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ABSTRACT

The objective of this article is to review the chaiacteristics of the o8 and «f3- dispersion
data of polymers and te discuss the physical ideas underlying those existing dielectric relaxation
thecries and assess their success and rationality as applied to the loss data observed in polymers.
Some of the complicated problem peculiar dielcctries such as internal field calculaticn, relations
between macroscopic and microscopiv: parameters of bulk materials, have been briefly described.
Tt is concluded that the present theories do not offer a satisfactory interpretation of the experi-
mental observations and hence a moch more acceptable model of cooperative molecular relaxa-

tion should be derived from the first principles is strengly reqnired.

INTRODUCTION

The dielectric response of solids and liquids has been an active to-
pic of research for over half a century by chemists, physicists and electri-
cal engineers for a number of reasons: Chemists have been trying to ob-
tain information about the molecular structure, interactions and dyna-
mics of the subtances under study; physicists have been looking at the
fundamental processes existing in materials, electrical engineers seeking
for improved insulating materials. From the works of these rather sepa-
rate schools there is a great amount of experimental data regarding the
polarization or relaxation behavior of materials. Existing data covers
a wide range of frequencies from 10-3 to 1013 Hz,, and of temperatures
from cryogenic to high temperature. This may offer an excellent oppor-
tunily to compare the existing dielectric relaxation theories with these
data. Such attemps have been made in a number of articles and books
{McCrum et al., 1967; Hill et al., 1969; Bottcher et al. 1978; Jonscher,
1983). It has been shown that the frequency response data, (which is
obtained from measurement of real permittivity €' (w) and loss factor
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€”’(w) as a function of radian frequency w under constant temperature
where the complex permittivity e(w) = €'(w)-i €’(w), of a very
wide range of materials obey a certain types of emprically derived dis-
persion functions (Fuoss and Kirkwood, 1941; Cole and Cole, 1951;
Davidson and Cole, 1951; Havriliak and Negami; 1966). For example,
for polar molecules observed behaviour is summarized well (Cole and
Cole, 1951; Davidson and Cole, 1951; Buckley and Maryott 1958; Da-
vidson, 1961) by the Cole-Cole (1951) and Davidson-Cole (1951) functi-
ons. These functions are less successful with polymer data (Smyth,
1955; Davidson, 1961; Williams and Watts (1970), although Havriliak
and Negami (1966) have shown that the combination of both Cole-Cole
and Cole-Davidson expressions.

€ (iw) — e,

E—. = [1 + @ wo)n]™; (o<n, m<1) (1)

describes well a variety of a~ and of— dispersion data for polymers.
Here e, € «» T are the limiting low and high frequency permitivities and
relaxation time respectively. On the other hand, the relaxation data of
many ‘amorphous polymers are better represented by Williams-Watts
nonexponential decay function (Williams and Watts, 1970; Williams
et al. 1971; Cook et al. 1970)

o (1) = exp [-(t] 7] (o< <1) @

A schematic representation of various data may be seen in Fig.
1. On the right is the practically non-existent-ideal Debye response (see
next section) and then moving towards the left are the symmetric, the
shghtly asymmetric and the strongly asymmetric broad peaks all rela-
ting to the dipolar materials. The latter behaviour is called non-Debye
response. Our discussion will be restricted to this type of relaxation data
‘mentioned above which is classified under the name of a— and $- dispet-
sions, in polymers. Other responses shown further on the left of Fig. 1
will not be discussed. Even with these restrictions the existing literature
on the subject, both experimental and theoretical is very large. The aim
is doubtless presumptuous and the attempt can only be partially ful-
filled.

