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In indoor environments, the detection of doors (open, semi-opened, and closed) is a 
crucial task for a variety of fields such as robotics, computer vision, and architecture. The 
studies that are addressed the door detection problem can be divided into three major 
categories: 1) closed doors via visual data, 2) open doors via range data, and 3) open, 
semi-opened, and closed doors via point cloud data. Although some successful studies 
have been proposed being detected doors via visual and range data under specific 
circumstances, in this study, we exploited point cloud data due to its ability to describe 
the 3D characteristic of scenes. The main contribution of this study is two-fold. Firstly, we 
mainly intended to discover the potential of point-based deep learning architectures such 
as PointNet, PointNet++, Dynamic Graph Convolutional Neural Network (DGCNN), 
PointCNN, and Point2Sequence, in contrast to previous studies that generally defined a 
set of rules depending on the type of door and characteristics of the data.  Secondly, the 
OGUROB DOORS dataset is constructed, which contains point cloud data captured in the 
GAZEBO simulation environment in different robot positions and orientations. We used 
precision, recall, and F1-score metrics to analyze the merit and demerit aspects of these 
architectures. Also, some visual results were given to describe the characteristics of these 
architectures. The test results showed that all architectures are capable of classifying 
open, semi-opened, and closed doors over 98% accuracy.  

 

IÇ ORTAMLARDA KAPILARIN TESPİTİ İÇİN DERİN ÖĞRENME TEKNİKLERİNİN 
KARŞILAŞTIRILMASI 

Anahtar Kelimeler Öz 
Kapı Bulma 
Nokta Bulutu Verisi 
Derin Öğrenme 
Kapı Veri Kümesi 
 
 

İç ortamlarda kapıların (açık, yarı açık ve kapalı) tespit edilmesi robotik, bilgisayarlı 
görü ve mimari gibi çok çeşitli uygulama alanlarında kritik bir görevdir. Kapı tespiti 
problemine çözüm bulmaya çalışan çalışmalar üç temel kategoriye ayrılabilir: 1) görsel 
veri ile kapalı kapılar, 2) mesafe verisi ile açık kapılar ve 3) nokta bulutu verisi ile açık, 
yarı açık ve kapalı kapılar. Kapıları görsel ve mesafe verisi ile bazı belirli şartlar altında 
başarılı bir şekilde bulan yöntemler önerilmiş olsa da bu çalışmada sahnelerin 3B 
karakteristiğini anlatma kabiliyeti sebebiyle nokta bulutu verisi kullanılmıştır. Bu 
çalışmanın iki temel katkısı bulunmaktadır. Birincisi, kapının tipi ve verinin 
karakteristiğine bağlı olarak genellikle bir kurallar kümesi tanımlayan önceki 
çalışmalardan farklı olarak PointNet, PointNet++, Dinamik Çizge Erişimsel Sinir Ağları 
(DGCNN), PointCNN ve Point2Sequence gibi nokta tabanlı derin öğrenme mimarilerinin 
potansiyelinin keşfedilmesini amaçlanmıştır. İkincisi, GAZEBO benzetim ortamında farklı 
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robot konum ve yönelimleriden elde edilen nokta bulutlarından oluşan OGUROB DOORS 
veri kümesi oluşturulmuştur. Bu mimarilerin olumlu ve olumsuz yönlerini analiz etmek 
için kesinlik, duyarlılık ve F1 skor ölçütlerini kullandık. Buna ek olarak, mimarilerin 
karakteristiklerini ortaya koymak amacıyla bazı görsel sonuçlar verilmiştir. Test 
sonuçları bütün mimarilerin açık, yarı açık ve kapalı kapıları %98 üzerinde bir başarı ile 
sınıflandırabildiğini göstermiştir. 
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1. Introduction  

The door detection problem has been studied since the 
beginning of the 2000s and is still one of the hot topics 
in many research areas. The main reason for that is the 
doorway locations separate indoor environments into 
different sections. Hence, identifying doors is critical for 
a variety of applications. For example, being aware of a 
doorway location could promote the autonomy of 
robots. In localization problem, doorways can be used as 
landmarks to decrease localization errors (Ehlers, 
Stuede, Nuelle, and Ortmaier, 2020). Determining 
doorway locations and traversing narrow passages may 
help automated wheelchair platforms and robots' fully 
autonomous navigation tasks (Kakillioglu, Ozcan, and 
Velipasalar, 2016; Derry and Argall, 2013). Also, 
classifying the status of the doors as open, semi-opened, 
and closed can improve the performance of humanoid 
robots for service tasks (Meeussen, Wise, Glaser, and 
Chitta, 2010).  Besides, door detection is also crucial for 
Building Information Model (BIM) applications such as 
generating up to date models of large buildings (Jung, 
Stachniss, Ju, and Heo, 2018), for emergency cases, 
automatic extraction of IndoorGML models and 
segmentation of walkable spaces (Staats, Diakité, Voûte, 
and Zlatanova, 2019; Flikweert, Peters, Díaz-Vilariño, 
Voûte, and Staats, 2019), semantic mapping, and space 
subdivision (Nikoohemat, Peter, Elberink, and 
Vosselman, 2017;  Zheng, Peter, Zhong, Oude Elberink, 
and Zhou, 2018).  

