asymmetric negative logistic copula
(a) θ= 10, α= 0.2, β = 0.8 (Strong dependence and asymmetric Pickands function with α< β)
(b) θ = 10, α= 0.8, β = 0.2 (Strong dependence and asymmetric Pickands function with α >

β)
(c) θ= 10, α= 0.5, β = 0.5 (Strong dependence and asymmetric Pickands function with α= β)
(d) θ= 1, α= 0.2, β = 0.8 (Mild dependence and asymmetric Pickands function with α< β)
(e) θ= 1, α= 0.8, β = 0.2 (Mild dependence and asymmetric Pickands function with α> β)
(f) θ= 1, α= 0.5, β = 0.5 (Mild dependence and asymmetric Pickands function with α> β)
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Table 2. Mean of the ranks for different EV copulas with n= 500

True Copula rL rAL rHR rNL rANL

L(θ= 0.1) 1.360 2.784 1.973 3.934 4.949

L(θ= 0.9) 2.0458 4.0917 2.8990 2.2385 3.7247

AL(θ= 0.1, α= 0.2, β = 0.8) 2.2248 4.5574 2.2129 1.5741 4.4306

AL(θ= 0.1, α= 0.8, β = 0.2) 2.2299 4.5328 2.1934 1.5839 4.4598

AL(θ= 0.1, α= 0.5, β = 0.5) 2.509 1.771 4.800 3.567 2.353

AL(θ= 0.9, α= 0.2, β = 0.8) 2.4117 3.3176 3.1529 2.7058 3.4117

AL(θ= 0.9, α= 0.8, β = 0.2) 2.5022 3.3452 3.1748 2.6905 3.2869

AL(θ= 0.9, α= 0.5, β = 0.5) 3.6692 2.4307 2.9000 2.6230 3.3769

NL(θ= 10) 3.9509 2.6666 2.3039 1.0980 4.9803

NL(θ= 1) 2.3617 4.0265 2.6648 1.8510 4.0957

ANL(θ= 1, α= 0.2, β = 0.8) 1.820 4.454 2.508 1.857 4.361

ANL(θ= 1, α= 0.8, β = 0.2) 1.9 4.3 2.4 1.7 4.7

ANL(θ= 1, α= 0.5, β = 0.5) 1.6170 3.4361 4.0212 2.6276 3.2978

ANL(θ= 10, α= 0.2, β = 0.8) 2.1415 4.5752 4.5752 1.6106 4.4247

ANL(θ= 10, α= 0.8, β = 0.2) 2.2788 4.5576 2.1538 1.5769 4.4326
ANL(θ= 10, α= 0.5, β = 0.5) 2.462 2.475 4.797 3.544 1.722

HR(θ= 0.1) 3.2142 3.0357 2.9285 3.0000 2.8214

HR(θ= 0.9) 2.6736 4.621 1.7568 1.9847 3.8736

5. Húsler-Reiss copula with dependence parameters θ= 0.9 (Strong dependence), θ= 0.1 (Mild
dependence)

Tables 1-2 represent rL, rAL, rHR, rNL and rANL which are obtained from 1000 Monte Carlo
samples with 250 and 500 sizes, respectively. From these tables, if the True EV copula possesses
to symmetric dependence structure, graphical method performs well. As an example, when the
data is generated from Logistic copula with θ = 0.1 and n= 250, smallest value of ri, i= 1, . . . ,5
is rL = 1.4713 among five EV copulas. This means that the points which correspond to Pickands
dependence function of Logistic copula (AL(.)) in 2D graph is the closest to points correspond
to An in 2D graph. Also, we can conclude from the Table 1-2, if the true EV copula possesses
to asymmetric dependence structure, the graphical method does not perform well except for EV
copula with equal asymmetry parameters. Also, mean of the ranks is decreased when the sample
of size is increased.
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Figure 2. Graphical representation based on the two dimensional NMDS with data generated by Logistic, Husler-
Reiss and Negative logistic copula
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(b) Asymmetric logistic Copula with
θ= 0.9, α= 0.2, β = 0.8
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(c) Asymmetric logistic Copula with
θ= 0.1, α= 0.8, β = 0.2

