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accumulated due to the movement of tectonic plates, and 
is released when it exceeds some value of strength. The 
stochastic version of the elastic rebound theory, called 
stress release model, is proposed (Vere-Jones 1978). Besides, 
researchers who are interested can find detailed information 
about the seismicity-based earthquake forecasting 
techniques (Tiampo and Shcherbakov 2012).

There have been some studies aiming to model the general 
structure of seismic data by using the Markov process or 
Poisson process. However, earthquakes are affected by various 

1. Introduction
Analyzing seismic data and developing some statistical 
methods to forecast earthquake occurrences or earthquake 
times have been a challenging task for decades. The elastic 
rebound theory (Reid 1910) is one of the classical models 
for earthquake mechanisms. It states that stress in a region 
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Öz

Deprem verilerinin olasılıksal modellemesi ile ilgili çalışmalar son yıllarda giderek artmaktadır. Depremlerin yer altındaki gerilim 
düzeyindeki gözlenemeyen değişimler sonucu oluştukları bilinen bir gerçektir. Saklı Markov modelleri varsayımlarından dolayı deprem 
verilerini modellemek için uygun bir çerçeve sunar. Yeraltı gerilim düzeyindeki gözlenemeyen değişimleri göz önünde bulundurmak ve 
Ege denizinde bazı olasılıksal deprem tahmini yapmak için gizli Markov modeli sunmaktayız. Ege bölgesi, deprem oluşumu bakımından 
aktif bir bölge olduğu için seçilmiştir. Gizli durumları yeraltı stres düzeyi olan bir gizli Markov modeli tanımlanmıştır. Gizli durum 
sayıları farklı olan dört ayrı model tanımlanmış ve bu modeler Akaike ve Bayesian bilgi kriterlerine göre karşılaştırılmıştır. Önerilen 
model deprem büyüklükleri ve bölgelerine ilişkin kısa dönem olasılık tahminleri verebilmektedir. Model parametrelerini tahmin etmek 
için iteratif bir algoritma olan Baum-Welch algoritması kullanılmıştır. Geleneksel Baum-Welch algoritması iterasyonlarda yalnız 
bir gözlem değişkeni kullanır. Bu çalışmada, Baum-Welch algoritmasının birden fazla gözlem değişkeni bulunduğunda kullanımı 
için oldukça kolay ve anlaşılır bir bakış açısı önerilmiştir. Bu yaklaşımla çoklu gözlem değişkenlerinin marjinal ve ortak olasılık 
fonksiyonlarını elde etmek mümkün olmaktadır.
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Abstract

Studies about stochastic modeling of earthquake data have increased considerably in recent years. It is a well-known fact that 
earthquakes occur as a result of unobservable changes in underground stress levels. The hidden Markov model provides a suitable 
framework for modeling earthquake data due to its assumptions. We present a hidden Markov model to examine hidden changes in 
the underground stress level and to make some probabilistic earthquake forecasts in the Aegean Sea. The Aegean region is selected for 
the modeling because of the active nature of earthquake occurrences. A hidden Markov chain is defined in which the corresponding 
states are stress levels of the ground. Four models with different numbers of hidden states are constructed and compared according 
to the Akaike and Bayesian information criteria.  The proposed model is capable of forecasting the short-term probabilities of both 
earthquake magnitudes and also locations. Baum-Welch algorithm, which is an iterative expectation-maximization algorithm, is used 
for the estimation of model parameters. The traditional Baum-Welch algorithm considers only one variable as an observation for the 
iterations. In this paper, a naive and quite simple approach is used for the Baum-Welch algorithm to estimate the model parameters 
with more than one observation. It is possible to obtain the marginal and joint probability distributions of multiple observations with 
this approach. 
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natural factors such as the structure of the fault and previous 
earthquake occurrences, and these events may change the 
magnitude and/or the occurrence time of an earthquake. 
Some of these natural events are observable and some of 
them are not. Since there is a dependency between these 
natural factors and the earthquakes, a modeling approach 
that characterizes this dependency is required. Since it 
is known that the Poisson process has memorylessness 
property and it assumes that different time intervals for a 
specific region are independent, the Poisson process usually 
does not provide an adequate modeling setting.