The previous studies related to the door detection 
problem generally examined closed and open door 
situations. These studies separated into three categories 
depending on the type of door (closed or open) and 
sensor employed to detect doorway locations. In the 
first category, the studies aimed to identify closed doors 
with visual data. These studies suffer from two main 
drawbacks: 1) The distance and angle between robot 
and door frame seriously affect the performances of 
these studies because their solution depends on the 
pixels of visual data. 2) The success of these methods 
thoroughly relies on lightening conditions of the 
environments since they try to detect doorway locations 
using the neighboring pixels' similarity (Yang and Tian, 
2010; Murillo, Košecká, Guerrero and Sagüés, 2008). In 
the second category, the studies utilized range data 
acquired with ultrasonic sensors or 2D laser range 

finders to detect open doors. They generally attempt to 
find a void area corresponding to the dimensions of a 
door when the robot is located within or in the 
proximity of a door frame (ElKaissi, Elgamel, Bayoumi, 
and Zavidovique, 2006). The main disadvantage of these 
studies is having a high false-positive ratio. Besides, 
some approaches in the previous studies used both 
visual and range data to detect doorway locations 
(Hensler, Blaich, and Bittel, 2010; Meeussen, Wise, 
Glaser, and Chitta, 2010). In the last category, the studies 
used point cloud data and/or depth images, which have 
been frequently preferred in recent years for robotic 
and BIM applications, to detect open, semi-opened, and 
closed doors. These studies are not affected by varying 
light conditions of the environment (Rusu, Meeussen, 
Chitta, Beetz, 2009). Besides, the robot does not need to 
be located within or proximity of the door frame to 
recognize an open door (Panzarella, Schwesinger, and 
Spletzer, 2016). Similar to studies that used visual data, 
the angle between robot and door frame could affect the 
success of these methods. As the angle narrows, the door 
detection rate generally decreases for studies in the last 
category (Souto, Castro, Gonçalves, and Nascimento, 
2017; Derry and Argall, 2013). 

In this study, we opted to use point cloud data to detect 
open, semi-opened, and closed doors. The primary 
reasons for that are the ability of point cloud data to 
describe 3D characteristics of scenes, and making 
decisions about some critical tasks such as path 
planning, navigation, and opening the closed or semi-
opened doors when the robot placed further from the 
doors. As explained in the related work section, existing 
studies generally have designated a set of rules that rely 
on the type of door and data. Although some of these 
studies were successful under specific circumstances, 
the generalization ability of these studies was 
inadequate. To deal with this problem and to classify 
doors as closed, semi-opened, and open doors 
independent from the distance and angle between robot 
and door frames, we discovered the potential of point-
based deep learning architectures such as PointNet, 
PointNet++, DGCNN, PointCNN, and Point2Sequence. 
Besides, we noticed that the datasets in the literature 
are insufficient due to the lack of the number of samples 
and type of doors. For that reason, we built the OGUROB 
DOORS dataset, which contains 1353 point cloud data 
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for open, semi-opened, and closed door types, captured 
in the GAZEBO simulation environment in different 
robot positions and orientations. The test results 
indicated that all architectures were capable of 
identifying open, semi-opened, and closed doors.  

The rest of the study is organized as follows: In section 
2, related works are reviewed. The point-based deep 
learning techniques are briefly explained in section 3. 
The OGUROB DOORS dataset is described in section 4. 
We present quantitative and visual results in section 5 
and concluded with section 6. 

 
2. Related Works  

In this section, we divided studies related to the door 
detection problem into four categories. We first briefly 
discussed some milestone approaches that utilized 
visual and range data. Then, a comprehensive review for 
point cloud-based and learning-based studies were 
presented.     

 

2.1. Vision-Based Approaches 

Andreopoulos and Tsotsos (2008) proposed a 
computer-controlled wheelchair system that 
automatically detects doors and determines the position 
of a door frame with the aid of visual data. They assumed 
that a door frame is a set of corners combined by line 
segments. They then extracted corners and line 
segments and defined a set of rules to model the door 
frame. In a similar work, Yang and Tian presented a 
method that detects the geometric model of a door 
(corners and line segments) with boundary features. For 
that reason, their method was robust against varying 
colors and textures. However, the method could not 
distinguish between open and closed doors since it only 
considers boundaries. Kim, Cheong, Kim, and Park 
(2011) first recognized doorknobs considering the 
viewpoint of a robot and the geometric position of 
doorknobs. They determined a region of interest for 
doorknobs so that they decreased computational 
complexity and improved the performance of the object 
recognition scheme. Then, door locations were specified 
through doorknobs. Unfortunately, their methods were 
available for closed doors. Sekkal, Pasteau, Babel, Brun, 
and Leplumey (2013) aimed to detect doors situated in 
a corridor via a monocular camera. They first 
determined boundaries between wall and floor. Then, 
they obtained a 3D model of walls by using these 
boundaries and searched the door location in wall 
planes.    

2.2. Range-Based Approaches 

ElKaissi et al. attempted to detect door edges using two 
successive laser readings. They defined a set of rules 
over these laser readings. They did not apply Hough 
transform since it has high computational complexity 

and inappropriate for real-time applications. 
Nieuwenhuisen, Stückler, and Behnke (2010) 
emphasized that doors are movable objects. They first 
employed a traditional occupancy grid generation 
approach to obtain map of the environment. Then, they 
defined doors as line segments that can move around 
the door frame's vertical axis. Lastly, they searched 
mismatch between the map and the current laser 
reading to detect movable doors. Gillham, Howells, 
Spurgeon, Kelly, and Pepper (2013) used an infrared 
sensor to detect doors. They extracted two types of 
features from high and lower-resolution raw data to 
feed various classifiers.  They performed experiments 
with data acquired from varying angles (from -45 to 45 
degrees) between the sensor and door frame to 
represent their method's efficiency. Kaleci, Şenler, 
Dutagaci, and Parlaktuna (2015) proposed a method for 
open doors. They noticed that a bottleneck 
characteristic occurs when the robot is situated within a 
door frame. Then, they defined a set of rules to detect 
that bottleneck characteristic from a laser scan. In this 
way, they aimed to decrease the false-positive ratio, 
which is the main drawback of range-based door 
detection methods. The extensive experiments showed 
that their method was able to significantly reduce the 
false-positive ratio while the door detection rate over 
90%.   

