Measurement and Determination of Light Pollution: Case Study of Malatya City

Abdulvahap Yılmaz ${ }^{1} \star$ © , Tuncay Özdemir ${ }^{2}$ ©
${ }^{1}$ Department of Optician, Faculty of Science, Erzincan Binali Yildirim University, Erzincan, Turkey
${ }^{2}$ Department of Physics, Faculty of Science, Inonu University, Malatya, Turkey

Accepted: June 3, 2021. Revised: May 8, 2021. Received: March 3, 2021.

Abstract

In this study, measurements of light pollution in and around Malatya city center were carried out by means of parcelization and mapping method with SQM (Sky quality meter) device. Measurements were carried out in the east, west, north and south directions at 5° intervals between the zenith and horizon in 7 regions in order to determine the effect of angle dependence in 84 points at the zenith references. Measurements which are taken in the lowest (bright) and highest (dark) regions measured are $16.53 \mathrm{mag}_{\operatorname{arcsec}}{ }^{-2}$ and $20.68 \mathrm{mag}_{\mathrm{arcsec}}{ }^{-2}$, respectively (Puschnig et al. 2014). Accepting the atmosphere permeability as 73%, the total amount of light lost (escaping into space and scattered back from the atmosphere) was calculated as $\sim 3.44 \times 10^{7} \mathrm{~lm}$. The angle dependence effect participated in the calculations and the luminous flux emitted towards the upper half space originating from the unnecessary use of artificial light was calculated as 4540973 lm . This value was calculated as 0.56 Mlm h (megalumen-hour) per year. In the city, street lighting, billboards, lighting on the exteriors of the buildings are considered to be active for approximately 12 hours a day and the amount spent was calculated as $441,720 \mathrm{kWh}$ per month. This calculated value corresponds to 26.99% of the approximate monthly electricity amount (1636064.2 kWh per month) causing light pollution.

Key words: Light pollution - SQM device - Calculation of wasted energy amount

1 Introduction

One of the fastest growing and fastest spreading varieties of pollution is light pollution in the world (Chepesiuk 2009). Light pollution affects the natural environment and ecosystem globally (Pun et al. 2014). Luminous flux systems preferred in the wrong place, wrong amount, wrong direction and time constitute the most important cause of light pollution (Aslan 2018). With the enrichment of countries, increasing urbanization has increased the demand for outdoor lighting and light pollution has spread outside the urban centers to the suburbs and countryside. Light pollution causes significant energy losses and in return large material losses and visual pollution. Light pollution negatively affects astronomical observations as well as the 24-hour natural cycle processes of humans and animals, and the natural relationship between living things day and night. The unconscious rapid increase of light pollution forms a great threat to the health of living things, the economy of the states and astronomical studies. Wasted energy and exhausted natural resources mean light pollution from inefficient use of artificial light systems. The sources with the largest share of primary energy production in the world are oil, coal and natural gas, respectively. Looking at the distribution of energy sources consumed on earth, 2/3 of the consumption is provided from hydrocarbon sources. Today, the largest share in energy production is provided by fossil fuels with a rate of 87%, while the remaining 13% is provided by nuclear energy and renewable energy sources (Aksoy 2016). The majority of the energy source used for lighting systems consists of natural sources and it is important how much of the energy used in lighting is wasted and how the amount wasted can be minimized. The light pollution problem solution is a local, but global problem (Aslan

[^0]2018). In order to solve this problem, which has a local solution, the study carried out by Inönü University calculated the amount of energy wasted by measuring the brightness of the sky in Malatya city center and its environs. Results were reported and recommendations were made for local institutions to take measures to reduce wasted energy.

2 Material And Methods

As seen in Fig. 1 and 2 the SQM device detects light emitted in the direction of the device sensor within the boundary of 20°. SQM refers to the sky brightness value expressed as the read value by converting it to the "mag $\operatorname{arcsec}^{-2 "}$ unit. The SQM device measures somewhat the amount of darkness in the night sky. SQM device calculations:

$$
\begin{equation*}
m=21.58-5 \log 10^{1.568-\left(m_{s} / 5\right)}-1 \tag{1}
\end{equation*}
$$

The Eq. 1 is done by using m : mag $\operatorname{arcsec}^{-2}, m_{s}$: limit is the value of magnitude. However, zenith-only single-band singlechannel devices such as the "Sky Quality Meter" remain a viable option for long-term studies of night sky brightness and for work from a mobile platform (Hänel et al. 2018). There is no possibility to read values greater than 22.0 magnitude with the SQM device (Pravettoni et al. 2016). In our study, measurements were taken using the SQM (Sky Quality Meter).