The dependence between the previous and the most recent 
earthquake magnitudes encouraged researchers to study 
modeling the seismic data using the Markov process. When 
the Markov process is used for earthquake forecasting, 
the observed data becomes the states of the system and 
unobservable natural events are not included in the model. 
See Anagnos and Kiremidjian (1988) and its references for 
the first applications of the Poisson process and Markov 
process for seismic studies. Sojourn times are assumed to be 
exponential for Markov processes; on the other hand, it is 
possible to assume different sojourn time distributions such 
as Weibull or Gamma for semi-Markov processes. There 
also exists some studies about the modeling of earthquake 
data with the semi-Markov process. A semi-Markov 
process is proposed (Alvarez 2005) where a mixture of 
exponential and Weibull distribution is assumed for waiting 
times. Construction of a semi-Markov process is proposed 
(Sadeghian 2012) to predict the probability of the time and 
place of occurrence of earthquakes. In another study that 
assumed sojourn times as Weibull distribution (Masala 
2012) proposed both homogeneous and non-homogeneous 
semi-Markov process and he allowed dependence in both 
space and time, in their model. A semi-Markov model for 
the estimation of the expected number of earthquakes is 
considered and a seismic hazard assessment was presented 
for Northern Aegean Sea (Votsi et al. 2012). The semi-
Markov kernel and the distributions of sojourn times 
were estimated by the help of a nonparametric method. 
In addition, a detailed information about the seismology 
from the statistical point of view, about discrete HMM and 
hidden Markov renewal model was presented (Votsi 2019).

The existence of the unobservable factors that affect the 
earthquake occurrence led to the start  of using the hidden 
Markov model (HMM) to characterize the earthquake 
occurrences. HMM is a special type of Markov process in 
which states are unobservable. An unobservable Markov 

chain leads the system and observations occur after each 
transition. This type of a model is more suitable to model 
the seismic data because unobservable natural events are 
assumed to be states of a hidden Markov chain and some 
of the outputs such as magnitude or occurrence time are 
the observations occurring after each transition. Hence, the 
HMM is studied instead of the Markov process and Poisson 
process for the earthquake analysis since the early 2000s. 

HMM is first introduced with the definition as “emitted 
probabilistic functions of unobservable finite-state Markov 
chains” (Baum et al. 1966). For modeling seismic data, the 
very first study (Granat and Donellan 2002) used the GPS 
seismicity data collected in the Southern California region. 
Hidden states were the changes in stress within a fault 
system and earthquake forecasts were presented. It is claimed 
that the Poisson process which is a traditional model for 
earthquakes is insufficient for forecasting future events and 
HMM is proposed (Chambers et al. 2003). They assumed 
each hidden state leads to an exponential distribution with 
different rates and overall time distribution is a mixture of 
exponential distributions. They used 110 interevent times (in 
days) between 1975 and 2000 and related earthquakes have 
magnitudes with M ≥ 2.7 and assumed two hidden states; 
rapid response and slow response to a quake. The California 
region is studied (Ebel et al. 2007)  with earthquake data 
which have magnitude values M ≥ 4. Inter-event times 
between earthquakes were assumed to be exponential 
and the short-term future earthquakes (in one day) were 
forecasted in a dynamic way using HMM. Observations 
were the inter-event times and one of four spatial quadrants. 
Poisson HMM was used to model the seismic variations 
and earthquake frequencies (Orfanogiannaki et al. 2010). 
The earthquakes greater than the magnitude M ≥ 3.2 around 
the Killini, Ionian Sea were used between 1990 and 2006. 
Observations were assumed the daily number of earthquakes 
and inter-event times. Poisson HMM was fitted for 2,3,4 
and 5 states and models with four and five hidden states 
were selected. HMM is applied to earthquake data (M ≥ 
4) from 1932 to 1964 in the California region (Chambers 
et al. 2012). They used two different models with two and 
four states, respectively. Inter-event time distribution was 
assumed to be exponential. Observations were assumed 
inter-event times and one of two regions (east or west) that 
an earthquake may occur. HMM is used for earthquake data 
from 1845 to 2013 in the Greece region (Votsi et al. 2013). 
Hidden states were assumed the stress level of the ground. 
Different HMMs with a different number of states were 
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examined and a two-state model was selected. Observations 
were the classes of earthquakes magnitudes and their aim 
was the estimation of the expected time until the next 
earthquake. When the stress level of the ground exceeds 
a threshold, an earthquake occurs (Yip et al. 2018). They 
assumed this threshold divides the underground stress level 
into two states: low and high level of earthquake frequency. 
Their model includes earthquake magnitudes as observations 
and a non-stationary transition probability matrix that 
varies by time. A comprehensive implementation of hidden 
semi-Markov models for the seismic hazard assessment was 
presented (Pertsinidou et al. 2017). The earthquakes which 
have a magnitude M ≥ 2.7 around the North and South 
Aegean Sea were taken into consideration. Models with 
different dimensions were developed and compared with 
different sojourn time distributions. 