The characteristics of «, p and af-dispersion data may be summari-
zed as follows: It is well-known in dielctric Literatures that the absorp-
tion observed above the glass transition temperature Tg in polymers
is called a-dispersion, while below Tg 8-dispersion. Although the criteria
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FIGURE 1. The generai classification of all iypes of dielectric Tresponses fbund in solids. The up-
per row gives the diagrammatic representation of the log y'(w) (chaln-dotted line) and log %"
(w) (solid hnc) against log w, the Icver row gives the correspondlng comp]ex succeptlhlhty plots
Typical materials giving the various types ox response are indicated. The extreme right gives the
practically nonexistent case of the Debye reponse, moving to the left we find increasingly broa-
der loss peaks for dipolar systems, further to the left the charge carrier responses corresponding
to the strong low-frequency dispersion and to de. conductivity. On the extreme left is the lu:mfmg
case of “flat” frequency-and temperature- independent loss.

From Jonscher (1983). ' ‘ o

for distinguishing «-peak from B-one is not well established in log (w)
representation, the following empirical 1ules may be used for thelr selec-
tions 1n practlce

For a-absorption; (i) T>Tg. (ii) the half-width of the loss peak

, is less than 2.5 decades of frequency, (ii) a plot of log Wmax vs. T-1

(T Temperature in Kelvin) results in slightly convex-line so that a sing-

le activation energy can not be derived from this plot, (iv) The average

value of activation energy Varles in the range of 50—250 KCal Mole—1
in polymers. .

In the case of B-absorption (i) T <'T,, (i) 2>>3 decades of frequency,
(ii) The plot of log Wmax vs. T-1, gives an Arrhenius behaviour,. (iv)
the activation energy is between 5 and 30 K Cal mole~! in polymers and
glasses.

The behaviour observed in the Viciﬁity of Tg may arise from over-
lap of a-and B-peaks that is called «f-peak, and the process is similarly
named the a83-absorption. Strictly speaking, these are all empu‘lcal clas-
sifications introduced for practical purposes. TR
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In the light of the above empirical rules, some further typical cha-
racteristics of « and of3-peaks exhibited by polymers with linear chains
are as follows: (a) Loss curves are depressed, broad, and asymmetrical,
with a half width, A which varies between 1,6 and 2,5 decades of fre-
quency (McCrum, et al, 1967; Jonscher, 1983; Havriliak and Negami,
1966; Williams and Watts, 1970; Williams, et al. 1971; Cock et al. 1970;
Williams and Watts, 1971; Williams and Edwards, 1966; Ishida and
Yamafuji, 1961; Williams, 1963; 1964, 1965; Jonscher, 1975). (b)
The loss peak shifts towards the high frequency side with increasing
temperature without significant change in shape (except where secon-
dary loss processes interfere), but the peak-height of the a-absorption
reduces, as a rule, slightly in magnitude with increasing temperature.
So they may be superimposed to form a well-defined master curve (Jonsc-
her, 1983, 1975; Williams and Edwards, 1966; Williams, 1963, 1964,
1965). (¢) A plot of log Wmax vs. T-! results in straight or slightly-
convex lines with negative slopes (MeCrum et al. 1967; Davidson and
Cole, 1951; Williame, 1964; 1965). (d) The principal dispersion Wmax
is independent of chain length (Stockmayer, 1967). (e) In addition to
extensive studies on the relaxation in polymers over a wide range of
frequencies and temperatures, several studies have also been made using
pressure as an additional variable (Williams, 1964, 1965; Williams et
al. 1671; Cook et al. 1970; Williams and Watts, 1970, 1971; Williams and
Edvards, 1966). The following points are significant; (i) The shape of
the loss curves at a given temperature is independent of pressure, as
the pressure is raised the curves move gradually to lower frequencies
without changing in shape. (ii) The plot of log Wmax vs. pressure at
constant temperature resembles that against T. (iii) The plot of log Wmax
vs. T at a given pressure results in convex lines. The foregoing features
have to be explained by any proposed theories.

It is the purpose of this article to discuss to what extent the existing
theories are capable of explaining and elucidating the experimental ob-
secvations summarized above. By doing this we will touch inevitably to

some of the problems such as internal field calculation, relaxations bet-
ween macroscopic and microscopic parameters of bulk materials, Which

are naturaly related somehow to the dielectric response.

