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Abstract

In this study, we develop a general method to solve the general linear elliptic quaternionic
matrix equations by means of real representation of elliptic quaternion matrices. A pseudo-
code for our approach that provides the solution of the linear elliptic quaternionic matrix
equations is expressed. Moreover, we apply this method to the well-known Slyvester matrix
equations and Kalman Yakubovich matrix equations over the elliptic quaternion algebra.

1. Introduction and Preliminaries

Real quaternions are a four-dimensional number system that was first expressed by Hamilton in 1843, based on the idea of
generalizing complex numbers [1]. Hamilton first tried to describe the 3-dimensional number system as follows:

q = q0 +q1i+q2 j

where q0,q1,q2 ∈ R and i2 = j2 =−1. However, he saw that this number system does not provide the closure property under
multiplication. In this way, Hamilton saw that there could not be a system similar to any 3-dimensional complex number
system and defined the 4-dimensional number system is known as the real quaternion in the following way:

K= {q = q0 +q1i+q2 j+q3k : q0,q1,q2,q3 ∈ R and i, j,k /∈ R} (1.1)

such that

i2 = j2 = k2 =−1, i j =− ji = k, ik =−ki =− j, jk =−k j = i. (1.2)

There are many applications of real quaternion algebra in different fields of the scientific world. The main areas are kinematics,
mechanics, quantum physics, chemistry, image-signal restoration, and game development. For this reason, there are many
studies related to real quaternions in literature [2]-[6].

On the other hand, Segre defined commutative quaternions in 1892 [7]. One of the most essential properties of a commutative
quaternion is that it meets the commutative property of multiplication. The commutative quaternion algebra is a significant
factor in fields such as Hopfield neural networks, digital signal, and image processing [8]-[11]. Therefore, commutative
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quaternion algebra theory has been increasingly important in recent years.

Elliptic quaternions are the generalized form of commutative quaternions. The set of elliptic quaternions is a commutative ring
under a commutative law and combination law of a four-dimensional Clifford algebra. Moreover, this set contains non-trivial
idempotents, nilpotent elements, and zero-divisors [8, 12, 13].
The set of elliptic quaternions with basic elements 1, i, j and k is represented as

Hα = {a = a0 +a1i+a2 j+a3k : a0, a1, a2, a3 ∈ R and i, j,k /∈ R} (1.3)

which satisfy the equalities i2 = k2 = α, j2 = 1, i j = ji = k, jk = k j = i, ki = ik = α j, α < 0, α ∈ R, [8]. Addition
of any two elliptic quaternions a = a0 + a1i+ a2 j + a3k, b = b0 + b1i+ b2 j + b3k ∈ Hα is given by a+ b = (a0 +b0)+
(a1 +b1) i+(a2 +b2) j+(a3 +b3)k. Scalar multiplication of a elliptic quaternion a ∈Hα with a scalar λ ∈ R is expressed as
λa = λ (a0 +a1i+a2 j+a3k) = λa0 +λa1i+λa2 j+λa3k . In addition, the operation of the quaternionic multiplication of
two elliptic quaternions a,b ∈Hα is expressed as

ab = (a0b0 +αa1b1 +a2b2 +αa3b3)+(a1b0 +a0b1 +a3b2 +a2b3) i
+(a0b2 +a2b0 +αa1b3 +αa3b1) j+(a3b0 +a0b3 +a1b2 +a2b1)k. (1.4)

On the other hand, we know that the elliptic quaternion a∈Hα has three types of the conjugate: 1a= a0−a1i+a2 j−a3k, 2a=
a0−a1i−a2 j+a3k and 3a = a0 +a1i−a2 j−a3k. Additionally, the norm of the elliptic quaternion a ∈Hα is

‖a‖= 4
√

a (1a) (2a) (3a) = 4

√[
(a0 +a2)

2−α(a1 +a3)
2
] [

(a0−a2)
2−α(a1−a3)

2
]
. (1.5)

If a ∈Hα and ‖a‖ 6= 0 then there exists multiplicative inverse of the elliptic quaternion a. So, multiplicative inverse of the

elliptic quaternion a is a−1 =
(1a)(2a)(3a)

‖a‖4
[8, 12].

For

H′α =




a0 αa1 a2 αa3
a1 a0 a3 a2
a2 αa3 a0 αa1
a3 a2 a1 a0

 ∈ R4×4 : a0, a1, a2,a3 ∈ R

 , (1.6)

Hα is algebraically isomorphic to the matrix algebra H′α through the bijective map

φ : Hα → H′α , φa =


a0 αa1 a2 αa3
a1 a0 a3 a2
a2 αa3 a0 αa1
a3 a2 a1 a0

 . (1.7)

Thus, every elliptic quaternion a ∈Hα has a real matrix representation

φa =


a0 αa1 a2 αa3
a1 a0 a3 a2
a2 αa3 a0 αa1
a3 a2 a1 a0

 (1.8)

in H′α [8].

