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Repdigits as Product of Fibonacci and Pell numbers
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Abstract. In this paper, we find all repdigits which can be expressed as the product of a Fibonacci number
and a Pell number. We use of a combined approach of lower bounds for linear forms in logarithms of
algebraic numbers and a version of the Baker-Davenport reduction method to prove our main result.

1. Introduction

Diophantine equations involving recurrence sequences have been studied for a long time. One of the
most interesting of these equations is the equations involving repdigits.

A repdigit (short for “repeated digit”) T is a natural number composed of repeated instances of the same
digit in its decimal expansion. That is, T is of the form

x ·
(

10t
− 1

9

)
for some positive integers x, t with t ≥ 1 and 1 ≤ x ≤ 9.

Some of the most recent papers related to the repdigits with well known recurrence sequences are
[3, 5, 6, 8]. In this note, we use Fibonacci and Pell sequences in our main result.

Binet’s formula for Fibonacci numbers is

Fn =
ϕn
− ψn

√
5

where ϕ =
(
1 +
√

5
)
/2 (the golden ratio) and ψ =

(
1 −
√

5
)
/2. From this formula, one can easiliy get

ϕn−2
≤ Fn ≤ ϕ

n−1. (1)

Also, we can write

Fn =
ϕn

√
5

+ θ (2)

where |θ| ≤ 1/
√

5.
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Pell sequence, one of the most familiar binary recurrence sequence, is defined by P0 = 0, P1 = 1 and
Pn = 2Pn−1+Pn−2. Some of the terms of the Pell sequence are given by 0, 1, 2, 5, 12, 29, 70, . . . . Its characteristic
polynomial is of the form x2

−2x−1 = 0 whose roots are α = 1 +
√

2 (the silver ratio) and β = 1−
√

2. Binet’s
formula enables us to rewrite the Pell sequence by using the roots α and β as

Pn =
αn
− βn

2
√

2
. (3)

Also, it is known that
αn−2

≤ Pn ≤ α
n−1 (4)

and

Pn =
αn

2
√

2
+ λ (5)

where |λ| ≤ 1/
(
2
√

2
)
.

In this study, our main result is the following:

Theorem 1.1. The only positive integer triples (n, t, x) with 1 ≤ x ≤ 9 satisfying the Diophantine equation

FnPn = x ·
(

10t
− 1

9

)
(6)

as follows:
(n, t, x) ∈ {(1, 1, 1) , (2, 1, 2)} .

2. Preliminaries

Before proceeding with the proof of our main result, let us give some necessary information for proof.
We give the definition of the logarithmic height of an algebraic number and its some properties.

Definition 2.1. Let z be an algebraic number of degree d with minimal polynomial

a0xd + a1xd−1 + · · · + ad = a0 ·

d∏
i=1

(x − zi)

where ai’s are relatively prime integers with a0 > 0 and zi’s are conjugates of z. Then

h (z) =
1
d

log a0 +

d∑
i=1

log (max {|zi| , 1})


is called the logarithmic height of z. The following proposition gives some properties of logarithmic height that can
be found in [9].

Proposition 2.2. Let z, z1, z2, . . . , zt be elements of an algebraic closure of Q and m ∈ Z. Then

1. h (z1 · · · zt) ≤
∑t

i=1 h (zi)
2. h (z1 + · · · + zt) ≤ log t +

∑t
i=1 h (zi)

3. h (zm)=|m| h (z) .

We will use the following theorem (see [7] or Theorem 9.4 in [2]) and lemma (see [1] which is a variation of
the result due to [4] ) for proving our results.
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Theorem 2.3. Let z1, z2, . . . , zs be nonzero elements of a real algebraic number field F of degree D, b1, b2, . . . , bs
rational integers. Set

B := max{|b1| , . . . , |bs|}

and
Λ := zb1

1 . . . z
bs
s − 1.

If Λ is nonzero, then

log |Λ| > −3 · 30s+4
· (s + 1)5.5

·D2
· (1 + log D) · (1 + log(sB)) · A1 · · ·As

where
Ai ≥ max{D · h(zi),

∣∣∣log zi

∣∣∣ , 0.16}

for all 1 ≤ i ≤ s. If F = R, then

log |Λ| > −1.4 · 30s+3
· s4.5
·D2
· (1 + log D) · (1 + log B) · A1 · · ·As.

Lemma 2.4. Let A, B, µ be some real numbers with A > 0 and B > 1 and let γ be an irrational number and M be a
positive integer. Take p/q as a convergent of the continued fraction of γ such that q > 6M. Set ε :=

∥∥∥µq
∥∥∥−M

∥∥∥γq
∥∥∥ > 0

where ‖·‖ denotes the distance from the nearest integer. Then there is no solution to the inequality

0 <
∣∣∣uγ − v + µ

∣∣∣ < AB−w

in positive integers u, v and w with

u ≤M and w ≥
log Aq

ε

log B
.

3. The Proof of Theorem 1.1

Let us write Equations (2) and (5) in Equation (6). We get(
ϕn

√
5

+ θ

) (
αn

2
√

2
+ λ

)
= x ·

(
10t
− 1

9

)
.

By using |θ| ≤ 1/
√

5 and |λ| ≤ 1/
(
2
√

2
)

we obtain∣∣∣∣∣∣
(
ϕα

)n

√
5 · 2
√

2
−

x · 10t

9

∣∣∣∣∣∣ < 0.8 · αn.