THE PHYSICAL AND MATHEMATICAL BASIS OF DIELECTRIC
RESPONSE

When a molecular system is placed in an electric field, there is al-
ways the tendency for any electrically charged species to migrate along
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the field in the appropriate direction. If the charged species are comple-
tely mobile this results in the conductivity familiar in metals, electroly-
te solutions, or semiconductors. However, if the charged entities can
move only a certain distance, and then for some reason become locali-
zed, the net resvlt is an electric polarization of the samples.

For example, charge carriers may migrate across a sample, but be
unable to cross the boundary between the sample and the electrodes.
Under these conditions the trapped charges collect at the furface, cau-
sing interfacial polarization of the sample. At the other extreme on a
distance scale, electrons may migrate across the atoms in a molecule
but not between molecules. Thus, each molecule in the field suffers a
slight distortion of electron distribution, called electronic polarization
(forming in the molecules an induced dipole moment). The addition of
each molecular dipole along the direction of the field again causes a re-
sultant polarization of the whole sample. A third example of a polariza-
tion process, and the one of interest in this article, occurs when the two
opposite charges in a molecular dipole attempt to migrate in the field,
thus applying a.turning couple to the molecule. This tends to align the
dipole in the field. Again the resultant effect is an electric polarization
of the sample, called, in this case, ‘orientation polarization’.

The migration of charges lowers the energy of the system in the fi-
eld, and so is called relaxation’, and the adjective *dielectric’ is added
when polarization due to localized charges, is involved.

It is evident that the formation of the polarization can take place
only at a rate determined by the charge mobility. This is unimportant
if the electric field changes slowly, but if the electric field is altered
sufficiently rapidly (as with a high frequency alternating voltage or in
the field of electromagnetic radiation) there is no time for an equilibrivm
polarization to be established. So a study of the frequency dependence
of the macroscopic phenomena resulting from polarization can yield in-
formation on the charge carries mobility. In the case of orientation po-
lirization due to small field, this mobility is the rate of Brownian rotati-
onal diffusion.

For comprehensive accounts of the macroscopic theory of dielectric
relaxation, the reader is referred to the text of Frohlich (1958) and the
articles of Scaife (1963). Further references are Glarum (1960), Hopkins
(1876), Manning and Bell (1940), McCrum et al. (1967), Jonscher (1983),
Bottcher and Bordewijk (1978).
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The complex dielectric permittivity € (iw) = €'(w) -ie”’(w), where
w=2ny (Hz.), of a dielectric medium is given by the superposition rela-
tion (Frohlich, 1958; Manning and Bell, 1940; Scaife, 1963; Hopkinson,
1976; Bottcher et al., 1978).

g(iw)—e

TS__EM_“.'; = x{iw) = j dt [exp—iwt)] [ ] €))

€s-and €, are the limiting low-and high frequency permittivities, res-
pectively. @ (t) is the normalized decay function of the polarization when
a steady macroscopic electric field is removed from the medium. & (t)
contains contributions from relaxation processes only. [d @ | dt) may be
regarded as the normalized transient current which flows when the ste-
ady field is removed from the medium. This forms the basis of transient
experiments which are made (McCrum et al..., 1967; Jonscher, 1983)

in order to obtain dielectric data in the low frequency range 1073 to 103
Hz.

Equatlon (3) states that the normalized complex permittivity is
given by the one-sided Fourier transform of the quantity [-ddt]. This
equation is the standart form of the equivalence between the complex
dielectric permittivity e(iw) and the decay function ¢ (t) or the response
function (-d | dt). Eqn. (3) shows also that of one parts of the normali-
zed complex permittivity is known ever the entire relaxation range, then
[-d@(t)/ dt] and @ (t) are also known over the entire relaxation range.