For measurements, Malatya city center and its surroundings were divided into approximately $2 \times 2 \mathrm{~km}^{2}$ grid within the target area with a length of 19 km along the east-west directions and 17 km along the north-south directions. The midpoint of each rectangular grid was determined and the coordinates (latitude and longitude) of these points were recorded. The recorded latitude and longitude values were used to reach the target destination point desired by entering GPS instruments. Measurements were repeated at least 5 times with intervals

Figure 1. Definition of angle in spherical coordinate system and solid angle (Aslan 2018).
of at least 3 sec in the direction of the zenith at 84 points consisting of the target points or close ones determined as far as by land conditions and lighting systems allow. Of the repeated measurement values, the most repeated (mod) or averages were assigned as the sky brightness (light pollution) value of each region. The measurements results are shown in Table 1. The measurements taken in the lowest (luminous) and highest (dark) regions measured are $16.53 \mathrm{mag} \mathrm{arcsec}^{-2}$ and 20.68 mag arcsec^{-2}, respectively. As seen in Fig. 3, the values measured in the field and recorded together with their coordinates have been processed on the numerical map on the Geographic Information Systems (GIS) software database. In order to better evaluate the differences between the values, the number values representing the darkest and brightest values were divided into 0.1 digit values by an algorithm registered in the Surfer 15 Program database and the colorization was done and the equivalent brightness curves were obtained and shown in Fig. 4.

SQM device measures the amount of light mag arcsec ${ }^{-2}$ in the area within the cone boundaries whose peak angle is $A=20^{\circ}$ in

$$
\begin{equation*}
L=10.8 \times 10^{4} \cdot 10^{-0.4 m} \tag{2}
\end{equation*}
$$

L: Luminous Intensity per unit area in cd^{-2}, m : sky brightness read from SQM in mag arcsec ${ }^{-2}$

The Enlightenment corresponding to the value of m read; the amount of luminous flux per unit area.

$$
\begin{equation*}
L \Omega=10.8 \times 10^{4} \cdot 10^{-0.4 m} \iint \sin \theta d \theta d \varphi \tag{3}
\end{equation*}
$$

It was calculated by Eq. 3 where E: Enlightenment (luminous flux per unit area) in $\mathrm{Im} \mathrm{m}^{-2}$ and

$$
\begin{equation*}
\Omega=\iint \sin \theta d \theta d \varphi=\int_{\varphi 1}^{\varphi 2} \int_{\theta 1}^{\theta 2} \sin \theta d \theta d \varphi \tag{4}
\end{equation*}
$$

The Ω given in Eq. 4 represents the solid angle at which the field of view of the given SQM instrument corresponds. The angles where θ and φ angles match in spherical coordinates are indicated in Fig. 1.

$$
\begin{equation*}
\Omega=\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi / 2} \sin \theta d \theta=2 \pi \tag{5}
\end{equation*}
$$

The luminous flux per unit area from the entire hemisphere will be $E_{0}=2 \pi L$.

If the light pollution values are considered to be constant in

Figure 2. Solid angle diagram used in calculations for areas of sky brightness measurement Aslan (2018).
all directions and angles, the solid angle will be a hemispherical with homogeneous light distribution in the enlightenment calculations. If the luminous flux is calculated according to angles from the zenith values (as you move from zenith to horizon, the value read in SQM will decrease), the smallest value of light pollution will be calculated (Aslan 2017). The unit of flux (Im m^{-2}) values given in Eq. 3 were multiplied by the area of the measured in for main directions. Luminous flux in lumen unit for each surface area;

$$
\begin{equation*}
\phi_{0 i}=E_{0 i} A_{i} \tag{6}
\end{equation*}
$$

A_{i} is the surface area of the $i^{\text {th }}$ section. $E_{0 i}$ is the corresponding minimum luminous flux per unit area derived from SQM readings.