In this study, an HMM is proposed for modeling the 
earthquake data of the Aegean Sea region. The complete data 
contains the depth, location, magnitude, and inter-event time 
of an earthquake. HMMs with different numbers of hidden 
states are constructed and the most likely model is selected 
according to likelihood values. By using the most suitable 
model, short-term probabilities of earthquake magnitudes 
and earthquake locations are forecasted. The conditional 
probability distribution of earthquake magnitudes and 
earthquake locations are obtained. Then, the joint probability 
distribution of random variables magnitude and location 
is obtained. The resulting model is capable of forecasting 
the probabilities of earthquake magnitude classes and the 
probabilities of earthquake locations. 

The common point of all existing studies is that they assumed 
only one variable as the observation for the estimation 
of model parameters. Other variables are included in the 
model after parameter estimation with some independency 
assumptions. However, three types of observations which are 
depth, location, and magnitude are used for the estimation 
of model parameters in our study. We aim to obtain the 
estimates with more earthquake information. These three 
types of observations are redefined as a single variable 
and then, marginal and joint probability distributions of 
earthquake magnitude and location are obtained. 

The main contributions of our paper can be summarized 
as follows: (1) A modeling approach is proposed in which 
multiple observations are used for the parameter estimation. 
(2) Marginal and joint probability distributions of all 
observation random variables are obtained by this approach. 
(3) The proposed HMM gives probabilistic forecasts of 

the magnitude and location of a future earthquake in the 
Aegean Sea, Turkey.  Earthquake forecasting for this region 
is provided for the first time by this modeling approach.

In section two, a brief introduction to HMMs and its 
complete parameter set is given. Then, the method of 
modeling the earthquake data and selecting the best 
representative model between different HMMs  are 
presented. In section three, results and the related probability 
distributions of earthquake magnitude and location is 
presented. The probabilities of occurring earthquakes in a 
region are forecasted in one day and one week. And finally, 
discussions, concluding remarks, and some possible further 
studies are presented in the section four.

2. Material and Method
HMMs are discrete-time stochastic processes which 
consist of two sets of random variables. One is a Markov 
chain with some finite states and the other is a set of 
observations occurring immediately after each transition of 
the underlying Markov chain. The transitions of the Markov 
chain are invisible (hidden) to a viewer outside of the system 
and the current state is always dependent on the previous 
state because of the Markovian property. The observations 
are emitted by a probability distribution corresponding to 
the current state of the Markov chain. They are independent 
of each other and only depend on the current hidden state. 
It is not possible to observe the states of the system directly 
and someone can record only the observations. HMMs 
are different from traditional Markov models due to these 
assumptions. The observed data is not the actual state of 
the system for HMMs, these observations are emitted 
by the underlying hidden states. On the other hand, the 
observations correspond directly to the states for traditional 
Markov models. So, the term “hidden” comes from the first-
order Markov chain behind the observations. 

2.1. General definition of HMM

Let vk  be the k th observation and there are M possible 
emitted observations per state. The system makes a transition 
and emits one of the observations , , ...,v v vM1 2" , . There are 
N  hidden states, hence the transition probability matrix is 
N -dimensional square matrix. The hidden state sequence 
and the observation sequence are finite sets and T  is the 
length of these sets. Let Xt  be the random variable that 
represents the state of the hidden Markov chain at time t
,where , , ..., , , , ...,X N t T1 2 0 1t ! =" , . Furthermore let Yt  
be the random variable that represents the observation in a 
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emitted: location, depth, inter-event time between previous 
and last earthquake, and the magnitude of an earthquake. 

