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Abstract 
Changes in growth conditions of ZnO thin films produced in the presence of different oxygen, changes in important 

properties such as crystal, surface properties, and absorption properties of the films were examined and reported. It is 
inferred from the XRD experimental results that the oxygen we applied to the films plays a role in the crystal structure 

changes of the films (grain size, strain value, dislocation density, etc.). The highest value of RMS roughness of the film 
is 8.58 nm and the lowest value of RMS roughness of the film is 1.08 nm, which corresponds to non-flow and 1 sccm 

flow film, respectively. AFM proved that films with nano-structured, tightly packed, grain properties were obtained in 
the produced films. Inference from UV analysis made is that the oxygen applied to the film caused small changes in the 

optical band gap values (in the range of about 3.30-3.32 eV). Except for 3 sccm oxygen state, all the films obtained were 
tightly packed, granulated and almost homogeneous and the nano property was clearly seen. All the results obtained 

show that the oxygen applied in the ZnO film process causes some changes in the physical properties of the film and 

this has an effect on the film quality and it is seen that these results can contribute to the production of ZnO thin film-
based Light Emitting Diodes (LEDs). 
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Çeşitli oksijen varlığında üretilen ZnO ince filmin yapısal kristal, optik, 

topografik özellikleri 
 

 
Öz 

Farklı oksijen varlığında üretilen ZnO ince filmlerin büyüme koşullarındaki değişiklikler, filmlerin kristal, yüzey 
özellikleri ve soğurma özellikleri gibi önemli özellikleri üzerindeki değişiklikler incelenmiş ve raporlanmıştır. XRD 

deneysel sonuçlarından, filmlere uyguladığımız oksijenin filmlerin kristal yapı değişikliklerinde (tane boyutu, gerinim 
değeri, dislokasyon yoğunluğu vb.) rol oynadığı anlaşılmaktadır. Filmin en yüksek RMS pürüzlülüğü değeri 8.58 nm'dir 

ve filmin en düşük RMS pürüzlülüğü değeri 1.08 nm'dir, bu değerler sırasıyla akışsız ve 1 sccm akışlı filme karşılık 
gelir. AFM, üretilen filmlerde nano yapılı, sıkı paketlenmiş, tanecik özellikli filmler elde edildiğini kanıtladı. Filmlerin 

UV analizinden, uygulanan oksijenin filmlerin optik bant aralığı enerjisinde (yaklaşık 3.30-3.32 eV aralığında) küçük 
değişikliklere sebep olduğu gözlenmiştir. 3 sccm oksijen durumu dışında, elde edilen tüm filmler sıkıca paketlenmiş, 

tanecik yapılı ve neredeyse homojen olan ve nano özelliği açıkça görüldü. Elde edilen tüm sonuçlar, ZnO film işleminde 
uygulanan oksijenin filmin fiziksel özelliklerinde bir takım değişikliklere neden olduğunu ve bunun film kalitesine etki 

ettiğini göstermektedir ve bu sonuçların ZnO ince film tabanlı ışık yayan diyot cihazlarının (LED) üretimine katkı 
sağlayabileceği görülmüştür.  

 
Anahtar kelimeler: ZnO, Oksijen, SEM, Nano özellik, Dislokasyon yoğunuğu. 

 
1. Introduction 
 

The ZnO film attracts the attention of many researchers due to its use in high-tech industrial products 

including piezoelectric nano-generators [1], Uv-photodetector [2], polymer-solar cell [3], memory 
device [4]. The features that make this material the reason for preference are given as follows; such as 

the bonding energy at room temperature 60 meV, wide direct optical bandgap energy (about 3.30 eV), 

high thermal stability, high electrochemical stability, low cost, non-toxicity, abundance in nature [5-8]. 
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Therefore, ZnO thin film has become very good candidate for optoelectronic device application thanks 

to above features. The researcher [9] was done a study about indium impacts on ZnO film’s physical 

characterization. Also, the importance of UHV process to stimulate incorporation into the ZnO matrix 
has been demonstrated. Measurements and analyzes of AES, XPS, UPS and PL were made for the 

examination of the thin film. From XPS analysis, core-level peaks of Zn 2s, Zn 2p, In 3p, O 1s, In 3d, 

