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Abstract 

We address the four-machine flowshop scheduling problem with the objective of minimizing makespan with uncertain processing 

times The problem was investigated in the literature (RAIRO Operations Research 54, 529-553) and different algorithms were 

proposed. In this paper, we propose a new algorithm for the problem. The new proposed algorithm is compared with the best existing 

algorithm in the literature by using extensive computational experiments. Computational experiments show that the new proposed 

algorithm performs much better than the best existing algorithm in the literature in terms of error while both have the same 

computational time. Specifically, the new proposed algorithm reduces the error of the best existing algorithm in the literature about 

40%. This result has been confirmed by using hypotheses testing with a significance level of 0.01. 
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1. Introduction 

About seventy percent of the real life of scheduling problems fall in the category of flowshops, Fuchigami and Rangel (2018). There 

are several real life flowshop scheduling problems with four stages, i.e., with four machines, e.g., Stefansson (2011). In the current 

paper, we study the flowshop scheduling problem (having four-machine) with makespan performance measure, which helps in 

decreasing production costs. 

 

One of the assumptions made in the literature is that processing times of jobs are deterministic. On the other hand, often real world 

manufacturing environments are most of the times subject to an extensive uncertainties, Gonzalez-Neira et al. (2017), Mahjoub et al. 

(2011). Therefore, the assumption of deterministic processing times is not realistic for all flowshop environments. Moreover, assuming 

processing times follow certain distributions is not legitimate for some flowshop scheduling environments, e.g., Kouvelis and Yu 

(1997). Therefore, processing times need to be considered as uncertain.   

 

In an uncertain environment, job processing times are considered to be random variables but their probability distributions are 

unidentified. If tj,k indicates job j’s processing time (j=1,2, …,n) on machine k (k =1,2, …,m}). Similarly, if LBtj shows the lower bound 

and UBtj,k shows the upper bound of tj,k. Then, tj,k satisfies LBtj,k≤tj,k≤UBtj,k.  

 

Allahverdi and Sotskov (2003) and Allahverdi and Aydilek (2010a) investigated the problem of F2|LBtj,k≤ tj,k≤UBtj,k|Cmax. Allahverdi 

and Aydilek (2010a) presented several algorithms and Allahverdi and Sotskov (2003) presented some dominance relations for the 

problem. Moreover, Allahverdi and Aydilek (2010b) provided different algorithms for the problem of F2|LBtj,k≤ tj,k≤UBtj,k|Lmax. Also, 

Aydilek and Allahverdi (2010) provided several heuristics while Sotskov et al. (2004) presented several dominance relations for the 

problem of F2|LBtj,k≤tj,k≤UBtj,k|∑Ci. On the other hand, the problem of F3|LBtj,k≤tj,k≤UBtj,k|∑Ci was investigated by Sotskov et al. (2004) 

where they provided few dominance relations for problem. For some other uncertain scheduling environments, the problem was 

investigated as well in the literature, e.g., Allahverdi and Allahverdi (2018), Aydilek et al. (2013, 2015, 2017), Lai and Sotskov (1999), 

Lai et al. (1997). 

 

The F4|prmu, Ltj,k≤ tj,k≤Utj,k|Cmax problem was recently investigated by Allahverdi and Allahverdi (2020). They established some 

dominance relations and presented different algorithms. They indicated that one of their proposed algorithms performs as the best. In 

the current paper, we propose a new algorithm and indicated that the new algorithm performs better than the best algorithm of 

Allahverdi and Allahverdi (2020). 

 

The proposed new algorithm is explained in the succeeding section. Next, computational experiments are given in the third section. 

Finally, conclusions along with some possible extensions to the problem are provided in Section 4.     

 

2. Proposed New Algorithm 

The investigated problem was first studied by Allahverdi and Allahverdi (2020). They presented 12 algorithms and compared the 12 

algorithms with each other. They showed that one of the algorithms, called Algorithm A7, performed as the best algorithm. We 

represent their Algorithm A7 by OA. In this section, we propose a new algorithm, which we call it New Algorithm (NA). The steps of 

NA are given below.  