 

2.3. Point Cloud Based Approaches 

In recent years, the studies that address Building 
Information Model (BIM) applications have been gained 
popularity. These studies generally use Mobile Laser 
Scanners (MLS) to obtain point cloud data together with 
trajectories of MLS. The data is segmented to dominant 
planar surfaces such as walls, terrain, and ceiling. Lastly, 
open doors are detected by searching in wall planes to 
separate different parts of indoor environments, such as 
rooms and corridors. For example, Budroni and Böhm 
(2010) applied the volume sweep reconstruction 
method to determine dominant planar surfaces. Then, 
they projected wall planes into a 2D data structure and 
searched a gap along the wall plane with the aid of a 
sweep line parallel to the terrain surface at 1m height. 
Nikoohemat et al. proposed a graph-based method to 
obtain planar surfaces. Then, they represented wall 
planes with an octree data structure and examined 
empty voxels to detect open doors. Wang, Xie, and Chen 
(2017) utilized Delaunay triangulation, alpha-shape 
algorithm, and MLS trajectory for void detection in wall 
planes that correspond to an open door. Díaz-Vilariño, 
Verbree, Zlatanova, and Diakité (2017) proposed a 
different approach without segmenting wall planes to 
detecting doors. They first calculated a vertical profile 
during the trajectory. Then, they examined the number 
of points and average z-coordinates of the vertical 
profile to determine open door locations. Jung et al. 
created a histogram according to z coordinates of points 
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to segment terrain and ceiling planes. Then, they applied 
the Douglas-Peuker method to wall planes for 
determining void regions in a rectangle shape. Lastly, 
they tested the void region for dimensions of a door 
frame. Cui, Li, Yang, Xiao, Chen, and Dong (2019) 
specified predetermined horizontal slices at different 
heights from the ground plane to identify door 
candidates. Then, point clouds corresponding to these 
candidate locations were converted into binary images 
and applied Hough transform to locate the door frame. 
Staats et al. transferred the point cloud data into voxel 
space. Then, they used the trajectory of the MLS to 
determine open doors. They controlled both vertical and 
horizontal voxels in the direction of trajectory to 
decrease the false-positive rate.   

The studies that aim to develop autonomous wheelchair 
systems also interest in detecting open doors. For 
example, Derry and Argall first extracted wall planes 
with RANSAC method. Then, they performed a 
horizontal search along the wall plane to find a void 
region corresponding to door locations. They conducted 
extensive experiments with point cloud data acquired 
different positions and orientations. The angles and 
distance between the sensor and the door frame varying 
from 20 to 75 degrees and from 1.8 to 4.2 meters, 
respectively. The experimental results indicated that the 
door detection rate decreases below 70% as the angle 
increases. Burhanpurkar, Labbe, Guan, Michaud, and 
Kelly (2017) separated walls in the point cloud data and 
filtered points according to the z-axis to obtain the 
midsection of the wall. In this way, they aimed to 
develop a method robust against occlusions. They 
considered both the protruding and non-protruding 
hinged doors. Experiments are performed with different 
approaching angles and distances to the door frame. 
Panzarella et al. used two RGB-D cameras to gather 
point cloud data. The data was transferred into depth 
images, and traditional 2D image processing approaches 
were applied to depth images to detect discontinuities 
that occur at door locations. Then, convolution was 
employed the pixels corresponding discontinuities for 
extracting door edges. Besides, the method utilized the 
Harris operator to distinguish corners. Lastly, the edges 
and corners were connected with the line intersection 
technique to calculate door frame locations.    

Kakillioglu et al. transferred wall planes into depth 
images and applied a histogram-based method to the 
images for searching empty regions resembling open 
doors. Then, they exploited Aggregate Channel Features 
to train visual data so that they decreased the false 
positive rate. Michailidis and Pajarola (2017) first 
decided on wall candidates with an occlusion-aware 
method. Then, they utilized the alpha-shapes approach 
to calculate the general shape of the wall candidates. The 
boundary lines of walls were calculated with RANSAC, 
and they construct a graph (in other words, 2D cell 
complex), which is the input of the graph-cut 

optimization problem. The doors were classified as 
solving the problem that determines cells belong to door 
regions. Kaleci and Turgut (2020) proposed a rule-
based approach for locating open doors. In this 
approach, they aimed to identify four corners of doors 
while searching neighbors of unmeasured (NaN) 
readings. Hence, they determined boundary edges of 
open doors. Lastly, they controlled the dimensions of 
these edges to locate doors.  

Borgsen, Schöpfer, Ziegler, and Wachsmuth (2014) 
aimed to detect closed doors using normals of points. 
They first decided on planes through the region growing 
method, and for each plane, they extracted features such 
as the number of points, width, and height of the planes. 
They used normals to identify the edges of door frames. 
Lastly, a confidence value was estimated while 
considering ideal and calculated door dimensions in 
terms of difference and standard deviation. A similar 
work detected closed doors presented by Nagahama, 
Takeshita, Yaguchi, Yamazaki, Yamamoto, and Inaba 
(2018). They first passed the point cloud data from the 
bilateral filter, and they calculated the normals of points. 
The points were clustered according to the normals, and 
all planes perpendicular to the ground plane were 
extracted. The edges of doors were determined by 
applying the Canny operator. Lastly, the edges were 
controlled whether they form a rectangular region or 
not. Quijano and Prieto (2016) used contextual and 
geometric relationships of planes to detect open and 
closed doors recessed into walls. They applied RANSAC 
to wall planes for line segmentation. They removed lines 
that are not parallel to the ground and wall plane. The 
remaining lines were utilized to determine door 
locations. Bayram, Kolaylı, Solak, Tatar, Turgut, and 
Kaleci (2019) aimed to detect semi-opened and closed 
doors. In this method, the authors considered the 
narrow angles problem of visual and point cloud-based 
approaches. They proposed a parameter tuning 
approach that depends on the angle and distance 
between the door frame and sensor. Lastly, they used 
the output of the parameter tuning approach for 
dimensions of doors. 