C 1s, Zn 3s, Zn 3p, Zn 3d, and Auger transition peaks Zn LMM, In MNN, and O KLL were found in 
this study. Also, it was found carbon is present on the surfaces as a contamination layer confirmed by 

its high at % (47.98% for UZO and 52.02% for IZO). PL analysis showed that incorporation of indium 

into the clean ZnO matrix increases the level of Zni and VZn defects inducing a broadening in the NBE 

emission. Other report [10] investigates Bi+3 effects on ZnO film’s photoelectrical parameters. In this 
study, how photo-current generation mechanism of Bi +3-doped the film work was investigated. Good 

photoelectric parameter values were obtained at different doping densities. They found that 1% Bi3+ 

doped BZO thin film has better photoelectric properties. Under the simulated 1.5 G sunlight, the 
photocurrent density of 1% Bi3+ doped BZO thin film was sharply increased and then reached to 2.5 

μA/cm2 constant states. In addition, it was obtained that for BZO thin films; the absorption at around 

400 nm can be distinguished compared with pure ZnO film. It was achieved that Bi3+ doped BZO thin 
films showed that its charge transfer resistance was significantly less than that of pure ZnO thin film. In 

this project, the variation of detailed physical parameters of ZnO films produced using radio-frequency-

magnetron sputter technique in the presence of different oxygen was investigated. SEM, AFM, XRD, 

UV measurements of advanced characterization techniques were taken for different oxygen values and 
analyzed. The unique aspect of the study is that besides the application of oxygen to the film, the change 

in the physical parameters of the film has not been studied; the results obtained may contribute to the 

production of optoelectronic devices.  

 
2. Material and Methods 

 

2.1. Film Processing  

 

The sputtering technique used to grow films can be summarized briefly as directing energetic ions 
towards the target in the plasma environment. The way this technique works can be given as follows; 

the ions strike the target atoms, the atoms scatter from the surface of the target, and these scattered atoms 

move towards the substrate surface and settle there. There are basically two types of sputtering modes 

known as DC and RF sputtering. Conductive materials are studied in DC mode, non-conductive 
materials are studied in RF mode. In addition, an important point is that thanks to the magnet used in 

RF magnetron sputtering, the material is ionized better in the electric and magnetic field and turns into 

plasma form. RF magnetron sputter was executed in the DAYTAM research center. Target used ZnO 
(purity: 4N 99.9999%, thickness: 2 * 1.25 inc), purchased from ACI company. The substrates p-Si (100) 

orientation came from sigma chemical company. First of all, the substrates were cleaned by RCA-1 and 

RCA-2 methods [11]. Target and substrate were placed in their proper places in the system. Then the 
system was taken to the initial pressure. Then, 60 sccm argon working gas was given to the system. 

Plasma was formed by giving power. In the first stage, pre-sputtering was done for 6 minutes so that the 

surface was cleaned. The film processing parameters applied are listed in Table 1. Film processing was 

done DAYTAM in the clean room. While each film was being grown, non-flow, 1, 2, 3, 4 sccm oxygen 
was applied separately. Thicknesses were measured with the help of P-7 KLA tensor after films and it 

was found to be approximately 120 nm (with 3 nm error).  