These calculations were repeated and collected for each region and the total luminous flux in each direction was calculated, as shown in Eq. 7.

$$
\begin{equation*}
\phi_{\text {total, minimum }}=\phi_{0}=\sum_{i=1}^{n} E_{0 i} A_{i} \tag{7}
\end{equation*}
$$

The minimum value of total flux calculated for Malatya city center and its surroundings was calculated at $9.31 \times 10^{6} \mathrm{Im}$. Values measured with SQM are the amount of light directed towards the earth by scattering the molecules in the atmosphere Aslan (2018). The atmospheric permeability was considered to be 73% so the total amount of Light lost (escaping into space and scattering back from the atmosphere) is approximately 3.7 times the calculated value of $9.31 \times 10^{6} \mathrm{Im}$. That is, the sum total was calculated to be $3.44 \times 10^{7} \mathrm{Im}$. The effect of direction and angle concepts must also be taken into account to achieve the true value of light pollution. In order to determine the direction and angle effect the SQM values and calculations read from 7 different locations in different directions and angles are shown in Table 2. The data measured with the SQM device varies depending on the region (position), direction (φ) and angle (θ) in which it is measured. The value of m in Eq. 1 measured by the SQM instrument is a function dependent on θ and $\varphi ; m=m(\theta, \varphi)$. If θ and φ are added to the previously obtained luminous flux equation, the resulting luminous flux

Table 1. SQM values read in 85 different locations. m : SQM Value ($\mathrm{mag} \operatorname{arcsec}^{-2}$), L: Brightness ($\mathrm{cd} \mathrm{m}^{2}$), A: Surface Area (m^{2}), I: Light Intensity (Im), E: Luminous Flux per Area $\left(\mathrm{Im} \mathrm{m} 2\right.$), Φ : Luminous Flux (Im). $\mathrm{A}_{\text {total }}=30102836.40 . \mathrm{I}_{\text {total }}=1481398.7000 . \Phi_{\text {total }}=9307902.5640$.

(m)	(L)	(A)	(I)	(E)	(Φ)	(m)	(L)	(A)	(I)	(E)