Location (L). The Aegean Sea region is selected for modeling 
because of the active nature of earthquakes. The region is 
divided into two locations. Region I(LI) is the Mytilene 
Island area and region II(LII) is the Aegean Sea area. These 
two regions continuously experience successive earthquakes. 
An earthquake can occur either in region I or region II. 
Selected regions are shown in Figure 1.

Depth (D). The depth of earthquakes is divided into two 
classes according to the median value. The median value is 
found as Med = 10 and 10km is accepted as the threshold 
value between two classes. That is, an earthquake can occur 
either more than or equal to 10km deep (D ≥ 10) or less than 
10km deep (D < 10).

Magnitude (M). For the corresponding regions, the 
earthquakes with a magnitude greater than 3 are included 
in the data set. The magnitude values of M are classified into 
four groups with the help of the k-means clustering method. 
An earthquake magnitude between [3.0, 3.3) is included in 
class 1, between [3.0, 3.6) is included in class 2, between 
[3.6, 3.9) is included in class 3, and if M ≥ 3.9, it is included 
in class 4.

Inter-event times (T). Inter-event times between successive 
earthquakes are assumed to be independent of other variables. 
It is assumed that it depends only on the hidden states and 
inter-event times between two successive earthquakes follow 
an exponential distribution. So, the parameter of the related 
inter-event time distribution depends on the hidden state 
it is emitted. In other words, each state must have different 
exponential rates. The Viterbi (Viterbi 1967) algorithm, 
which is an algorithm to find the most likely hidden state 

state at time t , where , , ...,Y v v vt M1 2! " ,  and , , ..., .t T0 1=
So, the sequence of hidden states and observations are 
denoted by , , ...,X X XT1 2" ,  and , , ...,Y Y YT1 2" , , respectively.  

Transition probability matrix (TPM) is denoted by P pij= " ,
. Each element of P  is a transition probability from hidden 
state i to state j. That is,

( | }, , , , ...,p P X j X i i j N1 2ij t t1= = = =+ and , , ... .t T1 2=

(1)

The model emits an observation after each transition and 
emission information is given by observation probability 
distribution. The emission probability of an observation 
at time t may change from state to state. Since there are 
N hidden states and there are M possible observations in 
each state, the observation probability matrix is denoted 
by ( )B b kj= " ,  and consists of N M#  entry. This matrix 
gives the probability of emitting an observation given that 
the system is in any hidden state. That is,

( ) | , , , ..., , , , ...,b v P Y v X j j N k M1 2 1 2j k t k t= = = = =^ h  

and , , ... .t T1 2=   (2)

The initial state distribution gives the starting probabilities 
and usually given by N 1#  vector. Let ir  be the probability 
of starting at state i. Then,

,P X ii or = =^ h  where , ...i N1= .  (3)

These three parameters construct the complete parameter 
set ( , , )P Bm r=  of a HMM. 

2.2. Modeling of earthquake data by HMM

HMM has been one of the ways of modeling the earthquake 
data that include magnitudes, inter-event times, earthquake 
frequencies, depth of earthquakes, or locations. Earthquakes 
are caused by a sudden release of stress along faults. When the 
stress on the fault exceeds a threshold, an earthquake occurs, 
and energy releases. The stress level of the fault changes 
before each earthquake and these changes are unobservable. 
It is possible to observe and measure the magnitude or the 
occurrence time of an earthquake but, the same does not 
apply to the stress level that causes the earthquake. Hence, 
the states of the hidden Markov chain is assumed the “stress 
level” of the fault. Hidden states are  denoted by Xt  which 
is defined on the state space , , ...,S N21= " , , and also 
when a hidden state number decreases, the stress level of 
fault decreases as well: state 1 corresponds to the minimum 
stress level and state N  corresponds to the maximum stress 
level. After each transition, four different observations are Figure 1. Possible earthquake locations.
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the Baum-Welch algorithm. Note that this algorithm does 
not give us the marginal distributions of each variable. 
The observation probability distribution of the new one-
dimensional variable is obtained.