 
Table 1. Film processing parameters 

Oxygen 

(sccm) 

RF Power 

(W) 

Base Pressure 

(kPa) 

Working Pressure 

(kPa) 

  Growth Rate 

  (Ao/s) 

Substrate 
Temperature 

(Co) 

Non-flow   60 0.12 X 10-6 0.81 X 10-3 0.3 300 

1 60 0.23 X 10-6 0.85 X 10-3 0.3 300 

2 60 1.17 X 10-6 0.89 X 10-3 0.2 300 

3 60 1.16 X 10-6 0.82 X 10-3 0.3 300 

4 60 0.37 X 10-6 0.86 X 10-3 0.2 300 
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2.1. Film Characterizations 

 

The characterization of the films was completed with SEM, AFM, XRD and absorption measurements 
(UV) in the measurement laboratory within DAYTAM. SEM measurements were carried out to 

investigate the surface properties of the films. Before SEM measurement, films were coated with 4 nm 

gold to allow measurement. SEM (Zeiss-300) measurements were taken in the secondary electron mode 
and taken at 80.84 KX, 90.00 KX, 114.11 KX, 90.89 KX, 100.00 KX magnifications. XRD 

measurement was used to examine the crystal and detailed structure parameters of the films. The 

panalytical D-8 XRD system with CuKα=1.5406 A° was used for diffraction measurement. The 

measurement was taken between 10o and 80o degrees and at room temperature, depending on the 
intensity-2ϴ.  Topographic-surface properties (roughness etc.) of the films were investigated with the 

help of AFM. 500II-AFM system with tapping mode was executed for topography analysis of material. 

Also, AFM measurements were taken in both 2 dimensions and 3 dimensions. The absorption properties 
of films and related parameters such as optical band gap energy were studied by UV absorption 

measurement. 1050-UV lambda was operated for absorption study at room temperature and 200-1100 

nm wavelength.  

 

3. Results and Discussions  

 

3.1. Diffraction Analysis 

 

Figure 1 clearly shows us the XRD diffraction behavior of thin films produced. As seen from this figure, 

35.56°, 35.56°, 35.40°, 35.58°, 35.58° peaks were obtained in the presence of 0, 1, 2, 3, 4 sccm oxygen. 
These peaks correspond to the phase of the ZnO material (002) when viewed from the open 

crystallography system (with no: 10 11 258 COD) [12]. In addition, 64.35°, 64.35°, 64.18°, 64.37°
, 64.37° peaks were also achieved. These peaks correspond to the phase of the ZnO material (103) when 

viewed from the open crystallography system [12]. The very intensity peak is the substrate peak, which 
is p-Si. The slight shifts in the peaks we obtain indicate the stress caused by film processing mistakes 

(such as impurities) and therefore in the film. The grain size of the films in varying oxygen flow can be 

calculated by means of the Debye Scherer formula [13]; 
 

Z =   t. λ
v. Cosθ⁄                                                                                                                  (1) 

 
t is the constant, λ  is X-ray wavelength, v is full width of half maximum value, θ infers angle of 
diffraction. Formula below gives us the dislocation density of the films; 

 

& = 1/Z2                                                                                                                               (2) 

 
The strain values in the internal structure of the films were calculated using the following formula; 

 

ε =   v. Cosθ
4⁄                                                                                                                      (3) 

 
 It has been seen from the analysis that the grain size decreases from the no-flow film to 1 sccm 
flow film, while the strain values and dislocation density increase. But; the grain size increases from the 

1 sccm film to 2 sccm flow film, while the strain values and dislocation density decrease.  Furthermore, 

the grain size decreases from the 2 sccm film to 3 sccm flow film, while the strain values and dislocation 
density increase (Table 2). On the other hand; the grain size increases from the 3 sccm film to 4 sccm 

flow film, while the strain values and dislocation density decrease. The decrease/increase in grain size 

in the polycrystalline film in certain oxygen exchange may be due to the different oxygen resulting in 
an increase/decrease in the surface energy of the film and this is supported by the literature [14]. 