Theorem 1.1. ([8, 12]). For a, b ∈Hα and λ ∈ R, the following identities are satisfied:

1. a = b⇔ φa = φb,
2. φ(a+b) = φa +φb,
3. φ(ab) = φaφb,
4. φ(φ(a)b)

= φaφb,

5. φ(λa) = λφa,

6. trace(φa) = a+ 1a+ 2a+ 3a,
7. ‖a‖4 = |det(φa)| .
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Let’s denote by Hm×n
α which is the set of all m× n type matrices with elliptic quaternion entries. Hm×n

α with the ordinary
matrix summation and multiplication is a ring with identity. The conjugates of elliptic quaternion matrix A = (ai j) ∈Hm×n

α

which has three types of conjugate are given the following as:

1A =
(1ai j

)
∈Hm×n

α , 2A =
(2ai j

)
∈Hm×n

α and 3A =
(3ai j

)
∈Hm×n

α .

Also, elliptic quaternion matrix A = (ai j)∈Hm×n
α can be expressed as A = A0+A1i+A2 j+A3k where A0, A1, A2, A3 ∈Rm×n.

Then, 1A = A0−A1i+A2 j−A3k, 2A = A0−A1i−A2 j+A3k and 3A = A0+A1i−A2 j−A3k. A matrix AT ∈Hn×m
α is transpose

of A∈Hm×n
α . Also A∗s =

(
sA
)T ∈Hm×n

α , s= 1,2,3, is called conjugate transpose with respect to the sth conjugate of A∈Hm×n
α ,

[12].

Theorem 1.2. ([12]) Let’s assume that A and B are elliptic quaternion matrices of appropriate sizes. Then the following
expressions are provided:

1.
(

sA
)T

=s(AT ),
2. (AB)∗s = B∗s A∗s ,
3. (AB)T = BT AT ,
4. s(AB) =

(
sA
)(

sB
)
,

5. If A−1 and B−1 exist then (AB)−1 = B−1A−1 ,

6. If A−1 exists (A∗s)−1 =
(
A−1

)∗s ,
7.
(

sA
)−1

=s(A−1).

For any elliptic quaternion matrix A = A0 +A1i+A2 j+A3k ∈ Hm×n
α , the real representation ΦA of the elliptic quaternion

matrix A were given in [13] as follows,

ΦA =


A0 αA1 A2 αA3
A1 A0 A3 A2
A2 αA3 A0 αA1
A3 A2 A1 A0

 ∈ R4m×4n

in here A0, A1, A2, A3 ∈ Rm×n, α ∈ R and α < 0.

Theorem 1.3. ([13]) Let A, B ∈ Hm×n, C ∈ Hn×p
α and λ ∈ R be given. In that case, following identities for the elliptic

quaternion matrix are satisfied:

1. A = B⇔ΦA = ΦB, ΦA+B = ΦA +ΦB,
2. ΦAC = ΦAΦC, ΦλA = λΦA,
3. A = 1

2−2α
E4mΦA

(
1E4n

)T where E4t =
(
It iIt jIt kIt

)
∈Ht×4t ,

4. If A is a nonsingular matrix of size m, then

ΦA−1 = Φ
−1
A , A−1 =

1
2−2α

E4mΦ
−1
A

(1E4n
)T

,

5. ΦA− = Φ
−
A , A− = 1

2−2α
E4mΦ

−
A

(
1E4n

)T are generalized inverse of ΦA and A, respectively,
6. ΦA = R−1

4mΦAR4n, ΦA = S−1
4m ΦAS4n and ΦA = T−1

4m ΦAT4n where

R4t =


0 αIt 0 0
It 0 0 0
0 0 0 αIt
0 0 It 0

 , S4t =


0 0 It 0
0 0 0 It
It 0 0 0
0 It 0 0

 , T4t =


0 0 0 αIt
0 0 It 0
0 αIt 0 0
It 0 0 0

 .