Model parameters are estimated by the Baum-Welch 
algorithm which is an iterative algorithm based on 
expectation-maximization. The starting values for initial 
state distribution, observation emission distribution, 
and transition probabilitiy distribution are selected from 
Uniform distribution. Stopping criteria for estimates is 
10 4f = - . That is, when the difference between the last 

estimates and the previous estimates gets smaller than the 
identified value of f , the algorithm is stopped. Parameters 
are estimated for four different models. The likelihood 
values of the four models are used to select the most likely 
model.  Akaike Information Criterion (AIC) (Akaike 1974) 
and Bayesian Information Criterion (BIC) (Schwarz 1978) 
values are obtained to decide the most suitable model. The 
model with the lowest AIC and BIC value is selected as the 
best representative model that fits data. Likelihood, AIC, 
and BIC values are shown in Table 1. P is the degrees of 
freedom of each model. From Table 1, AIC and BIC take 
the smallest value for the two-state model. According to 
Table 1, the HMM with two hidden states fits better the 
data. 

Table 1. Likelihood and information criterion values

State P lnL AIC BIC
2 4 -918.15 1844.3* 1864.3*
3 9 -1447.92 2913.84 2958.92
4 16 -917.54 1867.08 1947.23
5 25 -1124.76  2249.52 2424.75

For two-state HMM, state 1 corresponds to low stress level 
whereas state 2 corresponds to the high-stress level. The 
estimated values of hidden state transition probabilities are 
given below.

.

.
.
.

P
0 5075
0 9999

0 4925
0 0001

=t c m   (4)

According to the transition probability distribution, the 
probability of a transition from “low-stress level” to “high-
stress level” is 0.4925 and the probability of a transition 
from “high-stress level” to “low-stress level” is 0.9999. It is 
known that one of the main reasons for severe earthquakes 
is the high-stress level of the ground and these earthquakes 
generally occur very rarely. The high-stress level makes 
a transition to the low-stress level just after a severe 

sequence, is needed to estimate model parameters of inter-
event times, in days, for each hidden state. Since there is no 
information about hidden states of past earthquakes, these 
1107 hidden states are estimated with the Viterbi algorithm.

The main contribution of our study is to allow multiple 
observations included in the parameter estimation part of 
the model. The traditional Baum-Welch algorithm  (Baum 
et al. 1970) allows using only one variable as an observation. 
Existing studies with HMM for earthquake forecasting 
generally include only one observation for learning problem 
and only one variable is used while estimating the model 
parameters with the Baum-Welch algorithm. Some of the 
existing studies assume the observation as the number of 
earthquakes occurred in independent time intervals, whereas 
some of them assume the magnitude of an earthquake as 
an observation. The inter-event times and locations of 
earthquakes are generally assumed as independent factors 
and the joint distribution of these random variables with the 
inter-event time is obtained by multiplying their marginal 
distributions. In our study, inter-event times between 
successive earthquakes are also assumed to be exponential. 
Different from the previous studies, three variables which 
are location, depth, and magnitude are included as the 
observations to the Baum-Welch algorithm. These three 
variables are expressed as a new single random variable 
for the Baum-Welch algorithm iterations. That is, more 
information is used to estimate the complete parameter 
set. Obtaining the marginal distributions of magnitude 
values and locations, and also the joint distribution of these 
two variables allows us to draw some clear and accurate 
conclusions.

2.3. Model selection

Four different models are constructed with different 
numbers of hidden states , ...,N 2 5=^ h  and the best model 
that fits the data is to be selected. There exist 2 locations, 
2 depth classes, and 4 magnitude classes. It is possible to 
show these multivariate data sets as a one-dimensional 
new variable by taking the Cartesian product of these 
three random variables. So, the new type of observation 
includes sixteen types of possible observation. For instance, 
, , . , .L D km M10 3 0 3 3<II ! 6 @" ,  is the joint event of an 

occurrence of an earthquake between magnitude 3 and 3.3 
at the Aegean Sea region with a depth of less than 10km. 
This joint event is just one of the sixteen events. Each of 
these joint events is one of the possible observations to be 
emitted. Now, a hidden state sequence can be obtained. 
The complete earthquake data is fitted for the process of 
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( | ), ,P M m X j j 1 2t= = =  and , , , .m 1 2 3 4=   (5)

For instance, given that stress level is low, the probability 
of observing an earthquake with a magnitude greater than 
or equal to 3.9 is 0.0739. It is seen from the magnitude 
distribution that when the stress level is low, there is 
a tendency of occurring non-violent earthquakes. The 
probabilities of class 1 and class 2 are much greater than 
the probabilities of class 3 and class 4. However, the same 
conclusion cannot be made for the high-stress level. The 
probabilities of class 3 and class 4 for the high-stress level 
are approximately two times greater than that of the low-
stress level. And also the probabilities of class 1 and class 
2 for the high-stress level are much lower than that of the 
low-stress level. The tendency of occurring earthquakes with 
higher magnitude increases when the stress level is high.