Herewith; it is inferred from the experimental results that the oxygen we applied to the films plays a role 

in the crystal structure changes of the films.  
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Figure 1. Diffraction graph of materials 

 

 
Table 2. Crystal-structure properties of thin films produced 

Oxygen 
Flow 

(sccm) 

XRD 
Phase 

FWHM 
(v) 

(o) 

2θ (Observed) 
(o) 

2θ  
(Theory) 

(o) 

Dislocation 
density (&) 

(line.m-2) 

Strain 

values (𝜀)  
(line-2.m-4) 

Grain 
size 

(Z)(nm) 

Non-flow (002) 0.69 35.56 34.46 0.00627 0.164 12.62 

Non-flow (103) 0.28 64.35 63.70 0.00081 0.059 35.00 

1 (002) 0.71 35.56 34.46 0.00664 0.169 12.27 

1 (103) 0.31 64.35 63.70 0.00100 0.065 31.61 

2 (002) 0.68 35.40 34.46 0.00610 0.161 12.80 

2 (103) 0.29 64.18 63.70 0.00087 0.061 33.76 

3 (002) 0.72 35.58 34.46 0.00683 0.171 12.10 

3 (103) 0.32 64.37 63.70 0.00106 0.067 30.63 

4 (002) 0.75 35.58 34.46 0.00741 0.178 11.61 

4 (103) 0.33 64.37 63.70 0.00113 0.069 29.70 

 
3.2. Surface Topographical Analysis 

 

Figure 2 gives the atomic force microscope (AFM) two and three dimensional pictures of the produced 

films. Figure 2 showed that highest the average slope was obtained as 29.03°  in the non-flow film. But, 

lowest the average slope was obtained as 7.26°  in the 1 sccm flow film. The film with the highest 

maximum depth is a non-flow film with 20.16 nm. The film with the lowest maximum depth is a 1 sccm 
flow film with 3.56 nm. The maximum height value of the film of 16.91 nm corresponds to a 2 sccm 

flow film. The lowest one of the film of 3.11 nm corresponds to a 1 sccm flow film. The highest RMS 

roughness value is 8.58 nm, the lowest RMS roughness value is 1.08 nm corresponding to non-flow and 
1 sccm flow film respectively (see Figure 3). All values measured in the atomic force microscope can 

be found in Table 3. On the one hand, increasing from 1 sccm to 2 sccm and 3 sccm to 4 sccm increased 

the roughness to the film, resulting in a rougher surface. On the other hand, increasing from non-flow 

film to 1 sccm flow film and from 2 sccm to 3 sccm flow decreased the surface roughness and allowed 
us to obtain a smoother surface. In this study, ZnO material roughness value close to our values was 

obtained in the literature [15]. AFM proved that films with nano-structured, tightly packed, grain 

properties were obtained in the produced films. To come to the conclusion, oxygen application to films 
has changed the topography and surface properties of the films. 
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Figure 2. 2D-3D AFM pictures of materials at a) non-flow b) 1 c) 2 d) 3 e) 4 sccm oxygen 

 

 
Figure 3. RMS Roughness and Maximum valley of materials  

 

Table 3. Film processing parameters 

Oxygen 

(sccm) 

Average 

Roughness  

(Ra)(nm) 

Maximum peak 

height (Rp)(nm) 

Average 

absolute slope  

(𝜟a)(o) 

Maximum 

valley 

Depth (Rv)(nm) 

Root Mean Square 

Roughness 

(Rq)(nm) 

Non flow 7.51 8.98 29.03 20.16 8.58 

1 0.87 3.11 7.26 3.56 1.08 

2 4.14 16.91 11.27 9.57 5.45 

3 1.56 8.43 13.01 4.00 2.06 

4 2.11 7.31 12.64 6.72 2.68 
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3.3. Scanning Electron Microscopy Analysis 

 

When the SEM images of the films shown in Figure 4 are examined, it is clear that the almost 
homogeneous, granular, tightly packed structure of the films continue from the non-flow state to 1 sccm 

and from 1 sccm to 2 sccm. However, dislocations are noticeable on the surface of the films when the 

oxygen flow in the films is from 2 sccm to 3 sccm. These dislocations may cause cracks on the surface 
of the film and are therefore undesirable for our films. Afterwards, when the oxygen flow is from 3 sccm 

to 4 sccm, agglomeration occurs on the surface. Except for 3 sccm oxygen state, all the films obtained 

were tightly packed, granulated and almost homogeneous and the nano property was clearly seen. 