2. On solutions of general linear elliptic quaternionic matrix equations

In this section, we study the solutions of the equations

A1XB1 + · · ·+AlXBl =C (2.1)

by means of the real representations of elliptic quaternion matrices, where As ∈Hm×n
α , Bs ∈Hp×q

α , C∈Hm×q
α and s= 1,2,3, ..., l.
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Theorem 2.1. The elliptic quaternionic matrix equation given by (2.1) has a solution X if and only if the real matrix equation

ΦA1Y ΦB1 + · · ·+ΦAlY ΦBl = ΦC (2.2)

has a solution Y ∈ R4n×4p, in which case, if Y ∈ R4n×4p is a solution of the real matrix equation (2.2), then the matrix

X =
1

2−2α
E4nY ′

(1E4p
)T

(2.3)

is a solution of (2.1) where

Y ′ =
1
4

(
Y +R4nY R−1

4p +S4nY S−1
4p +T4nY T−1

4p

)
(2.4)

and

E4t =
(

It iIt jIt kIt
)
∈Ht×4t

α , t = n, p.

Proof. Suppose that the real matrix

Y =


Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

 , Yuv ∈ Rn×p, u,v = 1,2,3,4 (2.5)

is a solution to the equation (2.2), then, we say that the matrix given in (2.3) is a solution to equation (2.1). According to
Theorem 1.3, we get

ΦAs = R−1
4mΦAs R4n, ΦBs = R−1

4p ΦBsR4q and ΦC = R−1
4mΦCR4q,

ΦAs = S−1
4mΦAs S4n, ΦBs = S−1

4p ΦBs S4q and ΦC = S−1
4mΦCS4q,

ΦAs = T−1
4m ΦAs T4n, ΦBs = T−1

4p ΦBsT4q and ΦC = T−1
4m ΦCT4q.

where s = 1,2,3, ..., l. Substituting them into (2.2), respectively, and simplifying the corresponding equation, we have three
equations as follows,

ΦA1

(
R4nY R−1

4p

)
ΦB1 + · · ·+ΦAl

(
R4nY R−1

4p

)
ΦBl = (ΦC) ,

ΦA1

(
S4nY S−1

4p

)
ΦB1 + · · ·+ΦAl

(
S4nY S−1

4p

)
ΦBl = (ΦC) ,

ΦA1

(
T4nY T−1

4p

)
ΦB1 + · · ·+ΦAl

(
T4nY T−1

4p

)
ΦBl = (ΦC) .

(2.6)

This equation express that if Y is a solution of the equation given by (2.2), then R4nY R−1
4p , S4nY S−1

4p and T4nY T−1
4p are also

solutions of the real matrix equation defined by (2.2). Thus the undermentioned real matrix:

Y ′ =
1
4

(
Y +R4nY R−1

4p +S4nY S−1
4p +T4nY T−1

4p

)
(2.7)

is a solution to (2.2). By substituting (2.5) in (2.7) and making necessary simplifications, it can easily be written by

Y ′ =


Z0 αZ1 Z2 αZ3
Z1 Z0 Z3 Z2
Z2 αZ3 Z0 αZ1
Z3 Z2 Z1 Z0


where
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Z0 =
1
4 (Y11 +Y22 +Y33 +Y44) , Z1 =

1
4

(
Y12
α

+Y21 +
Y34
α

+Y43

)
,

Z2 =
1
4 (Y13 +Y24 +Y31 +Y42) , Z3 =

1
4

(
Y14
α

+Y23 +
Y32
α

+Y41

)
.

(2.8)

Thus, we get ΦX = Y ′. From Theorem 1.3, we obtain

X =
1

2−2α
(In iIn jIn kIn)Y ′


Ip
−iIp
jIp
−kIp

= Z0 +Z1i+Z2 j+Z3k. (2.9)

Moreover, since ΦX = Y ′ the elliptic quaternionic matrix equation given in (2.1) has a solution if and only if the real matrix
equation given in (2.2) has a solution.

3. Numerical algorithm

Considering the discussions in the previous section, now, we provide numerical Algorithm for solving general linear elliptic
quaternionic matrix equation

A1XB1 + · · ·+AlXBl =C

where As ∈Hm×n
α , Bs ∈Hp×q

α , C ∈Hm×q
α and s = 1,2,3, ..., l.

Algorithm 1 Numerical Algorithm for Solving General Linear Elliptic Quaternionic Matrix Equations

1: Begin
2: Input As ∈Hm×n

α , Bs ∈Hp×q
α and C ∈Hm×q

α where 1≤ s≤ l.
3: Form ΦAs , ΦBs and ΦC.

4: Compute Y and Y ′ = 1
4

(
Y +R4nY R−1

4p +S4nY S−1
4p +T4nY T−1

4p

)
.

5: Calculate X = 1
2−2α

(In iIn jIn kIn)Y ′


Ip
−iIp
jIp
−kIp

 .