It is clear from eqn. (3) that a simple exponential decay function
#(t) = exp (—t/1), t>>0, where 7 is a macroscopic relaxation time for
the bulk material, which was first obtained from Debye’s diffusive the-
ory of dipolar relaxation for polar liquids (Debye, 1945) then the double
potential well model for crystalline solids (Frohlich, 1958), gives Debye’s

single relaxation time expression

e(fw) —Ep 1
€ — €4 T 14iwt
e (W) — €, 1 (W) wr
0 G M — . 5
and hence p— [ —— Tiw2 2 ()

Plotting log €'(w) vs. log (w) gives a symmetric loss curve about its
maximum value which occurs at Wmax t=1 and has a width at half-
height of 1.144 decades. For fixed temperatures and at high frequencies,
the real €'(w) and imaginary parts €”(w) of €(ic) behave like &'(w)~
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w~2 and €''(w)~w~! while at low freguencies, below the peak frequencies

Wmax

Vmax = pr— the real part is almost one and the imaginary part, is

propartional to w so the slope of the loss curve at low and high frequency

site is (4 1), recpectively. The complex plane representation of € aga-

inst € falls on a half circle with the radius (€ — €,) [ 2 centered on the

real axis. At the peak frequency, the magnitude of the absorption is €'’

(Wmax) = (e; — €.}/ 2. The relaxation time 7, is generally thermally~
activated with an activation energy H and is given by

= 7o exp (H/kt) ' (6)

-
1

where 7o = v, is some attempt-to jump’ freguency and usually assu-
med to be associated with a phonon freguency, k Baltzmann’s cons-
tant, and T is the temperatrue in Kelvin.

The relations (5 to 6) provide a useful check on the apphcabhty
of the Debye equations and allow quantitative comparison w1th expen-
mental observations.

We note that non of the properties of the a-, 8- and «f- absorptions
given in the first section obeys Debye behaviour. Despite this fact, one
success of Debye’s diffusive theory of relaxation is that it gives us a
graphical picture of fluctuations in a three dimensional assembly and
links up with the theory of Brownian movements. In this model, a mo-
lecular dipole is expected to change its orientation by a series of small
steps because of collisions with its neighbours, and this is described by
a resistive couple which determines the microscopic relaxation time.

Both relaxation models of Debye may be criticized on the grounds
that the influence of the interaction between dipoles has not been taken
into account. Future developments of this model need to be concerned
with this factor.

So far we have attempted to give a picture relevant to both time
and frequency dependent polarization of the bulk material in the mac-
roscopic sense. As-a rule, the response of a system is not the sum of res-
ponses of individual components when interactions play a part. One is
interested in obtaining as accurate information as possible about events
at the molecular level from experimental data. This-can only be achie-
eved by having an adequate theory of molecular processes and a precise
relationship between macroscopic and microscopic parameters. In the
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next section, this aspect of the dielectric response will be considered in
terms of “dipole correlation function’ approach.

CORRELATION OF THE DIELECTRIC RESPONSE TO MOLE-
CULAR PROCESSES

To relate the observed macroscopic phenomena to various molecu-
lar processes is, in general, a task of great difficulty, and has been the
subject of considerable discussion and conflicting theoretical treatment
during the last 30 years (Frohlich, 1958 Powler, 1953; Glarum, 1960,
1972; Cole, 1965, 1973, 1974, 1980; Zwanzig, 1963, Nee and Zwanzig,
1970; Fatuzzo and Mason, 1967; Klug et al. 1969; Mazur and Mandel,
1959; Mandel 1971; Rivelson and Madden, 1975), Most of the treatment
has been based on the dipole correlation function, which is simply the
expectation value of a time-delayed product of values of the dipole mo-
ments. If m; is the component, along the applied field of the dipole
moment of the j-th molecule evaluated at time t, and m; (0) is the value
of the dipole moment at time t=0, the normalized ’auto-correlation
function’ for the j-th dipole is given by
< m; (o), my (1)>
< m; (o), my (0)>
Here the brackets < > indicate an equilibrinm ensemble average
in the absence of an electric field. For the case that the n dipoles are the

entire content of a shperical sample, the corresponsing macroscopic
correlation function & (t) is defined by