NA Statements  

The LBti,k and UBti,k values are given where i denotes the number of jobs and k denotes the number of machine   

For for i=1,..,n let 

pfmi=l1((LBti,1+UBti,1)/2)+l2((LBti,2+UBti,2)/2) 

psmi= l3((LBti,3+UBti,3)/2)+ l4((LBti,4+UBti,2)/2)  

End For  

Let su and sa denote unassigned and assigned sequences where initially, su={1, 2, …, n} and sa=ϕ 

Let poz1=1, and poz2=poz3=zero 

While poz3<n,  

Let pfmm=minimum{pfmi} and psmm=minimum{psmi} where isu 

If  pfmm≤ psmm, put that job in the sequence sa, in position poz1  

and let poz1=poz1+1 

Else put that job in the sequence sa, in position n-poz2 

and let poz2=poz2+1 

Delete the job from the sequence su  

Let poz3=poz3+1 

End While 

 

Assign the only job remaining in su to the last remaining position in sa. The sequence sa is the solution of the algorithm NA.  
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The values of l1, l2, l3, and l4, used to compute pfmi and psmi in the algorithm NA, are investigated by fine-tuning their values. The values 

from 0 to 1 with the increments of 0.1 were investigated for each of l1, l2, l3, and l4, It was found that the values of l1=0.8, l2=0.2,  l3=0.2 

and l4=0.8 were the best for the algorithm. Hence, these values are used for the NA algorithm in the computational section.    

 

3. Algorithm Evaluations 

Our newly proposed algorithm NA and the best existing algorithm OA are compared in this section. For the computational experiments, 

we use the same parameters that were used in evaluating algorithm OA for a fair comparison. Aydilek et al. (2017) used similar 

experimental parameters that we use in this paper.    

UBti,k’s are generated from a uniform distributions U(D+1, 100). On the other hand, LBti,k’s are taken from a uniform distribution U(1, 

UBti,k – D) where D is set at the values of 40, 30, 20, or 10. D indicates the difference between bounds (lower and upper) on processing 

times. These four values of gaps were also used in the evaluation of OA.  Once the lower bounds and upper bounds  are generated, 

instances of processing times are required to be generated for computational purposes. To generate instances of processing times only 

using a single distribution is misleading since processing times are uncertain. Therefore, they are generated using normal, positive 

linear, uniform, and negative linear distributions. The uniform and normal distributions are representative for symmetric distributions 

while the other two distributions are representative for skewed distributions.   

 

We consider six values for n as 300, 400, 500, 600, 700, 800.  Furthermore, we consider four values of 40, 30, 20, and 10 for D. 

Moreover, there are four considered distributions. Hence, we have in total 96 (4*4*6) combinations. 1000 replications were generated 

for each combination, which resulted in a total of 96,000 generated problems.   

 

The algorithms OA and NA were compared by both performance measures of Error (average error) and Std (standard deviation). The 

error was expressed as (algorithm’s makespan – minimum makespan) / minimum makespan. The computational results are provided 

in Table 1-4, for uniform, normal, negative linear, and positive linear distribuions. In the tables, the first column indicates the number 

of jobs, the second column denotes the difference between the upper and lower bounds of processing time, the third and fourth columns 

show the errors of OA and NA, respectively. The fifth and sixth columns represent the standard deviations of the OA and NA. Finally, 

the last column shows the percentage improvement in error of NA over OA.  

 

The summarized computational results are presented in Figure 1-4. It is clear from the figures that the new algorithm NA performs 

much better than the existing algorithm OA. The overall percentage improvement of the proposed algorithm NA over the existing 

algorithm OA is 38.61 %. It is clear from the figures that the algorithm’s performance does not alter much either with the number of 

jobs or the difference of the upper and lower bounds of job processing times. Figure 5 summarizes the results in terms of the 

distributions and delta while Figure 6 summarizes the results in terms of the distributions and job numbers.  

The new algorithm NA and the existing algorithm in the literature OA were also statistically compared by utilizing a two-sample t test. 

The next hypotheses were performed to compare the performances of the both algorithms OA and NA.  

 

 H0: (NA) = (OA) 

 H1: (NA) < (OA) 

 
where (Algorithm-h) symbolizes Algorithm-h’s average error. The null hypothesis H0 was rejected at a significance level () of 0.01 

for all n and  combinations.  

 

Table 1. Experimental results - Normal Distribution 

n D Error of OA Error of NA Std of OA Std of NA % Improvement 

300 10 0.1048 0.0639 0.0021 0.0015 39.0115 

300 20 0.1000 0.0596 0.0020 0.0014 40.4189 

300 30 0.0757 0.0469 0.0016 0.0011 38.0926 

300 40 0.0765 0.0464 0.0016 0.0011 39.2996 

       

400 10 0.0855 0.0487 0.0017 0.0011 43.0434 

400 20 0.0717 0.0421 0.0015 0.0010 41.2755 

400 30 0.0667 0.0398 0.0013 0.0010 40.2993 

400 40 0.0605 0.0397 0.0011 0.0009 34.3207 
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Table 1 (cont). Experimental results - Normal Distribution 

n D Error of OA Error of NA Std of OA Std of NA % Improvement 

500 10 0.0711 0.0474 0.0016 0.0011 33.3315 

500 20 0.0640 0.0330 0.0013 0.0008 48.3936 

500 30 0.0624 0.0340 0.0012 0.0008 45.4520 

500 40 0.0538 0.0330 0.0011 0.0007 38.6690 

       