6: End

4. Numerical examples

For l = 2, the special case of (2.1) is given by

A1XB1 +A2XB2 =C (4.1)

where A1,A2 ∈Hm×n
α , B1,B2 ∈Hp×q

α and C ∈Hm×q
α . If B1 = Ip, A2 =−In, m = n, p = q are taken in (4.1), we have elliptic

quaternionic Sylvester matrix equation AX −XB =C. Similarly, A1 = In, B1 = Ip, m = n, p = q, A2 = −A and B2 = B are
taken in (4.1) we have elliptic quaternionic Kalman-Yakubovich matrix equation X−AXB =C.

In the literature, the equations AX−XB =C and X−AXB =C are known as the Sylvester matrix equation and the Kalman-
Yakubovich matrix equation, respectively. These equations play an important role in control theory, signal processing, filtering,
image restoration, decoupling techniques for ordinary and partial differential equations, and block-diagonalization of matrices,
[14]-[18]. In this section, we obtain the solutions of the given elliptic quaternionic matrix equations AX −XB = C and
X−AXB =C according to our Algorithm.

Note that all computations in the rest of the paper are performed on an Intel i7-3630QM@2.40 GHz/16GB computer using
MATHEMATICA 9 software.

Let’s take α =−2 specifically to solve the elliptic quaternionic Kalman Yakubovich matrix equation

X−
(

1+ k i
j− k 1− j

)
X
(

j 1+2i
k i+ j

)
=

(
3+ i+3 j+ k 2+2i+7 j+ k
5+2i−6 j+ k −7−2i−2 j+8k

)
.



Fundamental Journal of Mathematics and Applications 185

Real representation of given equation is

Y −



1 0 0 −2 0 0 −2 0
0 1 0 0 1 −1 2 0
0 1 1 0 1 0 0 0
0 0 0 1 −1 0 1 −1
0 0 −2 0 1 0 0 −2
1 −1 2 0 0 1 0 0
1 0 0 0 0 1 1 0
−1 0 1 −1 0 0 0 1


Y



0 1 0 −4 1 0 0 0
0 0 0 −2 0 1 −2 0
0 2 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 −4
0 1 −2 0 0 0 0 −2
0 0 1 0 0 2 0 1
1 0 0 1 0 1 0 0



=



3 4 −2 6 1 7 0 −2
7 −12 0 6 −7 3 −4 −18
1 −3 3 4 0 1 1 7
0 −3 7 −12 2 9 −7 3
1 7 0 −2 3 4 −2 6
−7 3 −4 −18 7 −12 0 6
0 1 1 7 1 −3 3 4
2 9 −7 3 0 −3 7 −12


.

If we solve this equation, we have

Y =



1 0 2 0 0 1 0 0
1 0 0 0 0 1 −2 −4
−1 0 1 0 0 0 0 1
0 0 1 0 1 2 0 1
0 1 0 0 1 0 2 0
0 1 −2 −4 1 0 0 0
0 0 0 1 −1 0 1 0
1 2 0 1 0 0 1 0


.

Then

X = 1
24

(
I2 iI2 jI2 kI2

)(
Y +R8Y R−1

8 +S8Y S−1
8 +T8Y T−1

8

)
I2
−iI2
jI2
−kI2


=

(
1− i j
1+ k j+2k

)
.

Similarly, let’s take α =−5 specifically to solve the elliptic quaternionic Sylvester matrix equation(
1+ i i+3 j+2k
3k 2

)
X−X

(
i j+2k

5+ i 2−3 j

)
=

(
−46+13i−19 j+ k −19+6i−35 j+15k
25−22i−8 j+7k 48−6i+21k

)
.

The solution of real representation of given elliptic quaternionic Sylvester matrix equation is

Y =



1 2 −5 0 1 0 0 0
0 0 0 −25 1 3 −20 0
1 0 1 2 0 0 1 0
0 5 0 0 4 0 1 3
1 0 0 0 1 2 −5 0
1 3 −20 0 0 0 0 −25
0 0 1 0 1 0 1 2
4 0 1 3 0 5 0 0


.

Thus, we get

X = 1
24

(
I2 iI2 jI2 kI2

)(
Y +R8Y R−1

8 +S8Y S−1
8 +T8Y T−1

8

)
I2
−iI2
jI2
−kI2


=

(
1+ i+ j 2

j+4k 5i+3 j

)
.
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5. Conclusion

In this study, we established the solution of general linear elliptic quaternionic matrix equations with the help of the real
representation of elliptic quaternion matrices and expressed an Algorithm for the solutions of these equations. In addition,
we investigated solutions of elliptic quaternionic Sylvester and Kalman Yakubovich matrix equations, which are essential
applications in various areas of science. Actually, general linear matrix equations over the complex field form a special class of
general linear elliptic quaternionic matrix equations. Thus, the obtained results extend, generalize and complement the scope
of general linear matrix equations known in the literature.
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