Table 4. Marginal distribution of location given the hidden 
states

State I State II
Mytilene Island (LI) 0.3666 0.3385
Aegean Sea (LII) 0.6334 0.6615

The conditional distributions related to locations presented 
in Table 4, gives the probability,

( | ), ,P L l X j j 1 2t= = = and , .l L LI II=   (6)

earthquake. There are very frequent non-violent earthquakes 
in the investigated area, Turkey side of the Aegean Sea. In 
other words, the stress level of the region is mostly low. 
This is why the system tries to make a transition to the 
low-stress level, especially from the high-stress level. When 
the region’s tendency to non-violent earthquakes and the 
selected model is considered, the transition probability 
matrix gives the expected probabilities of hidden transitions. 
The process tends to make transitions from the low-stress 
level to both states with almost the same probabilities. The 
estimated values of observation emission probabilities are 
given in Table 2.

Recall that hidden states depend only on the previous state 
and the transition probability matrix is independent of 
observations. Table 2 gives the probabilities of emissions 
given the hidden states. Emission probabilities for sixteen 
observations are obtained. It is clear from Table 2 that 
when the magnitude value gets higher, the probability of 
observation emission gets lower. That is, there is a small 
tendency for an earthquake with high magnitudes.

3. Results
It is possible to obtain the conditional probability 
distributions of magnitudes and locations using Table 2 
by considering the marginalization according to other 
observations. If the marginalization is taken by the depth 
and location, the distribution of magnitude classes is 
obtained given the hidden states. If the marginalization 
is taken by the depth and magnitude, the distribution of 
locations is obtained given hidden states. These probabilities 
are presented in Table 3.

This conditional distribution of magnitude classes presented 
in Table 3 gives the conditional probability,

Table 2. Observation probability distribution given the hidden states

Obs. Event State I State II Obs. Event State I State II
1 LI , D ≤ 10, M ∈ [3.0,3.3) 0.1240 0.1479 9 LII , D ≤ 10, M ∈ [3.0,3.3) 0.1213 0.1199
2 LI , D ≤ 10, M ∈ [3.3,3.6) 0.0317 0.0846 10 LII , D ≤ 10, M ∈ [3.3,3.6) 0.1259 0.0182
3 LI , D ≤ 10, M ∈ [3.6,3.9) 0.0095 0.0136 11 LII , D ≤ 10, M ∈ [3.6,3.9) 0.0172 0.0564
4 LI , D ≤ 10, M ≥ 3.9 0 0.0055 12 LII , D ≤ 10, M ≥ 3.9 0 0.0547
5 LI , D ≥ 10, M ∈ [3.0,3.3) 0.1525 0 13 LII , D ≥ 10, M ∈ [3.0,3.3) 0.1672 0.1069
6 LI , D ≥ 10, M ∈ [3.3,3.6) 0.0451 0.0317 14 LII , D ≥ 10, M ∈ [3.3,3.6) 0.0771 0.1544
7 LI , D ≥ 10, M ∈ [3.6,3.9) 0 0.0328 15 LII , D ≥ 10, M ∈ [3.6,3.9) 0.0546 0.0596
8 LI , D ≥ 10, M ≥ 3.9 0.0038 0.0224 16 LII , D ≥ 10, M ≥ 3.9 0.0701 0.0914

Table 3. Marginal distribution of earthquake class given the 
hidden states

State I State II
1: M ∈ [3.0, 3.3) 0.5650 0.3747
2: M ∈ [3.3, 3.6) 0.2798 0.2889
3: M ∈ [3.6, 3.9) 0.0813 0.1624
4: M ≥ 3.9 0.0739 0.1740
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( ) ( ), , , , .P M m w b k m 1 2 3 4j j
j 1

2

M= = =
=
/   (9)