@i (t) = (7)

< fomy(o). Ej me(t) >

2 (1) = - (8)
< fpmj(o). Z. my(0) >

r=j

where f;, is the canonical distribution of the dipolar system under equ-
ilibrium conditions. However, the most important question is how to
calculate the relationship between ¢ (t) and the corresponding molecular
dipoles is considered. In recent years there has been much controversy
on how best to calculate this relationship. An early attempt was presen-
ted by Glarum (1972) and a later approach by Cole (1973, 1974, 1980)
using Kubo’s linear response theory (Kubo 1957, 1961) for handling
the external force in time-dependent statistical mechanics. This was sub-
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sequently criticized by Fatazzo and Mason (1967) and others (Klug et
al, 1969; Mazur and Mandel, 1959) who derived more complex expressi-
ons than Glarul’s by using the generalized Onsager models (Onsager,
1936). An excellent review of this general approach may be found in

(Zwanzing, 1965; Cole, 1980).

The function @ (t) is usually obtained by considering the local fi-
eld that acts on a molecular dipole or a microscopic sphere containing
either one or a small number of such dipoles. This field is obtained by re-
moving the microscopic sphere of material under consideration, and
summing the fields arising {rom the free charge on the capacitor plates,
those arising from the induced charge on the surface of the microscopic
sphere and those which arise from the polarization effects upon the sur-
roundings due to the reintroduction of the missing microscopic sphere
of dielectric material (Onsager, 1936; Kirkwood, 1939). These has been
some controversy on how best to calculate these local fields (Frohlich,
1958; Powler, 1953; Glarum, 1960, 1972; Cole, 1965; 1973, 1974, 1980;
Zwanzig 1963; Nee and Zwanzig, 1970; Fatuzzo and Mayson, 1967;
Klug et al., 1969; Mazur and Mandel, 1959; Mandel, 1971) but Titulaer
and Deutch (1974) have claimed to resolve this problem. However, none
of these dielectric theories yields a truly single particle correlation func-
tion, @ (t), but rather a "local’ correlation function; the field is local
insofar that a small sample volume is chosen, but it is nonmolecular in
that the field is obtained in a cavity which is large compared to mole-
cular dimensions so that a macroscopic dielectric theory can be used.
An alternative treatment was given by (Kivelson and Madden, 1975)
who attempted to relate @ (t) to a truly single particle o; (t) making
use not of the local fields, but developing of a theorem which states that
“if the molecular correlation function can be expanded as a sum of ex-
ponentials, the macroscopic correlation function has the same form with
appropriately scaled parameters”. However, their results are similar to
the earlier ones and we propose to leave this matter in this rather unde-
cided state.

It is important to note that all these complications arise when dea-
ling with strongly polar materials. In such materials the relation of the
macroscopic response te molecular behavior depends significantly on
the mutual correlation of the motion of molecules through the short-
range interactions. In electrically dilute materials, however, the disc-
repancy between macroscopic and molecular behaviour is often unim-
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portant. Even for strongly polar liquids, the relation between the comp-
lex permittivity and @; (t) was often given in the from

X (iw) q(w) = j [—dg ] exp (~iwt) dt (9)

where  (w) is a numerical factor which depends upon the detailed local
field considerations (Glarum, 1960, 1972; Cole, 1965, 1973, 1974). To a
good approximation q(w) may be taken to be unity (Cole, 1973, 1974:
Cook et al., 1970). Consequently eqn. (9) and the macroscopic relation
given by (3) are very similar in form. Writing @; (t) = exp (-t/ ), eqn.
(9) gives the usual single relaxation expression if q(w) = 1. Note that
the exponential decay is not an acceptable correlation function since
its non-zero time derivative at t = o predicts an instantaneous response
to the field being turned off. In practice, from the definition it shouid
he zero when t tends to zero. This anomaly arises because of the neglect
of intertia terms, and has received much attention for nonpolymerie

systems (Birnbaum, 1970).