$18.130 .006045383526286 .4221317 .74880 .037984256133943 .366017 .96 \quad 0.007070074165987 .6429453 .82710 .044422564185063 .8535$ $18.99 \quad 0.002737943625287 .33 \quad 9925.81530 .017202978 \quad 62365.7367$ 16.53 0.026389053495612 .1092245 .88240 .165807291579597 .9728 $19.430 .001825684065874 .39 \quad 7422.97010 .011471062 \quad 46639.896917 .58 \quad 0.010032843541121 .4035527 .49370 .063038174223225 .8266$ $19.330 .002001813498995 .52 \quad 7004.33880 .012577769 \quad 44009.558417 .830 .007969373225149 .4025702 .39500 .050073001161492 .9104$ $\begin{array}{lllllllllllll}20.05 & 0.00103139 & 3488974.40 & 3598.5003 & 0.006480427 & 22610.0440 & 18.58 & 0.00399414 & 3489455.50 & 13937.3889 & 0.025095949 & 87571.1974\end{array}$ $\begin{array}{lllllllllllll}19.78 & 0.00132259 & 3654758.14 & 4833.7301 & 0.008310050 & 30371.2220 & 18.64 & 0.00377941 & 3516154.26 & 13288.9808 & 0.023746720 & 83497.1292\end{array}$ $18.260 .005363203598994 .6019302 .11730 .033697961121278 .779818 .140 .005989963521146 .7021091 .5198 \quad 0.037636014132521 .9272$ $18.760 .003383953496657 .3211832 .50860 .02126197674345 .8441 \quad 17.450 .011308993533454 .5739959 .79650 .071056469251074 .8060$ $19.20 \quad 0.002256443425045 .66 \quad 7728.40940 .014177630 \quad 48559.028517 .51 \quad 0.010700993687452 .2039459 .37070 .067236272 \quad 247930.5382$ $20.00 \quad 0.001080003689846 .64 \quad 3985.03440 .006785840 \quad 25038.709418 .10 \quad 0.006214753512179 .4021827 .32160 .039048434137145 .1062$ $18.910 .002947303478854 .6010253 .21430 .018518407 \quad 64422.845217 .78 \quad 0.008344953498786 .7929197 .20190 .052432869183451 .4302$ $18.890 .003002093566458 .4510706 .83040 .01886269067272 .999617 .32 \quad 0.012747462987652 .2138084 .98560 .080094671239295 .0219$ $19.340 .001983462998745 .44 \quad 5947.89590 .012462456$ $19.160 .002341123556512 .67 \quad 8326.22450 .014709694 \quad 52315.211318 .330 .005028333568546 .5017943 .82870 .031593928112744 .4011$ $\begin{array}{lllllllllllll}18.91 & 0.00294730 & 3515146.63 & 10360.1776 & 0.018518407 & 65094.9158 & 20.68 & 0.00057733 & 4036894.84 & 2330.61851 & 0.003627468 & 14643.7080\end{array}$ $\begin{array}{lllllllllllll}18.91 & 0.00294730 & 3468875.36 & 10223.8025 & 0.018518407 & 64238.0456 & 18.64 & 0.00377941 & 3502015.60 & 13235.5451 & 0.023746720 & 83161.3824\end{array}$ $17.850 .007823913458567 .25 \quad 27059.51330 .049159066170019 .936118 .030 .006628633778956 .4025049 .30250 .041648908157389 .4092$ $\begin{array}{lllllllllllllllllll}18.87 & 0.00305790 & 3499456.48 & 10700.9997 & 0.019213373 & 67236.3642 & 20.00 & 0.00108000 & 3587456.22 & 3874.45272 & 0.006785840 & 24343.9044\end{array}$ $20.03 \quad 0.001050573589874 .52 \quad 3771.40370 .006600907 \quad 23696.428418 .17 \quad 0.005826723516178 .6220487 .76970 .036610328128728 .4538$ $\begin{array}{llllllllllllllll}20.14 & 0.00094934 & 3854624.50 & 3659.3659 & 0.005964906 & 22992.4739 & 18.73 & 0.00347875 & 3475855.60 & 12091.6476 & 0.021857658 & 75974.0625\end{array}$ $19.490 .001727523445896 .425952 .86420 .010854345 \quad 37402.9488$ $\begin{array}{lllllllllllllllllll}18.24 & 0.00546291 & 3465627.55 & 18932.3987 & 0.034324453 & 118955.7696 & 18.71 & 0.00354343 & 3475485.45 & 12315.1365 & 0.022264022 & 77378.2848\end{array}$ $18.92 \quad 0.002920283589896 .2410483 .48440 .018348629 \quad 65869.674918 .30 \quad 0.005169213625149 .4618739 .140710 .032479073117741 .4935$ $\begin{array}{lllllllllllll}18.94 & 0.00286697 & 3845498.65 & 11024.9447 & 0.018013729 & 69271.7704 & 19.17 & 0.00231966 & 3526568.54 & 8180.4291 & 0.014574834 & 51399.1519\end{array}$ $\begin{array}{llllllllllllllll}17.83 & 0.00796937 & 3186476.85 & 25394.1993 & 0.050073001 & 159556.4597 & 18.88 & 0.00302987 & 2989685.40 & 9058.3531 & 0.019037224 & 56915.3112\end{array}$ $\begin{array}{lllllllllllll}17.68 & 0.00915006 & 3512457.32 & 32139.1814 & 0.057491498 & 201936.4326 & 18.68 & 0.00364270 & 3556545.82 & 12955.4399 & 0.022887778 & 81401.4296\end{array}$ $\begin{array}{llllllllllllllllll}17.75 & 0.00857875 & 3489965.17 & 29939.5210 & 0.053901844 & 188115.5586 & 19.13 & 0.00240671 & 3658864.80 & 8805.8264 & 0.015121805 & 55328.6388\end{array}$ $19.820 .001274753398475 .44 \quad 4332.19400 .008009467 \quad 27219.977418 .040 .006567863645467 .3023942 .91160 .041267069150437 .7505$ $19.88 \quad 0.001206213798854 .324582 .22480 .007578855 \quad 28790.967818 .90 \quad 0.002974573468645 .1110317 .71730 .018689756 \quad 64828.1296$ $\begin{array}{lllllllllllllll}20.57 & 0.00063889 & 4154864.25 & 2654.4870 & 0.004014243 & 16678.6334 & 19.11 & 0.00245145 & 3358486.72 & 8233.1758 & 0.015402940 & 51730.5695\end{array}$ $18.420 .004628323389454 .4015687 .49320 .029080617 \quad 98567.426918 .610 .003885293506056 .7813622 .05720 .024412015 \quad 85589.9099$ 17.980 .006941033507895 .6324348 .39950 .043611761152985 .506018 .250 .005412823498563 .2018937 .10030 .034009764118985 .3103 $17.50 \quad 0.010800003287941 .6535509 .76980 .067858401223114 .464017 .960 .007070073507895 .7824801 .07110 .044422564155829 .7256$ $17.920 .007335403765643 .1027622 .49550 .046089673173557 .257918 .91 \quad 0.002947303499756 .4110314 .81810 .018518407 \quad 64809.9135$ 18.260 .005363203499865 .2518770 .46710 .033697961117938 .3228 18.26 0.005363203596625 .9619289 .41380 .033697961121198 .9615 $17.990 .006877393612145 .4024842 .13850 .043211926156087 .759818 .050 .006507643504516 .80 \quad 22806.14610 .040888730143295 .2420$ $18.40 \quad 0.004714373498964 .2116495 .41540 .029621267103643 .751419 .350 .001965282875646 .45 \quad 5651.44160 .012348199 \quad 35509.0550$ $17.720 .008819093521148 .1431053 .32100 .055411974195113 .770118 .930 .002893503542564 .3210250 .41620 .018180408 \quad 64405.2645$ $\begin{array}{llllllllllllll}20.08 & 0.00100328 & 3798546.22 & 3811.0195 & 0.006303817 & 23945.3417 & 19.33 & 0.00200181 & 3945764.45 & 7898.6871 & 0.012577769 & 49628.9149\end{array}$ 17.950 .007135493389945 .3024188 .91820 .044833601151983 .455518 .050 .006507643501214 .63122784 .65670 .040888730143160 .2204 $17.58 \quad 0.010032843747856 .5037601 .63330 .063038174236258 .029717 .790 .008268443028249 .5025038 .90950 .051952162157324 .1080$ $\begin{array}{llllllllllllllllll}17.96 & 0.00707007 & 3522747.90 & 24906.0766 & 0.044422564 & 156489.4948 & 18.89 & 0.00300209 & 4025564.50 & 12085.1083 & 0.018862690 & 75932.9746\end{array}$ $\begin{array}{llllllll}18.67 & 0.00367641 & 3512146.88 & 12912.0865 & 0.023099556 & 81129.0320\end{array}$
equation (Aslan 2017, 2018):