−0.00010 −0.00005 0.00000 0.00005 0.00010 0.00015 0.00020

−
6

e
−

0
9

−
4

e
−

0
9

−
2

e
−

0
9

0
e

+
0

0
2

e
−

0
9

4
e

−
0

9

stress=2.531073e−14

Dimension 1

D
im

e
n

s
io

n
 2

E
L AL

HR

NL

ANL

(d) Asymmetric logistic Copula with
θ= 0.9, α= 0.8, β = 0.2
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(e) Asymmetric logistic Copula with
θ= 0.1, α= 0.5, β = 0.5
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(f) Asymmetric logistic Copula with
θ= 0.9, α= 0.5, β = 0.5

Figure 3. Graphical representation based on the two dimensional NMDS with the data generated by the asymmetric
logistic copula
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(a) Asymmetric negative logistic Cop-
ula with θ= 1, α= 0.2, β = 0.8
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(b) Asymmetric negative logistic Cop-
ula with θ= 10, α= 0.2, β = 0.8
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(c) Asymmetric negative logistic Cop-
ula with θ= 1, α= 0.8, β = 0.2
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(d) Asymmetric negative logistic Cop-
ula with θ= 10, α= 0.8, β = 0.2
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(e) Asymmetric negative logistic Cop-
ula with θ= 1, α= 0.5, β = 0.5
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(f) Asymmetric negative logistic Cop-
ula with θ= 10, α= 0.5, β = 0.5

Figure 4. Graphical representation based on the two dimensional NMDS with the data generated by the asymmetric
negative logistic copula
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4. Real data example
To demonstrate the graphical method for the selection of the best-fitted EV copulas, in this

section, we fit the EV copulas to the Danube data set which is available in the R package copula.
According to this package, the Danube dataset contains ranks of base of observations from the
Global River Discharge project of the Oak Ridge National Laboratory Distributed Active Archive
Centre (ORNL DAAC), a NASA data centre. The measurements are the monthly average of rate
for two stations situated at Scharding (Austria) on the Inn River and Nagymaros (Hungary) on
the Danube.

Table 3. Estimation of dependence and asymmetry parameters for five EV copulas

EV Copula CvM α β θ

L 8.233616× 10−5 — — 0.4872

AL 0.000333 0.8582 0.9992 0.4445

NL 9.257569× 10−5 — — 1.3332

ANL 0.001962 0.9158 0.9995 1.0034

HR 0.000152 — — 1.7981

The scatter plot of the pseudo-observations of the Danube data set is displayed in Figure 5.
From Figure 5, symmetrical dependence structures are observed. Also, the Danube data set has a
heavy right tail dependence structure.
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Figure 5. Scatter plot of danube dataset
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(b) Graphical representation based on two dimensional
NMDS for danube dataset

Figure 6. Fiiting results for danube dataset

In Figure 6(a), the parametric and non-parametric estimation of the Pickands dependence func-
tions is displayed. From this figure, we can observe that the Logistic copula’s Pickands dependence
the function is much closer to the empirical Pickands dependence function for the Danube dataset.
Also Table 1 represents the CvM distances between An,AL, . . . ,AHR, and estimation of dependence
parameters for five EV copulas. On the other hand, Figure 6(b) displays the two-dimensional repre-
sentation of the EV copula test spaces with the Danube dataset based the on NMDS method. When
Figure 6(b) is examined; it can be concluded that the Logistic copulas are the most appropriate
EV copulas for the Danube data set.

5. Conclusions
In this study, we proposed a graphical method based on NMDS to select the best-fitted EV

copulas for underlying data. Also, we discussed some advantages of the proposed methods. If
practitioners are interested in modelling for extreme situations which consist of a big data size,
the graphical method can be useful to select the EV copulas. We performed the graphical method
to see how accurately it works for the simulated data set from EV copulas. From the simulation
study, when the dependence structure is symmetric, the procedure is useful to identify the true EV
copula which is data generated. On the other hand when the data has asymmetric dependence the
structure of the graphical procedure fails except for with the Asymmetric EV copula with equal
asymmetry parameters. This problem can be overcome by using the Bernstein polynomial based on
the Pickands dependence function estimator in the procedure of the graphical method. The main
advantage of Bernstein polynomials is their flexibility against data that has a complex structure.
So, Bernstein polynomials can take on an extremely wider range of shapes than simple estimators.
Also, to demonstrate the graphical method for the selection of the best-fitted EV copulas, we fitted
the EV copulas to the real data set. We have shown that the graphical procedure can lead to
acceptable results.
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