Similar SEM images in previous studies [16, 17] support our study. 
 

 

 
Figure 4. Pictures of SEM for materials at a) non-flow b) 1 c) 2 d) 3 e) 4 sccm oxygen 
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3.4. Absorption/UV Analysis 

 

Figure 5 shows a plot of the corresponding photon energy to (αhν)2. If the following Tauc formula (4) 
is used in this graph, the value that cuts zero on the y-axis by taking n = 1/2 gives us the direct-allowed 

optical band gap energy of the films. Tauc formula is given; 

 

(αhν)n = L(hν − Eg)                                                                                                  (4) 

 
Where n shows band gap type, L shows the constant, hν shows photon energy, and Eg shows optical 

band gap energy of our materials. Material’s Eg values were obtained as 3.3111, 3.3042, 3.3018, 3.3189, 

3.3220 eV in the presence of no-flow, 1, 2, 3, 4 sccm oxygen. UV analysis proved optical band gap 
energy of films decreased when the flow was changed from non-flow film to the 1 sccm oxygen flow 

film and 1 sccm oxygen flow film to the 2 sccm oxygen flow film. Yet, it was observed that optical band 

gap energy value increased when the flow was changed from the 2 sccm oxygen film to the 3 sccm 

oxygen flow film and 3 sccm oxygen flow film to the 4 sccm oxygen flow film (Table 4). The literature 
study [18] supported us in this sense by finding a value close to optical band gap energy of ZnO. 

Inference from analysis made is that the oxygen applied to the film caused small changes in the optical 

band gap values.  

 
Figure 5. Absorption graph of materials at a) non-flow b) 1 c) 2 d) 3 e) 4 sccm oxygen 

 

 

Table 4. Film’s optical band gap energy values 

Oxygen applied (sccm) Optical band gap energy (eV) 

Non flow 3.3111 

1 3.3042 

2 3.3018 
3 3.3189 

4 3.3220 
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4. Conclusions  

 

Changes in growth conditions of ZnO thin films produced in the presence of different oxygen, changes 
in important properties such as crystal, surface properties, and absorption properties of the films were 

examined and reported. The phases of the ZnO material (002) and (103) were achieved from XRD study, 

proving ZnO has polycrystalline nature. It has been seen from the analysis that the grain size decreases 
from the non-flow film to 1 sccm flow film, while the strain values and dislocation density increase. 

But; the grain size increases from the 1 sccm film to 2 sccm flow film, while the strain values and 

dislocation density decrease.  Herewith; it is inferred from the experimental results that the oxygen we 

applied to the films plays a role in the crystal structure changes of the films. It is clear that the almost 
homogeneous, granular, tightly packed structure of the films continue from the non-flow state to 1 sccm 

and from 1 sccm to 2 sccm. However, dislocations are noticeable on the surface of the films when the 

oxygen flow in the films is from 2 sccm to 3 sccm. These dislocations may cause cracks on the surface 
of the film and are therefore undesirable for our films. Material’s Eg values were obtained as 3.3111, 

3.3042, 3.3018, 3.3189, 3.3220 eV in the presence of non-flow, 1, 2, 3, 4 sccm oxygen, pointing out 

small changes in Eg values with applying oxygen. Highest the average slope was obtained as 29.03°in 

the non-flow film. But, lowest the average slope was obtained as 7.26°in the 1 sccm flow film. On the 
one hand, increasing from 1 sccm to 2 sccm and 3 sccm to 4 sccm increased the roughness to the film, 

resulting in a rougher surface. On the other hand, increasing from non-flow film to 1 sccm flow film and 

from 2 sccm to 3 sccm flow decreased the surface roughness and allowed us to obtain a smoother surface. 
All the results achieved show that the oxygen applied in the ZnO film process causes some changes in 

the physical properties of the film and this has an effect on the film quality and it is seen that these 

results can contribute to the production of ZnO thin film-based Light Emitting Diodes (LEDs). 
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