Thus the dielecirie relaxation of systems of small molecules in the
Liquid state may be considered in terms of the dipole correlation function
and this has been done for a number of systems (Glarum, 1960), 1972),
even including internal re-orientation processes within small molecules
{Williams, 1968). The essential difference between the nonassociated
molecules and polymer molecules lies in presence of correlations in the
dipole orientations along a polymer chain.

The dynamic theory of the dielectric behaviour of dipolar poly-
mers has been outlined by Cook, Watts and Williams (1970), using the
dipole correlation for a flexible polymer chain containing ounly one kind

of dipole. Eqn. (8) is then replaced by
2(t) = = 2 <mjo) my(t) > [ <t my(o) . my (0) > (10)
] T .

Here [m.(t)] are the individual dipole moments along the polymer chain.
The sums are taken over dipolar elements only. Egn. (10) consists es-
sentially of two paris: The so-called auto-and cross correlation terms.
The autocorrelation term <mj(o) . mj(t)> was already mentioned and
refers to the reorientation of a reference dipole j in the chain alone, while
the cross correlation term, <mj(o) . my(t)>>, j#r is the dynamic corre-
lation between the dipole r and the reference dipole j. Hence there are
two summations in eqn. (10).
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Strickly speaking, eqn. (10) should be considered to be the more
correct term than eqn. (7) and should apply everywhere, not only to
polymers, on the condition that the interaction between dipole is not
negligible. Eqn. (7) is the result of our ignorance of how to deal with cross-
correlation fanction. i

The relation between @ (t) given by eqn. (10) and the complex per-
mittivity is made complicated by local field factors, but under certain
assumptions one may write (Cook et al., 1970)

Xw) Q) = | [—221] e (v e (11)

Qw) = [es 2 € (W) + €,) 1/ [(&(w) (& + €,)]

For cases of practical interest, ¢ (W) =, Q (w) may be taken to be unity,
so that eqn. (10) again similar in form to eqn. (3). Equations (9 to 11)
relate the observed macroscobic complex permittivity to the dipole
correlation function @ (1), and 2(t) necessarily involves the dipole
correlations along either a real chain (like polymer’s one) or an imagi-
nary one (such as the one often considered in ferro-electrics).

In fact, in ferro-electrics the permanent dipoles are strongly corre-
lated to each other due to their long-range dipolar forces along the direc-
tion of the polarization axis (i.e. the easy direction). The physical nature
of such a chain may be considered to be similar to the spin chains in
ferromagnetics, and has a long-range character in space. However, a
short-range chain order can also arise from forces due to chemical bonds,
Van der Waals attraction and repulsion forces. These forces have a short
range and play considerable roles in nearestneighbour interactions bet-
ween molecules in polymers and glasses.

A simple model exhibiting short-range order is the Markoff chain,
as it was pointed out by Domb (1955). In this, the essential interaction
between units is accounted for by making the probability for the parti-
cular orientation of one unit to be dependent upon the orientation of the
next. Therefore, such a short-range ordering is a natural consequence
of the nearest-neighbour interaction between molecules, and should be
considered in any rigorous calculation of the complex dielectric permitti-
vity.

The dynamic behaviour of an infinite Markoff chain has been in-
vestigated by Glauber (1963) in terms of the Ising formalism by using
time-dependent statistics. Its application to dielectrics may be found
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in (Bozdemir, 1981). It was shown that the exchange interaction has a
considerable influence on the dielectric relaxation of one dimensional
lineer chain molecular systems.

A CRITICAL EXAMINATION OF THE RELAXATION THEORIES
ABOUT NON-DEBYE RESPONSE

In this section it is our aim to discuss the most important questi-
ons of dielectric: What physical processes are behind this non-Debye
response ?