To convert this inequality into form in Theorem 2.3, let us divide both sides by
(
ϕα

)n /
(√

5 · 2
√

2
)
. So, we

have ∣∣∣∣1 − 10t
·
(
ϕα

)−n
·

((
x ·
√

5 · 2
√

2
)
/9

)∣∣∣∣ < 5.06 · ϕ−n. (7)

Set
Γ := 10t

·
(
ϕα

)−n
·

((
x ·
√

5 · 2
√

2
)
/9

)
− 1.

We claim that Γ , 0. If Γ = 0, then one can easiliy see that
(
ϕ
)2n
∈ Q (α). Since [Q (α) : Q] = 2 and ϕ is an

quadratic algebraic number, the degree of
(
ϕ
)2n is either 1 or 2. This means that

(
ϕ
)2n
∈ Q but from the

Binomial theorem we know that
(
ϕ
)2n is of the form Xn + Yn

√
5 for some positive rational numbers Xn and

Yn which is a contradiction. Thus, we get Γ , 0.
Let us apply Theorem 2.3 to the inequality (7). Set

(z1, z2, z3) =
(
10, ϕα,

(
x ·
√

5 · 2
√

2
)
/9

)
and (b1, b2, b3) = (t,−n, 1) .
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Since zi ∈ Q
(√

2,
√

5
)
, we know that D = 4. So, we can take

10 = A1 ≥ 4 · h (10) = 4 · log(10) ∼ 9.21
3 = A2 ≥ 4 · h

(
ϕα

)
< 4 · log (2) ∼ 2.77

25 = A3 ≥ 4 · h
(
x ·
√

52
√

2/9
)
< 24.96.

Now, let us try to estimate the value of B. From the inequalities (1) and (4), we can write

ϕn−1
· αn−1

≥ FnPn = x ·
(
10t−1

− 1
)
/9 > 10t−1

and this inequality implies that
1.68t − 1 < n. (8)

Since t < 1.68t − 1 for t > 1 we can write t < n from the inequality (8). Thus, we take

B := n.

So, due to the Theorem 2.3 we have

|Γ| > exp
(
−C ·

(
1 + logn

)
· 10 · 3 · 25

)
where C := 1.4 · 306

· 34.5
· 42
·
(
1 + log4

)
. From the inequality (7), we get

5.06
ϕn > exp

(
−C ·

(
1 + logn

)
· 10 · 3 · 25

)
.

Taking logarithm of both sides of the above inequality and considering C < 5.5 · 1012 and 1 + logn < 2logn
for n ≥ 3, we obtain

n < 7.1 · 1017. (9)

By the inequality (8), we get
t < 4.3 · 1017. (10)

Now, let us improve the bounds (9) and (10). Set

Ω := tlog10 − nlog
(
ϕα

)
+ log

((
x ·
√

5 · 2
√

2
)
/9

)
.

So, we can rewrite the Inequality (7) as ∣∣∣1 − eΩ
∣∣∣ < 5.06

ϕn .

If Ω > 0, then
Ω < eΩ − 1 < 5.06 · ϕ−n.

Otherwise, i.e., Ω < 0, then
1 − e−|Ω| =

∣∣∣eΩ − 1
∣∣∣ < 5.06 · ϕ−n.

Thus,
|Ω| < e|Ω| − 1 < ϕ−n/

(
1 − ϕ−n) < ϕ−n+1.

From this inequality, we get
|Ω| < 5.06 · ϕ−n+1. (11)

Now, without loss of the generality, supposeΩ > 0 (operations for the caseΩ < 0 are similar). From the
Inequality (11), we obtain

0 < tlog10 − nlog
(
ϕα

)
+ log

((
x ·
√

5 · 2
√

2
)
/9

)
< 5.06 · ϕ−(n−1).
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Dividing both sides of the above inequality by log
(
ϕα

)
, we get

0 < t ·
log10

log
(
ϕα

) − n +
log

((
x ·
√

5 · 2
√

2
)
/9

)
log

(
ϕα

) < 3.72 · ϕ−(n−1).

In here, γ := log10/log
(
ϕα

)
is an irrational number. Hence, we can apply the Lemma 2.4 to the above

inequality with the parameters

µ :=
log

((
x ·
√

5 · 2
√

2
)
/9

)
log

(
ϕα

) , A := 3.72, B := ϕ and w := n − 1.

We can choose M := 4.3 · 1017 from the bound (10). So, 41th convergence of γ is satisfies the condition
q > 6M. From this convergent, we get the smallest ε as 0.00207249. Thus, we have

log (3.72 · 2714452526429576634/0.00207249)
logϕ

∼ 103.775 ≤ n − 1

and so, we get n < 104. Considering this bound on n, we obtain t < 63 from the inequality (8). Hence, in
Mathematica, for the values 1 ≤ n ≤ 103 and 1 ≤ t ≤ 62 we get the solutions of the equality (6) as follows:

(n, t, x) ∈ {(1, 1, 1) , (2, 1, 2)} .

This completes the proof.
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[4] Andrej Dujella and Attila Petho. A generalization of a theorem of baker and davenport. The Quarterly Journal of Mathematics,

49(195):291–306, 1998.
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