600 10 0.0748 0.0386 0.0015 0.0009 48.3881 

600 20 0.0633 0.0317 0.0012 0.0008 49.9877 

600 30 0.0532 0.0312 0.0011 0.0008 41.4104 

600 40 0.0486 0.0290 0.0010 0.0007 40.3749 

       

700 10 0.0592 0.0374 0.0013 0.0008 36.8286 

700 20 0.0504 0.0322 0.0010 0.0007 36.1635 

700 30 0.0480 0.0286 0.0010 0.0007 40.3868 

700 40 0.0485 0.0294 0.0010 0.0007 39.3579 

       

800 10 0.0557 0.0293 0.0012 0.0007 47.3078 

800 20 0.0512 0.0275 0.0011 0.0007 46.3253 

800 30 0.0447 0.0235 0.0009 0.0006 47.4913 

800 40 0.0423 0.0225 0.0008 0.0005 46.7650 

 

Table 2. Experimental results - Uniform Distribution 

n D Error of OA Error of NA Std of OA Std of NA % Improvement 

300 10 0.1113 0.0683 0.0023 0.0015 38.5890 

300 20 0.1012 0.0863 0.0021 0.0020 14.7158 

300 30 0.0986 0.0826 0.0020 0.0018 16.1901 

300 40 0.1049 0.0953 0.0019 0.0020 9.1123 

       

400 10 0.0883 0.0544 0.0017 0.0013 38.4200 

400 20 0.0913 0.0516 0.0019 0.0011 43.5368 

400 30 0.0805 0.0545 0.0016 0.0012 32.2359 

400 40 0.0909 0.0661 0.0016 0.0014 27.2762 

       

500 10 0.0831 0.0439 0.0017 0.0011 47.2228 

500 20 0.0757 0.0470 0.0015 0.0011 37.9654 

500 30 0.0727 0.0455 0.0015 0.0010 37.3814 

500 40 0.0753 0.0592 0.0014 0.0012 21.3773 

       

600 10 0.0727 0.0416 0.0014 0.0010 42.8160 

600 20 0.0671 0.0412 0.0013 0.0010 38.6796 

600 30 0.0646 0.0474 0.0013 0.0011 26.6545 

600 40 0.0721 0.0414 0.0014 0.0009 42.6536 

       

700 10 0.0674 0.0349 0.0014 0.0009 48.2614 

700 20 0.0627 0.0344 0.0013 0.0008 45.1832 

700 30 0.0698 0.0359 0.0013 0.0008 48.5508 

700 40 0.0615 0.0401 0.0012 0.0009 34.7529 

 



UMAGD, (2021) 13(2), 521-530, Allahverdi & Allahverdi 

525 

Table 2 (cont.). Experimental results - Uniform Distribution 

n D Error of OA Error of NA Std of OA Std of NA % Improvement 

800 10 0.0579 0.0382 0.0013 0.0009 34.0963 

800 20 0.0589 0.0306 0.0011 0.0007 48.0392 

800 30 0.0555 0.0312 0.0010 0.0007 43.7571 

800 40 0.0589 0.0353 0.0011 0.0008 40.1509 

Table 3. Experimental results - Positive Linear Distribution 

n D Error of OA Error of NA Std of OA Std of NA % Improvement 

300 10 0.0909 0.0599 0.0020 0.0014 34.1019 

300 20 0.0787 0.0568 0.0016 0.0013 27.8308 

300 30 0.0815 0.0584 0.0016 0.0012 28.3393 

300 40 0.0801 0.0542 0.0016 0.0012 32.3999 

       

400 10 0.0723 0.0513 0.0016 0.0012 29.0390 

400 20 0.0751 0.0431 0.0015 0.0010 42.5667 

400 30 0.0615 0.0390 0.0011 0.0008 36.6554 

400 40 0.0630 0.0418 0.0012 0.0010 33.7081 

       

500 10 0.0641 0.0431 0.0014 0.0011 32.7232 

500 20 0.0676 0.0392 0.0013 0.0009 41.9713 

500 30 0.0581 0.0408 0.0012 0.0009 29.7391 

500 40 0.0650 0.0318 0.0012 0.0007 51.0430 

       