$$
\begin{align*}
E & =\iint L(\theta, \varphi) \Omega(\theta, \varphi) \\
& =10.8 \times 10^{4} \cdot 10^{-0.4 m} \iint \sin \theta d \theta d \varphi \tag{8}
\end{align*}
$$

obtained. As seen in Fig. 2, when measurement is taken from the zenith to the horizon (where the angle θ remains constant) without changing the direction (unchanged angle) of the SQM instrument, an arc is formed between the zenith and the horizon, indicated by rings scanned in dark tones. The step size in the zenith angle defined by the SQM device used for measurement is 20° (Sánchez de Miguel et al. 2017; Cinzano 2007). The
total luminous flux per unit area over the entire hemisphere:

$$
\begin{align*}
E(\varphi)=L(0, \varphi) \Omega_{0} & +L(20, \varphi) \delta \Omega_{20} \\
& +L(40, \varphi) \delta \Omega_{40} \\
& +L(60, \varphi) \delta \Omega_{60} \\
& +L(80, \varphi) \delta \Omega_{80} \tag{9}
\end{align*}
$$

This effect was considered a coefficient so as to observe how an effect occurs when the angle is changed in studies. In the positions shown in Fig. 5, the entire 90° angle extending from the zenith to the horizon was scanned with a 5° angle measurement for each of the north, south, east and west directions. k values were calculated by comparing the results to the measured value at the zenith. With this perspective

$$
\begin{equation*}
E_{\phi}=k E_{0 i} \tag{10}
\end{equation*}
$$

Table 2. SQM (m), Brightness (L) and Luminous flux per area (E) values read from four main directions in seven different locations to determine the angle dependence.