Rusu et al. proposed a method to locate open, semi-
opened, and closed doors. They first applied 
downsampling to point cloud data for obtaining an 
appropriate method for real-time applications. Then, 
they calculated point normals and they clustered point 
cloud data depending on normals. They employed 
RMSAC (a variation of RANSAC) method for each cluster 
to fit a plane model. Lastly, they extracted features such 
as width, height, maximum, and minimum points of 
planes to determine the best door candidates. Souto et 
al. aimed to detect open, semi-opened, and closed doors 
for the localization of robots. Similar to Rusu et al., the 
authors first filtered the point cloud data and 
determined wall planes. Then, they extracted points that 
belong to the boundary of doors. Lastly, they considered 
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the position of these points to detect doors. Quintana, 
Prieto, Adán, and Bosché (2018) transferred point cloud 
data into an octree data structure to detect open doors. 
Then, they extracted dominant planar surfaces such as 
walls, ground, and ceiling with the aid of the octree. 
Simultaneously, they classified voxels as empty and non-
empty. They examined empty voxels lie on wall planes 
to locate open doors. If the method does not find empty 
voxels for open doors, it tries to identify closed doors 
with visual and point cloud data. Besides, they 
performed a preprocessing step to avoid decreasing the 
true positive rate due to varying lightened conditions.   

 

2.4. Learning-Based Approaches 

Learning-based approaches are divided into two 
groups: machine learning and deep learning. When the 
studies are examined, it is seen that visual or point cloud 
data is used to detect and classify doors. Murillo et al. 
proposed a door detection method that takes into 
account both geometric and appearance properties of a 
door. They defined the geometric model of a door with a 
few parameters, and they used a learning approach for 
appearance properties. Then, a probabilistic approach 
calculated geometric and appearance likelihood to 
determine doors. Hensler et al. utilized visual and range 
data to detect doors. They solved the decision problem 
using the AdaBoost algorithm after extracting the door's 
weak features such as width, gap, color, etc. Ye and Qian 
(2018) proposed a method to recognize structural 
objects (e.g., stairways, doorways, walls, and so on) in 
the indoor environment for helping the navigation of 
visually impaired people. After removing the planar 
regions in the point cloud model, inter-plane 
relationships were extracted for every two planes 
revealed. Based on these relationships, planes were 
classified with the Gaussian Mixture Model with six high 
level features. 

Recently, 2D or 3D deep learning approaches have also 
started to be used for door detection as well as in many 
areas. Chen, Qu, Zhou, Weng, Wang, and Fu (2014) 
applied Convolutional Neural Network (CNN) to visual 
data to detect closed doors. They significantly decreased 
the false positive rate since they used a dataset that 
contains numerous negative samples. The main 
drawbacks of this work were high false negatives and 
being only available for closed doors. Othman and Rad 
(2020) found the doorways using images taken from a 
monocular camera on the humanoid robot. Their 
method decided whether there is an open door or no-
door in the image with the CNN approach. For the door 
transition points, the pixels are searched on the depth 
map obtained from the image with deep learning 
approaches. Bersan, Martins, Campos, and Nascimento 
(2018) used 2D CNN-based YOLO (Redmon, Divvala,  
Girshick, and Farhadi, 2016) object identifier and 3D 
model-based segmentation algorithm for door object 

during semantic metric mapping of the environment. 
The point cloud was obtained using the depth 
information of the pixels in the bounding box with YOLO, 
and only the points belonging to the door were extracted 
using RANSAC. Similar algorithms for detecting the 
doors and door handles have been applied to humanoid 
robots (Arduengo, Torras, and Sentis, 2019; Llopart, 
Ravn, and Andersen, 2017). In another study (Beraldo, 
Termine, and Menegatti, 2019) that uses YOLO, the door 
positions and center of apertures for navigation of 
mobile robots were decided, and their statues were 
determined as open or closed. A depth-based filter was 
used to reduce false predictions. 

3D deep learning approaches have also been used for 
door detection problems. Since the points are 
permutation invariant and there is no defined structural 
relationship between points in the point cloud, it is not 
directly applied classical convolutional approaches. 
With the proposal of PointNet (Qi, Su, Mo and Guibas, 
2016), which is the first point-based deep learning 
architecture, studies on point-based deep learning 
architectures and application areas have increased. Koo, 
Jung, and Yu (2021) demonstrated the applicability of 
the 3D geometric deep learning approach MVCNN (Su, 
Maji, Kalogerakis and Learned-Miller, 2015) and 
PointNet independently for the door and wall detection 
in the BIM model. In the MVCNN architecture, 2D images 
were rendered from different angles around the 3D 
object, and after the features were extracted with 
classical CNN layers, the dominant ones were taken into 
account with the image pooling method. The success 
rate of single door, double door, sliding door, and 
revolving door categories created from CAD models is 
over 90% for MVCNN and PointNet. Ramôa, Alexandre, 
and Mogo (2020) proposed a method to classify closed, 
open and semi-open doors by combining 2D semantic 
segmentation and 3D classification methods. For 2D 
semantic classification, the bounding box of the door is 
extracted using FastFCN (Wu, Zhang, Huang, Liang and 
Yizhou, 2019) and FC-HardNet (Chao, Kao, Ruan, Huang, 
and Lin, 2019) methods. PointNet classifies point cloud 
data obtained from the depth information of the pixels 
in the bounding box. While an average accuracy of 
49.4% was obtained using the two methods together, an 
average accuracy of 43.3% was obtained performing 
only the PointNet architecture. 

As mentioned above, the vision-based approaches 
generally extracted corners and line segments that 
connect corners through traditional 2D computer vision 
methods. Then, they defined a set of rules depending on 
the positions of corners and line segments to detect 
doors. Similarly, range-based approaches attempted to 
recognize door characteristics relying on a set of rules 
over laser readings. The studies that addressed open 
door detection via point cloud data generally first 
segment wall planes and then searched a void region in 
the wall planes. Semi-opened and closed-door detection 
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methods preferred to using normal and color attributes 
of point cloud data. These studies suffered a lack of 
generalization ability since they used a set of rules 
depending on the type of door and data characteristic. 
On the other hand, learning-based approaches 
frequently applied CNN approaches to visual data or 
depth images, which ability to describe 3D 
characteristics of a scene is limited. In this study, apart 
from the previous studies, we preferred to discover the 
potential of point-based deep learning architectures for 
door detection. For that reason, we examined the 
comprehensive review of 3D deep learning approaches 
presented by Guo, Wang, Hu, Liu, and Bennamoun 
(2019). Then, we decided to employed five approaches, 
which belong to different categories in the review: 1) 
Pioneer architecture PointNet (Qi, 2016), 2) PointNet++ 
(Qi, Yi, Su and Guibas, 2017), which takes into account 
local regions hierarchically, 3) graph-based architecture 
DGCNN (Wang, Sun, Liu, Sarma, Bronstein and Solomon, 
2019), 4) Convolution-based PointCNN (Li, Bu,  Sun, Wu, 
Di and Chen, 2018), and 5) RNN-based Point2Sequences 
(Liu, Han, Liu, and Zwicker, 2019).  