Table 6. Marginal distribution of magnitude class 

1: 2:M ∈ [3.3,3.6) 3: 4: M≥3.9
P (M=m) 0.5022 0.2828 0.1080 0.1070

The marginal probability distribution of location variable 
given in Table 7 is obtained as,

( ) ( ),P L l w b kj j
j 1

2

L= =
=
/  where , .l L LI II=   (10)

Table 7. Marginal Distribution of Location

Mytilene Island (LI) Aegean Sea (LII)
P (L=l) 0.3574 0.6426

The joint probability distribution of magnitude and location 
variables given in Table 8 is obtained as, 

( ) ( ),,P w b kM m L l j j
j 1

2

LM= ==
=
/  where 

, , , , .m and l L L1 2 3 4 I II= =    (11)

Table 8. Joint distribution of location and magnitude

Mytilene Island 
(LI)

Aegean Sea 
(LII)

1: M ∈ [3.0,3.3) 0.2341 0.2681
2: M ∈ [3.3,3.6) 0.0898 0.1930
3: M ∈ [3.6,3.9) 0.0216 0.0864
4: M ≥ 3.9 0.0119 0.0951

To check the independency of the random variables 
magnitude, location, and depth, we check the following 
equality.

) ( ( , )P M k P L m P M k L m= = = = =^ h
For instance, P(M=1)=0.5022 and P(L=LI)=0.6426 and their 
product is 0.3227. On the other hand, their joint probability 
is P(M=1, L=LI)=0.2681. Hence, it can be concluded 
that these two random variables are not independent. So, 
including magnitude, location and depth variables together 
give more accurate results.

Having estimated the hidden state sequence, now it is 
possible to estimate the exponential distribution parameters 
for each hidden state. Inter-event times for state 1 (low-
stress level) follows an exponential distribution with 

.0 17231m =t  and inter-event times for state 2 (high-stress 
level) follows an exponential distribution with .0 20252m =t

For instance, the probability of observing an earthquake 
in Mytilene Island is 0.3666 given that the stress level is 
low. The location distribution shows that the number of 
earthquakes that the Aegean Sea is exposed, is more than 
that of the Mytilene Island for both low and high-stress 
levels.

The joint observation probability distribution of the 
magnitude and location is obtained by obtaining the 
marginalization of depth. 

Table 5. Joint distribution of location and magnitude given the 
hidden states

State I State II
LI , M ∈ [3.0,3.3) 0.2765 0.1479
LI , M ∈ [3.3,3.6) 0.0768 0.1163
LI , M ∈ [3.6,3.9) 0.0095 0.0464
LI , M ≥ 3.9 0.0038 0.0279
LII , M ∈ [3.0,3.3) 0.2885 0.2268
LII , M ∈ [3.3,3.6) 0.2030 0.1726
LII , M ∈ [3.6,3.9) 0.0718 0.1160
LII , M ≥ 3.9 0.0701 0.1461

The conditional joint distribution of magnitude and location 
presented in Table 5 gives the probability,

( , | ), ,P M m L l X j j 1 2t= = = = and , , ,m 1 2 3 4=  and

, .l L LI II=    (7)

From Table 5, the probability of observing an earthquake in 
Mytilene Island with a magnitude between 3.3 and 3.6 is 
0.0768. Note that the sum of observation probabilities for 
each hidden state is equal to one.

Apart from the marginal and joint probabilities for magni-
tude and location with the condition of hidden states, it is 
possible to obtain unconditional probability distribution for 
each observation by using the limiting probabilities of hid-
den states. Using the estimated transition probability matrix 
( )Pt , it is possible to compute the limiting distribution of 
hidden states. Let w be the vector of steady-state probabil-
ities, then

[ , ] [ . , . ] .w w w 0 6699 0 33011 2= =   (8)

The limiting probabilities can be considered as the weights 
and the weighted means of hidden states are calculated for 
the conditional probability distributions. Then, the marginal 
probability distribution of magnitude variable given in Table 
6 is obtained as,
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where , , , , , ,M l L L1 2 3 4 I II= =  and .≥t 0

If the time index t goes to infinity, the probabilities approach 
to some limiting values given in section 2.4. and become 
independent of t. We already know that the probability 
distributions defined in section 2.4 hold the conditions to be 
a probability function. So, the joint probability distributions 
of the variables M, L, and T also hold the conditions to be a 
probability function under the limiting case.