SQM values (m)								
		1\#	2\#	3\#	4\#	5\#	6\#	7\#
North	Min	15.84	15.81	15.41	15.40	17.15	19.75	16.15
	Mid	18.02	17.81	17.83	17.74	18.82	20.08	18.32
	Max	18.74	18.55	19.37	19.41	19.89	20.90	19.50
East	Min	16.95	15.7	18.4	19.36	15.96	18.57	18.52
	Mid	18.03	17.50	18.88	19.61	18.32	19.61	19.22
	Max	18.67	18.39	19.32	19.73	19.41	19.80	19.80
South	Min	16.37	15.27	19.2	19.27	18.13	16.77	18.23
	Mid	17.99	17.47	19.46	19.38	19.12	18.51	19.09
	Max	18.8	18.55	19.65	19.45	19.96	19.84	19.79
West	Min	15.4	16.44	16.24	15.64	18.90	16.17	17.39
	Mid	17.82	17.75	18.17	18.03	19.61	18.60	19.08
	Max	18.81	18.54	19.34	19.40	20.05	19.49	19.74
Brightness values (L)								
		1\#	2\#	3\#	4\#	5\#	6\#	7\#
East	Min	0.003676	0.004758	0.00202	0.001385	0.00186	0.001298	0.001298
	Mid	0.007560	0.014698	0.003174	0.00155	0.008311	0.001642	0.002356
	Max	0.017924	0.056679	0.004714	0.001947	0.044609	0.004031	0.004221
West	Min	0.003232	0.004144	0.001983	0.001877	0.001031	0.001728	0.001372
	Mid	0.016852	0.010210	0.008374	0.013435	0.001664	0.006451	0.003213
	Max	0.074718	0.028670	0.034469	0.059900	0.002975	0.036764	0.011952
North	Min	0.011103	0.000740	0.002096	0.000621	0.005075	0.011733	0.001398
	Mid	0.030127	0.001756	0.007120	0.000921	0.011800	0.028907	0.004051
	Max	0.077522	0.003779	0.030579	0.001385	0.033529	0.094934	0.012174
South	Min	0.001263	0.020769	0.002407	0.001665	0.001121	0.001251	0.001310
	Mid	0.003757	0.050245	0.112758	0.016904	0.002863	0.005911	0.002797
	Max	0.007541	0.096699	0.512181	0.179235	0.006045	0.021156	0.005513
Luminous flux per area values (E)								
		1\#	2\#	3\#	4\#	5\#	6\#	7\#
East	Min	4.44E-05	0.000908	6.06E-05	0.000271	5.44E-05	1.4E-05	7.22E-05
	Mid	0.374646	0.635892	1.740249	0.572347	0.671949	0.813653	2.558130
	Max	3.206542	1.916574	6.712225	2.486749	4.246300	7.189703	10.14858
	Total	2.510400	2.392336	3.480499	1.144694	1.343897	1.627305	5.116259
West	Min	$1.76 \mathrm{E}-05$	0.000532	0.000105	0.000624	$2.74 \mathrm{E}-06$	$2.77 \mathrm{E}-05$	$8.44 \mathrm{E}-05$
	Mid	0.102979	1.911838	1.259362	2.362929	0.238362	0.616872	2.455365
	Max	1.073659	9.375851	6.421433	9.162764	1.836584	9.180504	7.323369
	Total	1.956599	1.816247	2.392789	4.489566	4.528881	1.172056	4.665194
North	Min	0.000116	0.000109	0.000110	0.000206	0.000105	0.000104	0.000133
	Mid	1.220298	3.113982	1.923242	2.376487	1.522028	0.883599	2.141639
	Max	8.913267	9.863396	6.964124	9.353819	8.550878	7.668509	7.391132
	Total	2.371796	1.370685	4.264180	7.021260	2.734760	1.947462	3.352067
South	Min	$2.46 \mathrm{E}-05$	0.002716	0.000134	0.000208	3.13E-05	$1.47 \mathrm{E}-05$	$9.34 \mathrm{E}-05$
	Mid	0.823220	2.168287	2.402866	1.654270	0.428665	0.083974	2.536906
	Max	7.459521	6.900277	10.30643	9.638528	2.558649	0.880463	7.769717
	Total	2.309146	1.227598	3.132411	3.359674	2.355723	5.549968	1.571222

The equation was defined as shown in Eq. 10. E is the enlightenment with angle effect E_{0} is the corresponding minimum luminous flux per unit area driven from zenith SQM readings and k is the coefficient of the angle effect. In Eq. 6 , if the effect of angle dependence is added to the luminous flux in the lumen
unit for each field

$$
\begin{equation*}
\phi_{i}=k_{i} \phi_{0 i}=k_{i} E_{0 i} A_{i} \tag{11}
\end{equation*}
$$

The Eq. 11 occurs. By taking these k values into consideration in the calculations, a different k multiplier was calculated

Figure 3. Light pollution measurement points taken and recorded SQM measurements.

Figure 4. Co-brightness curves drawn using the reading measurements. The minimum (luminous) measurement was 16.53 mag $\operatorname{arcsec}^{-2}$ and the highest (dark) measurement was 20.68 mag $\operatorname{arcsec}^{-2}$, dividing the range by 0.10 digits.

Figure 5. Measurement of light pollution in Malatya province center and its environs co-brightness curves. The measurement locations are marked and the light pollution scatter map is displayed with 30% transparency so that the measurement points can be observed more clearly.

Table 3. K coefficients and luminous flux classified according to the values read. R: SQM Range (mag arcsec ${ }^{-2}$), A: Area $\left(\mathrm{km}^{2}\right)$, L: Luminous Flux (MIm), k: Average Coefficient.