 

3. Methods  

In this section, we briefly explain the significant 
properties of PointNet, PointNet++, DGCNN, PointCNN, 
and Point2Sequence point-based deep learning 
architectures.  

In this study, research and publication ethics were 
followed. 

 

3.1. PointNet 

PointNet is a pioneering architecture for point-based 
deep learning approaches. It evaluates points 
independently and individually, which means that 
PointNet does not consider neighbors of points in the 
feature extraction process. Multi-Layer Perceptrons 
(MLPs) with shared weights are applied to x, y, and z 
coordinates of points and other attributes such as color, 
normals, and curvature can be used if they are available 
to obtain features of points. In order to generate the 
global feature maximum pooling method which is called 
symmetric function is introduced. Thanks to the 
method, the global feature is independent in the order of 
points. With this function, the global feature is extracted 
by taking the maximum of the feature channels of the 
points. The global feature is mapped for categories with 
classifier layers. 

 

3.2. PointNet++ 

PointNet++ architecture is an extended version of 
PointNet. Similar to PointNet, the architecture extracts 
features for each point. However, PointNet++ takes 

account into neighbors during the feature extraction 
process. To do that, local regions are created for center 
points which are sampled uniformly depending on a 
predefined radius or K-nearest neighbors. Then, 
PointNet is applied to x, y, and z coordinates of points in 
each local region defined around the selected center 
points. Each center point feature is obtained by 
summarizing the features of the neighbor points using 
the symmetric function. In the successive layer, the local 
regions are grown in a hierarchical manner so that the 
architecture generates local features that are able to 
describe the characteristic of the scene. In all layers, 
local areas are constructed according to the spatial 
coordinates. The global features are extracted just like 
PointNet with the aid of symmetric function and are 
projected onto the category space through the classifier 
layer. 

 

3.3. Dynamic Graph CNN (DGCNN) 

DGCNN architecture belongs to the graph-based 
category. Similar to PointNet++ architecture, DGCNN 
exploits neighbors of points during the local feature 
extraction process. Local regions around each center 
point in the point cloud consist of its K nearest 
neighbors. The distances between points to form local 
regions are calculated in spatial and feature space for 
the first and successive layers, respectively. In contrast 
to PointNet++, the local regions are not grown 
hierarchically. After local regions are settled, for each 
point in the point cloud, a graph is constructed. The 
points in each local region are called nodes, and the 
distances between the center node and each neighbor 
node are called edges. In the first layer, edge weights are 
relative x, y, and z coordinates of neighbor nodes to the 
center node. Apart from the PointNet++, for successive 
layers edge weights are determined from features. The 
features are summarized with the symmetric function 
after extracting the edge features with weights-shared 
multi-layer perceptrons over the edges.  In each layer, 
the graph structure is dynamically updated according to 
the extracted feature. This process explained above is 
introduced as EdgeConv operator. DGCNN architecture 
is a combination of EdgeConv and PointNet. After 
EdgeConv extracts the features, the features are fed as 
input to architecture similar to PointNet. 

 

3.4. PointCNN 

PointCNN architecture aims to evaluate points together 
with their neighbors in the feature extraction process, 
unlike the architectures explained before that are 
considering points individually. To do that, the CNN 
approach is adapted to the point cloud since the point 
cloud data is permutation invariant, and a direct 
convolution approach cannot be applied. X-Conv 
convolution operator is introduced. X-Conv operator 
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learns a transformation matrix for each local region 
around selected points. Before the convolution is 
applied to the local region, the point features are 
weighted and ordered in a canonical form with the aid 
of the transformation matrix. The proposed X-Conv 
operator is added hierarchically to extract features and 
local areas are enlarged in successive layers like 
PointNet++. The classifying layer provides the 
relationship between the global features and categories. 

 

3.5. Point2Sequence 

Point2Sequence architecture is based on PointNet++, 
however, it is aimed to encode the contextual 
information of local regions. This architecture 
establishes multi-scale concentric local regions around 
each center point and then extracts each region features 
like PointNet++. The correlation between these different 
scale features for each center point is learned with 
recursive neural networks. LSTM (Long Short-Term 
Memory) structure is used to expose relation of features. 
Then, with the attention approach, hidden states of the 
LSTM are highlighted and each local region feature is 
obtained by aggregating different scale features with 
learned context vector. The global feature is extracted 
from the local region features by the MLPs and 
symmetric function. Unlike PointNet++, there is no 
successive layer since they merge multi-scale feature in 
one layer. 

 

4. The OGUROB DOORS Dataset  

In previous works, the studies that have been addressed 
indoor modeling generally used publicly available 
datasets such as ISPRS Benchmark on Indoor modeling 
(Khoshelham, Vilariño, Peter, Kang, and Acharya, 2017) 
for door detection. Since these datasets generally 
contain a rare number of samples corresponding to door 
locations, they are not appropriate for examining the 
performance of door detection methods. On the other 
hand, Derry and Argall constructed a dataset that 
includes approximately 100 samples for each open-door 
type. They captured these samples from different 
positions and orientations. Similarly, Burhanpurkar et 
al. built a dataset for their wheelchair application. The 
wheelchair was located at different positions within the 
range of 1 and 3 meters. The orientation of the 
wheelchair was generally toward the door frame. The 
dataset consists of 96 open door samples. Panzarella et 
al. created an open door dataset with 100 samples 
similar to Burhanpurkar's work. Kaleci and Turgut 
introduced a simple open-door dataset gathered via the 
Gazebo simulation environment. Apart from the 
previous open-door datasets, the robot was placed not 
only toward the door frame but also at narrow angles. 
Borgsen et al. constructed a colored closed-doors 
dataset that includes doors with different colors and a 

variety of materials. The samples were captured from 7 
different positions, at which the sensor is located 0.9, 
1.4, and 2.2 meters distant from the door frame. Also, the 
angle between the sensor and the door frame was -20, 0, 
and 20 degrees. Quintana et al. introduced two point 
cloud datasets (simulated and real) for semi-opened and 
closed doors. They used Blensor to obtain a synthetic 
model that includes five doors with different opening 
angles. There are 35 door samples in the real dataset. 
They separated the dataset into five categories, from 
simple to complex. Rusu et al. constructed a door dataset 
for open, semi-opened, and closed doors. They handled 
more than 50 situations from different angles. 