We can make short-term forecasting for all the elements 
of the variable vector. Note that observations only depend 
on the related hidden states according to the HMM 
assumptions. Table 9 shows the short-term probabilities of 
observing earthquakes in one week.

According to Table 9, the probabilities of occurring an 
earthquake in any region increases as t goes to infinity. When 
t " 3 , the probabilities converge to the joint probabilities 
given in Table 8. Suppose that today an earthquake occurred. 
Then, the probability of occurring an earthquake with the 
magnitude between [3.0, 3.3) in the Aegean Sea deficits in 
5 days is,

P(M = 1, L = LII, T ≤ 5) = 0.1610. (13)

4. Discussion and Conclusion
HMM is used to model the earthquake occurrences in the 
Aegean Sea region. Among the possible models, the most 
likely model is selected by AIC and BIC after the learning 
problem. Model parameters are estimated by the Baum-
Welch algorithm. The traditional Baum-Welch algorithm 
allows only one observation to perform the iterations. 
Different from the existing studies, three types of variables 
which are magnitude, location, and depth are represented 
as a one-dimensional random variable to perform the 
algorithm. This procedure allowed us to estimate the model 

. So, the mean times until the next earthquake can be 
calculated using the parameters, that is, .1 5 80481

1

n
m

= =t  
days and .1 4 93712

2

n
m

= =t  days, for each state respectively. 
The mean waiting time until the next earthquake is larger 
for the low-stress level than that of the high-stress level. 
That is, when the stress level is high, it is more likely to 
occur an earthquake more quickly. The mean waiting time 
(E(t)) is calculated with a mixture of two non-identical 
and independent exponential distributions ( 1mt  and 2mt ) . 
Let pj is the probability of observing an inter-event time 
from the jth hidden state and note that p 1

j
1

1

2
=

=
/ . Two 

proportions p1 and p2 are estimated using the 1106 inter-
event time according to which hidden state it was generated. 
The estimated values of proportions based on hidden states 
are,  .p 0 58441 =t  and .p 0 41562 =t . It means that 58.44% 
of the inter-event times are emitted at the low-stress level 
and 41.56% of the inter-event times are estimated at the 
high-stress level. So, the mean waiting time between two 
successive earthquakes is, ( ) .E t

p
5 4441

i

j
i

1

2

m
= =

=

t/  days. 
Besides, the mean rate of the distribution mt^ h  can be 
obtained as . .5 4441

1 0 1836m = =t .

Short-term probability forecasting. It is possible to give forecasts 
of short-term probabilities for earthquake occurrences. The 
aim is to find the probability of earthquake occurrence in 
a region, in t days. For this purpose, we must use the joint 
probability distribution of magnitude (M), location (L), 
and inter-event time (T). It has been assumed before that 
inter-event time is independent of other variables. So, the 
joint probability distribution of M, L, and T can be obtained 
by the production of the joint distribution of M and L, 
and distribution of T. So, the probability of observing an 
earthquake at a magnitude class k at one of two locations 
in t days is,

( , , ) ( , )( )≤P M k L l T t P M k L l e1 t= = = = = - m- t       (12)

Table 9. One-week earthquake occurrence probabilities

Event t (in days)
1 2 3 4 5 6 7 ∞

M = 1, L = LI 0.0393 0.0719 0.0991 0.1218 0.1406 0.1563 0.1693 0.2341
M = 2, L = LI 0.0150 0.0276 0.0380 0.0467 0.0539 0.0599 0.0649 0.0898
M = 3, L = LI 0.0036 0.0066 0.0091 0.0112 0.0130 0.0144 0.0156 0.0216
M = 4, L = LI 0.0020 0.0036 0.0050 0.0062 0.0071 0.0079 0.0086 0.0119
M = 1, L = LII 0.0449 0.0824 0.1135 0.1394 0.1610 0.1789 0.1939 0.2681
M = 2, L = LII 0.0323 0.0593 0.0817 0.1004 0.1159 0.1288 0.1396 0.1930
M = 3, L = LII 0.0145 0.0265 0.0366 0.0449 0.0519 0.0577 0.0625 0.0864
M = 4, L = LII 0.0159 0.0292 0.0403 0.0495 0.0571 0.0635 0.0688 0.0951
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