Location	R	A	L	k	$\mathrm{L} \times \mathrm{k}$
$\# 7, \# 4$	<18	76.7	4.55	4.03	18.33
$\# 3, \# 5$	$18-19$	144.9	3.28	3.28	13.08
$\# 2, \# 6$	$19-20$	49.2	2.35	2.35	1.38
$\# 1$	>20	30.3	2.17	2.17	0.36
	Total	301.1	12.35		33.17

for each region in 7 different regions within the entire region measured and the results were reached using these calculated k values.

Classification and calculated k values and luminous flux magnitudes according to measured values from SQM instrument are given in Table 3 (Aslan 2017). In line with the values in Table 3. The wasted luminous flux (emitted back from the atmosphere) by the effect of angle dependence was calculated to be 122.72 Mlm (megalumens). If the contribution of atmospheric permeability is also taken into account, considering the atmospheric permeability effect, the luminous flux escaping into space caused by wrong lighting is calculated Total luminous flux from all directions $\left(\phi_{\text {total }}=\sum_{1}^{85} E_{0 i} A_{i}\right)$ as $4.54 \mathrm{Mlm}(4540$ $973 \mathrm{~lm})$. As of the end of 2019, Malatya province has a population of 800165 people according to TUIK address based population data. In the light of these data, the amount lost instantly per capita was calculated as 154 lm and when calculated on a year basis this value becomes 0.56 MImh (megalumens-hour). Today, only the energy used for street lighting in the cities is 4% to 6% of the total energy consumed by the city. With the addition of advertising lighting and building facade lighting to this value, it is seen that the rate will increase to 10% (Cetin et al. 2004). If the efficiency values of the lamps used in street lighting are considered to be $100 \mathrm{~lm} \mathrm{~W}^{-1}$ on average, the instantaneous value of the total luminous flux (122.7 MIm) that causes light pollution is equal to 1227 kW of power. Exterior (outdoor) lighting was considered to be active for approximately 12 hours in a day, and the amount wasted was calculated to be 441720 kWh per month. This calculated value is 26.99% of the estimated monthly amount of electricity (1 636064.2 kWh per month) that causes light pollution. And this value corresponds to about 27%. If the average electricity expenditure per household is considered 160 kWh , it means that the energy consumed by 2760 households in one month is wasted. The equivalent of electricity expenditures in money is 0.6769 TL per kWh for July 2019. If we round this value as 0.68 TL per kWh , the material equivalent of the total amount of lost light is calculated as (441720 kWh per month $\times 12$ months per year $\times 0.68$ TL per $k W h)=3604435$ TL per year.

3 Results And Discussion

As seen in Fig. 5, the areas located in the east of the city, Mehmet Buyruk street and the neighbourhoods around it, in the western part of the city, Alp Arslan Türkeș boulevard and Fahri Kayahan boulevard are seen as the brightest areas and the smallest values in Turgut Özal, Karakavak and Barguzu neighbourhoods around these regions measured; that is, a large level of lightness has been observed. As seen in Fig. 5:

- The gap between Topsöğüt in the north-west of the province, Toki Bașharık in the South-East, the city cemetery and its surroundings in the north-east, and Melekbaba neighbourhood in the north-east of the province shows itself as dark spots.
- The sky is bright with the naked eye along the ring road starting from the eastern entrance of the city to the western exit. While these light values are increasing in and around the center of the city, in the East, Buhara Street is evident until the 2nd organized industry in the West.
- It is observed as a "hot spot" in the middle, near the city center, around Atatürk Street and the surrounding neighbourhoods, around the city hall, in the areas where the Tecde neighbourhood is located in the south.
- Beydağları, which runs along the south of the province, causes the region to increase its level of darkness.
- The regions where the sky's dark values are measured highest (>20.50 mag $\operatorname{arcsec}^{-2}$) are located in the north-west of the province, neighborhood of on Topsöğüt - Sivas road.

The amount of light wasted due to inefficient use of artificial light: 0.56 Mlmh per year \Longrightarrow 122.7 MIm per year \Longrightarrow 441720 kWh per month $\Longrightarrow 5300640 \mathrm{kWh}$ per year. If approximately 27% of the consumption spent on external (outdoor) lighting was calculated to be 3.6 million TL per year, equal to the total electricity consumption of 33130 households each year.