It is obvious that existing door datasets are 
inappropriate, especially deep learning architectures 
that require a large number of samples in the training 
phase. Additionally, the samples that are placed in these 
datasets were generally positioned toward the door 
frame. However, we intend to discover deep learning 
architectures' potential when the robot is located in all 
possible positions and orientations toward a door 
frame. For this reason, we built a new dataset, namely, 
OGUROB DOORS, through the Gazebo simulation 
environment (Gazebo, 2021) and Robot Operating 
System (ROS, 2021) robot control interface. To 
construct the dataset, a Pioneer 3-AT mobile robot with 
an Asus Xtion Pro RGB-D camera was launched to the 
simulation environment. The parameters of the camera 
were kept as default. In other words, we did not add 
noise to the measurements. We selected the minimum 
and maximum distance between robot and door frame 
as 1.5 and 3.5 meters, respectively. Then, we positioned 
the robot in uniformly distributed locations with a 10 
cm interval in each dimension. The orientation of the 
robot was determined randomly. For each robot 
location, we captured point cloud data for open, semi-
opened, and closed doors. As a result, we obtained 1353 
samples for each type of door. Then, we separated the 
samples depending on the distance between the robot 
and the door frame into four equal parts with a step size 
of 0.5 meters. Besides, we categorized the samples into 
five regions according to the angle between the robot 
and the door frame. Figure 1 shows the position of the 
door frame and robot locations with a large black circle 
and small filled circles, respectively. In the figure, cyan 
semi-circles depict boundaries of the parts according to 
distance. Also, pink line segments separate regions 
depending on the angle. In orange and blue regions, the 
angle between robot and door frame varies from 00 to 
300 and from 1500 to 1800, respectively. The angle alters 
from 300 to 600 and from 1200 to 1500, respectively, in 
red and yellow regions. Lastly, in the green region, the 
angle changes between 600 and 1200.  
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Figure 1. Robot locations. Orange (00 - 300), Red (300 - 
600), Green (600 - 1200), Yellow (1200 - 1500), and Blue 
(1500 - 1800) 

 

Table 1 shows the number of samples depending on 
angle and distance between robot and door frame.  

 

Table 1 

Number of Samples Depending On Angle And Distance 

      Dist 
 
Angle 

1.5-2m 2-2.5m 2.5-3m 3-3.5m Total 

Orange 9 21 41 59 130 
Red 50 55 70 91 266 
Green 117 115 140 189 561 
Yellow 50 55 70 91 266 

Blue 9 21 41 59 130 

Total 235 267 362 489 1353 

 

Figure 2 indicates samples for open, semi-opened, and 
closed doors belong to orange, red, green, yellow, and 
blue regions with different distances. In the figure, the 
first two columns indicate examples of open doors. RGB 
image and point cloud data of the corresponding scene 
are given in the first and second columns, respectively. 
Similarly, the third and fourth columns depict examples 
of semi-opened doors, and the last two columns show 
closed-doors examples. OGUROB DOORS dataset is 
publicly available and can be downloaded from 
(OGUROB DOORS, 2021). 

 

5. Experimental Works  

5.1. Experimental Setup 

We employed PointNet, PointNet++, DGCNN, PointCNN, 
and Point2Sequence point-based architectures to 

classify open, semi-opened, and closed doors. The 
architectures were implemented with Python 
programming language using TensorFlow library 
(2021). Point-based deep learning architectures are 
needed to employ a preprocessing step to point cloud 
data for classification problems. The point cloud data 
includes NaN values for the points are out of 
measurement range. Before fed these architectures, NaN 
points are excluded. Besides, these architectures receive 
a fixed number of points. Therefore, the number of 
points in a point cloud is chosen as 4096, and the 
farthest point sampling algorithm is applied to obtain 
uniformly distributed 4096 points. The resultant point 
clouds were used as an input of these architectures. 
OGUROB DOORS dataset was employed in the 
experiments. In the dataset, each point cloud data 
contains points represented with only x, y, and z 
coordinates. For each class, approximately 70%, 10%, 
and %20 samples were chosen randomly for training, 
validation, and test stages considering angles and 
distances between door frame and the robot.  We used 
default parameters for all architectures in the training 
stage, and 5-fold cross validation in the test stage.  

We assessed the performance of the architectures 
through precision, recall, and F1-score metrics. If a 
sample that belongs to a positive class is classified 
correctly, it is called a true positive (TP), or incorrectly 
classified is called a false positive (FP).  If a sample that 
belongs to a negative class is incorrectly classified as a 
positive class, it is called a false negative (FN). The ratio 
of true positive of a class to the total number of samples 
of that class is called recall (Equation (1)). Precision 
defines the ratio of true positive of a class to the total 
number of classified samples for that class (Equation 
(2)). F1 is the harmonic mean of precision and recall 
(Equation (3)). The results are the mean of 5-fold cross 
validation. 
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(a) Orange Region 

      
(b) Red Region 

      
(c) Green Region 

      
(d) Yellow Region 

      
(e) Blue Region 

Figure 2. Samples for open, semi-opened, and closed doors belong to orange, red, green, yellow, and blue regions with 
different distances. The first column indicates RGB image of open doors. The second column is point cloud data of the 
corresponding scene. The third column indicates RGB image of semi-opened doors. The fourth column is of the point 
cloud data corresponding scene. The fifth column indicates RGB image of closed doors. The sixth column is point cloud 
data of the corresponding scene.  