As it is well-known that the commonly accepted answer to this
question has been based on the concept of a distribution of relaxation
times, DRT, which arises from the existence of more than one relaxation
mechanism, each of which may be characterized by an exponential de-
cay function with a single relaxation time. So the Debye dispersion func-
tions are generalized under some fundamental assumptions regarding
cavuse and effect, linearity and superposition. If the number of modes
is sufficiently high mathemaiically the summation of Debye responses
corresponsing to a distribution of relaxation times is carred out in terms
of integration of a function G (1) defining the distribution:

e(iw) — e ©  G(r)
I < 1
& — &y oj‘ 14-iwe d ( 3)
d the loss factor is given by ¢'(w) = |~ G(x) V"3 (1)
an e loss factor is given by €”/(w) = Oj 7) Trwie

Here G (1) is a real non-negative function of relaxation times. The real
g
part of the complex permittivity is also written similarly;

(15)

e'(w) — g, =

©  G(r) dr
J e

o0
From this, we obtain for w=o0 g—c, = J G(r) dr
8]

A simple molecular model leading to a discrete number of relaxation
times is the multi-site model of Hoffman and his co-workers (Hoffman,
Williams and Passaglia, 1966; Hoffman and Pfeiffer, 1954; Hoffman,
1955). This model is based on the fact that the force field experienced
by a particular molecule is such that it can adopt a number of equilib-
rinm positions seperated by a range of barrier heights. This situation
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is thought to exist such as in certain molecular lattices owing to anisot-
ropy of the crystalline field in which the molecule reorients itself. This
model has been notably successful where it has been applied with care.
The parameters of the theory can also be analyzed in terms of molecular
properties and intermolecular interactions. This has been made by Lau-
ritzen (1958), interpreting the behaviour of long-chain dipolar compo-
unds in urea chathrate complexes and the results are remarkably good.
A great deal of works need to be done in such quantitative analysis of
well-defined molecular environments. The various forms of clathrates
are particularly attractive in this respect: the rotator phase solids and
the spherical-molecule liquids derived from them represent furcher app-
roachable stages in the direction of the typical polar liquid. It is reaso-
nable to expect that much will be achieved by such further calculations
for molecular models of dielectric relaxation. However the site-model
theory and its further extension made by Ishida and Yamafuji (1961)
as applied to polymers have been found unsuccessful to explain the natu-
re of the broading and asymmetry of the loss curves. The rest of models
for DRT such as Frohlich (1958), Wagner (1913) Mrazek (1972) have
used the idea of redistribution of barrler heights resulting normally from
molecular complexity.

Although several important aspects of the observed loss behaviour
may be explained by taking arbitrary functional forms of distribution
in relaxation times indirectly in activation energies, the assumption of
a distribution in activation energies is not based on any independent
experimental evidence and has no molecular significance. Therefore this
type of treatment of dielectric relaxation may be considered to be pu-
rely formal. For this reason, this approach has been found inadequate
in a number of papers (Jonscher, 1975, 1977, 1980, 1983; Williams and
Watts, 1970; Williams et al. 1971; Davidson, 1961; Glarum, 1960; Cole,
1961) and was particularly criticized by Jonscher (1980, 1983). Instead
of DRT, Jonscher has, alternatively, suggested that non-Debye behavi-
our could arise from manybody interaction between dipoles or charged
particles. Starting with this suggestion, we have recently studied (Boz-
demir, 1981) the dielectric response of one dimensional dipolar chains
by means of the *’Time-dependent nearestneighbour Ising model theory”
of Glauber (1963). In this relaxation model, each dipole is assumed to
have two components: One is normally oriented between two localized
states in a plane perpendicular to the chain axis, while the other is ori-
ented along the chain. The model further presumes that the reorientati-
on probability of any dipole located on the site chain has a time-depen-
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dent parameter, depending at any instant upon the momentary orien-
tation of neighbouring dipoles. It was shown that the decay function
of a single dipole located in either an infinite or a finite chain results in
a non-Debye-type form, due to the many-body nature of the induced
molecular moments. The model-results essentially have conformed the
Jonscher’s prediction, and the nearest-neighbour interaction in omne-
dimension seems sufficient to give rise to the observed departure from
the Debye-Response in many order-disorder ferroelectrics, diluted line-
near amorphous polymers, chain flexible dipoles consisted of the alky]
halides, and crystalline solids. In addition to this, the qualitative beha-
viour of the mode! studied shows similarity to the properties of some
a-peaks observed in polmers, above Tg, but not the behaviours obser-
ved in ’solid like’ situation below Tg so called B-peaks and also the one
observed in the vicinity of Tg, named as of peaks.