4 Precautions Against Artificial Light Pollution

- It can be said that light pollution increases proportionally with the population, because human is the main source of light pollution like all pollution.
- The province of Malatya receive a migration due to its developing industry and agricultural activities, especially the economic conditions that apricot production provides for people. The unconscious lighting in new residential areas formed with population growth increases light pollution rapidly.
- Lighting systems that comply with regional requirements and international standards should be preferred (Aslan \& Onaygil 1999).
- In accordance with the conditions, monochrome light skis should be preferred for street or outdoor lighting (Çetegen \& Batman 2005). Sodium vapour lamps should be the primary choice.
- The use of LED lights that are rich in blue wavelength should be avoided. Using motion and time sensor lighting according to the need will reduce electricity consumption (Aksoy \& Söğüt 2008).
- Sufficient amount of time should be reduced within the boundaries of the region to be illuminated (Çetegen \& Batman 2005).
- In the open spaces (site gardens, squares, parks, children playgrounds etc.) lighting systems that send light to the upper half space in the form of a sphere should be avoided in lighting systems should be preferred full-screen lighting systems should be preferred (Aslan \& Onaygil 1999; Çetin et al. 2004).
- The settlement near observatories should be avoided or, if it can not be, low pressure sodium lamps should be used in residential centers close to observatories that can be filtered by astronomers (Çetegen \& Batman 2005).
- The led lighting used in the exterior decoration of the building
and the use of materials with more reflective properties in the roof and surface coatings of the building should be avoided.
- The exterior lighting of the building and the lighting on the walls of structures with historical texture such as historical ruins, mosques and visits should be oriented from top to bottom. The most valuable of the precautions to be taken to prevent the spread of light pollution is to inform people about the damages of light pollution.
- In the later hours of the night, the contribution to light pollution and energy expenditure will be reduced in proportion to the reduction of the lighting intensity of lamps or the number of lamps burning which will not compromise the safety measures (Karımı Ansarı 2013).
- The waste of energy used in street lighting is a major burden for the economies of the country. Reducing wasted energy in street lighting is important in terms of depletion of natural resources and not damaging the economies of the country.

Acknowledgement

In this study, observational data were taken from the first author's doctoral dissertation. The studies in this article are inspired by the study conducted in the Nilüfer district of Bursa. In order to share the results of the study, an appointment was requested from the relevant unit of Malatya Metropolitan Municipality.

Teșekkür: Makalemize yaptıkları değerli öneri ve katkılardan dolayı hakemlere teșekkür ediyoruz.

References

Aksoy M., 2016, İnsani ve Sosyal Araștırmalarmalar Merkezi (íNSAMER), 23
Aksoy E., Söğüt Z., 2008, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Yayınları, 18
Aslan B., 2017, Technical report, "Nilüfer İIçesi Ișık Kirliliği Araștırma Projesi Sonuç Raporu. isikkirliligi.org, Çankaya, Ankara
Aslan B., 2018, Ișığın Kirli Yüzü: Ișık Kirliliği. S.S. ADA Eğitim Kooperatifi, Ankara
Aslan Z., Onaygil S., 1999, in Enerji Tasarrufu Haftası Ulusal Enerji Verimliliği Kongresi. No. 18 in Ulusal Enerji Verimliliği Kongresi. Ankara, pp 54-60
Çetegen D., Batman A., 2005, Journal of İstanbul Kültür University Science and Engineering, 3, 29
Çetin F. D., Gümüș B., Özbudak Y. B., 2004, Elektrik Mühendisliği, 420, 25
Chepesiuk R., 2009, Environmental Health Perspectives, 117, A20
Cinzano P., 2007, Technical Report v0.9, Report on Sky Quality Meter, Version L. ISTIL Int. Report, Thiene, Italy
Hänel A., et al., 2018, Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 278
Karımı Ansarı B., 2013, Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 28, 11
Pravettoni M., Strepparava D., Cereghetti N., Klett S., Andretta M., Steiger M., 2016, Journal of Quantitative Spectroscopy and Radiative Transfer, 181, 74
Pun C. S. J., So C. W., Leung W. Y., Wong C. F., 2014, Journal of Quantitative Spectroscopy and Radiative Transfer, 139, 90
Puschnig J., Schwope A., Posch T., Schwarz R., 2014, Journal of Quantitative Spectroscopy and Radiative Transfer, 139, 76
Sánchez de Miguel A., Aubé M., Zamorano J., Kocifaj M., Roby J., Tapia C., 2017, Monthly Notices of the Royal Astronomical Society, 467, 2966

Access:

M21-0105: Turkish J.A\&A - Vol.2, Issue 1.

[^0]: * abdulvahap.yilmaz@erzincan.edu.tr