600 10 0.0651 0.0361 0.0014 0.0009 44.5162 

600 20 0.0634 0.0340 0.0012 0.0008 46.3306 

600 30 0.0507 0.0363 0.0010 0.0008 28.4212 

600 40 0.0533 0.0300 0.0010 0.0007 43.6218 

       

700 10 0.0567 0.0320 0.0012 0.0008 43.5140 

700 20 0.0502 0.0311 0.0011 0.0007 38.1106 

700 30 0.0451 0.0277 0.0009 0.0006 38.5470 

700 40 0.0448 0.0281 0.0008 0.0006 37.1593 

       

800 10 0.0607 0.0312 0.0012 0.0008 48.6142 

800 20 0.0510 0.0265 0.0010 0.0006 48.0716 

800 30 0.0474 0.0217 0.0009 0.0005 54.3399 

800 40 0.0406 0.0247 0.0007 0.0005 39.2330 

Table 4. Experimental results - Negative Linear Distribution 

n D Error of OA Error of NA Std of OA Std of NA % Improvement 

300 10 0.1242 0.0744 0.0026 0.0017 40.0813 

300 20 0.1118 0.0720 0.0022 0.0016 35.6125 

300 30 0.1132 0.0787 0.0021 0.0018 30.4638 

300 40 0.1127 0.0819 0.0021 0.0017 27.2850 
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Table 4 (cont.). Experimental results - Negative Linear Distribution 

n D Error of OA Error of NA Std of OA Std of NA % Improvement 

400 10 0.0998 0.0550 0.0021 0.0014 44.8716 

400 20 0.1063 0.0525 0.0021 0.0012 50.5669 

400 30 0.0880 0.0610 0.0017 0.0013 30.6426 

400 40 0.0999 0.0637 0.0017 0.0015 36.2614 

       

500 10 0.0864 0.0418 0.0017 0.0010 51.5902 

500 20 0.0761 0.0493 0.0016 0.0011 35.1628 

500 30 0.0748 0.0560 0.0014 0.0012 25.1616 

500 40 0.0804 0.0651 0.0015 0.0014 19.1128 

       

600 10 0.0807 0.0449 0.0017 0.0011 44.4261 

600 20 0.0805 0.0431 0.0016 0.0011 46.5258 

600 30 0.0851 0.0427 0.0016 0.0010 49.8085 

600 40 0.0754 0.0524 0.0014 0.0011 30.5661 

       

700 10 0.0792 0.0419 0.0016 0.0010 47.0908 

700 20 0.0670 0.0375 0.0013 0.0009 44.1186 

700 30 0.0826 0.0395 0.0015 0.0010 52.2542 

700 40 0.0712 0.0456 0.0015 0.0010 35.9916 

       

800 10 0.0640 0.0398 0.0013 0.0010 37.7042 

800 20 0.0582 0.0364 0.0012 0.0008 37.4284 

800 30 0.0574 0.0373 0.0011 0.0008 34.9051 

800 40 0.0627 0.0382 0.0011 0.0009 39.1360 
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Figure 1. Percentage improvement of NA over OA – Normal Distribution 
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Figure 2. Percentage improvement of NA over OA – Uniform Distribution 

 

0

10

20

30

40

50

300 400 500 600 700 800

10

20

30

40

 

Figure 3. Percentage improvement of NA over OA – Positive Linear Distribution 
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Figure 4. Percentage improvement of NA over OA – Negative Linear Distribution 
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Figure 5. Percentage improvement of NA over OA over Distributions and Delta 
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Figure 6. Percentage improvement of NA over OA over Distributions and Number of Jobs 

 
4. Conclusion 

The flowshop scheduling problem with four-machine where processing times are uncertain is addressed. The objective is to minimize 

makespan. This problem was earlier investigated in the scheduling literature and several algorithms were presented. It was shown that 

the algorithm OA in the literature was the best. In the current paper, we propose a new algorithm (NW). We show that the proposed 

new algorithm NW significantly reduces the error of the best existing algorithm OA. In other words, the algorithm NW reduces the 

error of the best existing algorithm OA about 40%. It should be noted that both algorithms OA and NW have the same computational 

times. This result was statistically verified by conducting test of hypothesis with a significance level of 0.01. Therefore, the newly 

proposed algorithm NW is recommended.  

 

One of the assumptions made in this paper is that there are no setup times. This may be true for majority of manufacturing systems 

while it may not be appropriate for some other manufacturing systems. Thus, an extension of the addressed problem is to consider the 

flowshop scheduling problem with four-machine for minimizing makespan where setup times are separate from processing times and 

processing times are uncertain. Another extension is to investigate the considered problem with a due date related performance measure 

such as total tardiness or number of tardy jobs.  
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