 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
  (2) 

𝐹1 = 2
𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 
  (3) 

 

 

 

5.2. Experimental Results 

The 5-fold cumulative confusion matrices of models 
trained with five different architectures on the test 
dataset are given in Table 2. As seen from the table, 
point-based deep learning architectures are appropriate 
for door detection problems. Besides, the architectures 
identified each type of door except a few samples via the 
point cloud data captured when the robot is located in 
all possible positions and orientations toward a door 
frame, which indicates the generalization ability of these 
architectures. The recall, precision, and F1-score values 
of these architectures for each type of door are 
demonstrated in Table 3.  
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Table 2 

5-fold cumulative confusion matrices for architectures 

Method Confusion Matrix 

PointNet 

 

PointNet++ 

 

DGCNN 

 

PointCNN 

 

Point2Sequence 

 

As seen from the table, all architectures are able to 
classify open, semi-opened, and closed doors over 98% 
recall values. Also, precision and F1-score values are 
over 98% for all architectures. We will give recall, 
precision, and F1-score values in the following 
subsections according to the angle and distance for each 
door type. Also, we will discuss why the architectures do 
not classify some examples with visual results. 

 

5.2.1 Open Door Results 

The quantitative and visual results for open doors are 
presented in Table 4 and Figure 3, respectively. As seen 
from the table, PointNet has a slightly lower recall value 
when it is compared with other architectures. The 
reason for that PointNet architecture extracts point’s 
features individually and independently. In order 
words, it does not take into account local information. 
Therefore, in some scenes, PointNet does not 
distinguish the door frame and wall planes, and 
misclassified scenes occur. An example for these 
situations is given in Figure 3(a). DGCNN also 
incorrectly classified the same scene with PointNet. 
Although DGCNN constructs local regions and considers 
neighbor points in the local region during the feature 
extraction process, local regions are not expanded 
hierarchically. Besides, the local regions become 
consisting of the points that have the same features 
since the graph structure is dynamically updated 
according to the extracted feature in each layer. 
Therefore, DGCNN may not understand the 
characteristic of the scenes in some cases. PointCNN, 
unlike other architectures, evaluates points together 
with their neighbors in the feature extraction process. 
The local regions are hierarchically enlarged, and 
PointCNN can learn planar structures. If the scene has 
these planar structures, PointCNN correctly classified 
these scenes. However, a tiny part of a planar structure 
(i.e., wall) can exist in a scene; this may lead to incorrect 
classification of the scene. An example is given in Figure 
3(b). The ellipse shows a small number of points that 
belong to the wall plane. Point2Sequence misclassified a 
few samples, and we will explain why it produces 
incorrect results with visual examples in the next 
subsection. Lastly, PointNet++ successfully classifies all 
samples.   
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Table 3 

Recall, precision, and F1-score values for architectures 
Door Type 

 
 

Method 

Open Semi-opened Closed 

Recall Precision 
F1-

score 
Recall Precision 

F1-
score 

Recall Precision 
F1-

score 

PointNet 
PointNet++ 
DGCNN 
PointCNN 
Point2Sequence 

98.89 
100.00 
99.56 
99.78 
99.78 

98.04 
99.63 
99.56 
99.71 
99.41 

98.46 
99.82 
99.56 
99.74 
99.59 

98.23 
99.48 
99.48 
99.70 
99.41 

99.34 
99.85 
99.63 
99.78 
99.56 

98.78 
99.67 
99.56 
99.74 
99.48 

99.19 
99.85 
99.92 
99.93 
99.78 

98.99 
99.85 
99.78 
99.93 
100 

99.08 
99.85 
99.85 
99.93 
99.89 

 

  

Table 4 

Quantative results for open door class 
A 
n 
g 
l 
e 

(o) 

Dist 
(m) 

N 
O 
S 

Methods 

PointNet PointNet++ DGCNN PointCNN Point2Sequence 

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 

0
-3

0
 

1.5-2 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 12 92.30 95.00 93.63 100.00 100.00 100.00 98.46 98.33 99.40 100.00 100.00 100.00 100.00 100.00 100.00 

3
0

-6
0

 

1.5-2 10 96.36 98.00 97.18 100.00 100.00 100.00 100.00 98.00 98.99 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 11 86.49 98.18 91.96 98.33 100.00 99.16 95.26 98.18 96.70 98.33 100.00 99.16 98.33 100.00 99.16 

2.5-3 14 97.33 98.57 97.95 97.33 100.00 98.65 98.67 98.57 98.62 100.00 98.57 99.28 97.33 98.57 97.95 

3-3.5 18 96.78 98.89 97.82 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.95 100.00 99.47 

6
0

-1
2

0
 

1.5-2 24 99.20 99.17 99.18 98.40 100.00 99.19 99.20 100.00 99.60 98.40 100.00 99.19 98.40 100.00 99.19 

2-2.5 23 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.26 99.12 99.17 100.00 99.58 

2.5-3 28 100.00 99.29 99.64 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 38 99.00 99.47 99.24 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.49 98.95 99.22 

1
2

0
-1

5
0

 1.5-2 10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1
5

0
-1

8
0

 1.5-2 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 93.33 100.00 96.55 100.00 100.00 100.00 

2-2.5 4 96.00 100.00 97.96 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 12 98.46 91.67 94.94 100.00 100.00 100.00 100.00 96.67 98.31 100.00 100.00 100.00 100.00 100.00 100.00 
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(a) 

 

(b) 

Figure 3. Examples for misclassified samples for open 
doors. (a) PointNet and DGCNN misclassified example, 
and (b) PointCNN misclassified example. 

 

 

(a) 

 

(b) 

 Figure 4. Examples for misclassified samples for semi-
opened doors. (a) PointNet, DGCNN, and Point2Sequnce 
misclassified example, and (b) PointNet++ misclassified 
example. 

5.2.2 Semi-opened Door Results 

The quantitative and visual results for semi-opened 
doors are shown in Table 5 and Figure 4, respectively. 
As seen from the table, similar to open door results, 
PointNet has an insignificantly lower recall value when 
it is compared with other architectures. Figure 4(a) 
indicates a misclassified example for PointNet, DGCNN, 
and Point2Sequence architectures. The reasons 
described for open door results can explain why 
PointNet and DGCNN produce an incorrect result. 
Point2Sequence architecture builds multi-scale 
concentric local regions to extract features. Then, the 
correlation between these different scale features is 
learned. Besides, some features are highlighted while 
some are suppressed. For that reason, in some cases like 
Figure 4(a), some distinguishable features could be 
suppressed, leading to incorrect classification results. 
PointNet++ generally produces successful results since 
it considers neighbors while extracting features and the 
local regions expand hierarchically in each layer. 
Therefore, it can understand the characteristics of 
scenes and correctly classify doors. However, in some 
cases given Figure 4(b), PointNet++ may yield incorrect 
results due to missing parts of structural planes. 

 

5.2.3 Closed Door Results 

The quantitative results for closed doors are given in 
Table 6. As seen from the table, architectures are able to 
classify closed doors, except for a few examples. The 
misclassified examples are similar to those given for 
open and semi-opened results.  

 

Conclusion and Future Works 

In this study, we intended to discover the potential of 
point-based deep learning architectures for door 
detection problems because the existing studies suffer 
from the generalization ability. Their successes rely on 
the distance and angle between the door frame and the 
sensor. Therefore, we implemented five point-based 
deep learning architectures. Besides, we constructed 
OGUROB DOORS dataset because existing door datasets 
were inappropriate, especially deep learning 
architectures that require a large number of samples in 
the training phase. The test results indicate that all 
architectures can classify doors over 98% recall, 
precision, and F1-score values via the point cloud data 
captured when the robot is located in all possible 
positions and orientations toward a door frame. The 
reason for that, the point-based deep learning 
architectures attempt to learn general characteristics of 
the scenes regardless of the position and orientation of 
the robot.  
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Table 5 
Quantative results for semi-opened door class 

A 
n 
g 
l 
e 

(o) 

Dist 
(m) 

NOS 

Methods 

PointNet PointNet++ DGCNN PointCNN Point2Sequence 

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 

0
-3

0
 

1.5-2 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 12 100.00 98.33 99.16 100.00 100.00 100.00 98.46 98.33 98.40 100.00 100.00 100.00 100.00 100.00 100.00 

3
0

-6
0

 

1.5-2 10 98.18 96.00 97.08 100.00 100.00 100.00 98.18 100.00 99.08 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 11 98.33 83.64 90.39 100.00 98.18 99.08 98.33 94.55 96.40 100.00 98.18 99.08 100.00 98.18 99.08 

2.5-3 14 98.67 97.14 97.90 100.00 97.14 98.55 98.67 98.57 98.62 98.67 98.57 98.62 98.67 97.14 97.90 

3-3.5 18 100.00 97.78 98.88 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.89 99.44 

6
0

-1
2

0
 

1.5-2 24 99.20 98.33 98.76 99.17 97.50 98.33 100.00 99.17 98.58 100.00 98.33 99.16 100.00 98.33 99.16 

2-2.5 23 100.00 100.00 100.00 99.17 100.00 99.58 99.17 100.00 98.58 98.40 100.00 99.19 98.33 99.13 98.73 

2.5-3 28 98.67 99.29 98.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 38 99.49 98.42 98.95 100.00 99.47 99.74 100.00 100.00 100.00 100.00 100.00 100.00 98.49 99.47 98.98 

1
2

0
-1

5
0

 1.5-2 10 98.18 98.00 98.09 100.00 100.00 100.00 100.00 98.00 98.99 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1
5

0
-1

8
0

 1.5-2 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 4 96.00 100.00 97.96 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 12 100.00 98.33 99.16 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 
Table 6 
Quantative results for closed door class 

A 
n 
g 
l 
e 

(o) 

Dist 
(m) 

NOS 

Methods 

PointNet PointNet++ DGCNN PointCNN Point2Sequence 

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 

0
-3

0
 

1.5-2 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 12 95.60 91.67 93.59 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3
0

-6
0

 

1.5-2 10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.67 100.00 99.33 100.00 100.00 100.00 

3-3.5 18 98.95 98.89 98.92 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

6
0

-1
2

0
 

1.5-2 24 99.20 100.00 99.60 99.20 99.17 99.18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 23 100.00 100.00 100.00 100.00 99.13 99.56 100.00 99.13 99.56 100.00 100.00 100.00 100.00 98.26 99.12 

2.5-3 28 99.31 99.29 99.30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 38 99.49 100.00 99.74 99.49 100.00 99.74 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.47 99.74 

1
2

0
-1

5
0

 1.5-2 10 98.18 98.00 98.09 100.00 100.00 100.00 98.18 100.00 99.08 100.00 100.00 100.00 100.00 100.00 100.00 

2-2.5 11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1
5

0
-1

8
0

 1.5-2 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.00 94.74 100.00 100.00 100.00 

2-2.5 4 100.00 90.00 94.74 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.5-3 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3-3.5 12 91.92 98.33 95.02 100.00 100.00 100.00 96.92 100.00 98.44 100.00 100.00 100.00 100.00 100.00 100.00 
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For future works, we plan to consider more complex 
scenes that include occlusion and clutter around the 
proximity of door frames. Besides, we intend to apply 
augmentation during the training process. Although the 
OGUROB DOORS dataset consists of samples as possible 
as all robot positions and orientations depending on the 
range of the RGB-D camera, augmentation can promote 
the results. Lastly, the existence of sensor noises heavily 
affects the performance of the tasks in the field of 
robotics, especially in real-world applications. For that 
reason, we plan to extend our OGUROB DOORS dataset 
with the scenes captured from the real world. In this 
way, we can observe the influences of the noise on the 
implemented architectures' performance. However, it is 
important to note that we expect to obtain close results 
with and without sensor noises. The reason for that, 
these architectures generally aim to learn the 
characteristic of the scenes through points' position. 
Although the noise of a sensor can slightly alter these 
positions, the scene characteristics will remain the 
same. 
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