Note that the time-dependent relaxation functions obtained from
Kinetic Ising model of Glauber (1963) by a number of authors (Anderson,
1970; Isbister znd Mequarrie, 1974; Bozdemir, 1981; Budimiz, 1985;
Bahar, 1987) are nonexponential, and are similar to the Williams-Watts
form. However, the deviation from exponential decay is not great eno-
ugh to explain many experiments (Lacombe, 1980). Recently Hall and
Helfand (1982) have studied the high temperature limit of a double spin
flip kinetic Ising model (Haake and Thol, 1980). This model, which is
based on the idea of cooperative conformational transitions in a poly-
mer can be solved exactly, with time dependent relaxation functions
similar to those of Glauber (1963)

In order to explain this aspect of experimental data, we have made
several attemps to extend this dielectric Ising model theory further by
including those neglected parts in the first treatment (Bozdemir, 1981)
such as the long-range dipole-dipole interactions and the interaction
between neighbouring chains. Not yet any successful result has been
obtained, even that not much hope we have, because similar studies
along this line (Zwanzig, 1963; Cole 1974) have already shown that only

a limited effect on the departure from ideal Debye response is exerted.

For the off and {8 -absorptions of long- chain polar molecules we ha-
ve recently suggested a new relaxation process on the basis of “a defect
mechanism” (Bozdemir, 1985). In this model it is assumed that a dipole
located on the site chain having interaction with its neighbours may be
relaxed independently by either an Ising type mechanism (Bozdemir,
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1981) or by a defect mechanism. The defect mechanism for dipolar re-
laxation which is that, at a site containing dipole, relaxation occurs
when a defect diffuses to the dipole. For example if a defect is a "hole’
reaching a dipole, it can certainly increase the free volume within the
dipole. Therefore the increased volume and also the lowered activation
energy should allow the reorientation of the dipole more quickly than it
would be otherwise. The turning of a dipole by a defect is assumed to
cause whole chain motion as well. This may be explained as follows:
As the defect moves along thé chain by a diffusive mechanism, any part
of the chain adjacent to the defect can undergo a turning motion. The
rest fo the chain then rotates or attemps to turn from one localized site
to the other due to this defect. If there are more than one such a defect
in the chain, the rotation of the chain ocecurs likely by any one of these
defects. So in this model, the relaxing unit considered is not only indivi-
dual dipole associated with the chain but the chain itself as a whole. This
relaxation mechanism is physically attractive because only a local sec-
tion of the chain needs to be activated in order to biing the whole
chain reorintation. From the 'analysis of this model a number of
physically important results, such as the exact form of Williams-Whatts
decay function (2) which may represent only «- and aBrelaxation
data observed in amorphous polymers.

There is a number of one dimensional relaxation models, which in-
volves the diffusion of “defects” (Bendler and Shlesinger, 1987). The
early one is due to Glarum (1960) Hunt and Powles (1966). Their results
are similar to the Cole-Cole and Cole-Davidson relations with m, n>
0,5. Valeur et al. (1975) later obtained the same time-dependent relaxa-
tion function in their study of three-bond motions of a polymer back-
backbone on a diamond lattice. Bordewijk (1975) improved the defect
diffusion caleulation by considering relaxation from all defects, not just
the one that is nearest by, and found a relation function of the Wiili-
ams-Watts form with the exponent y=0.5. This result was also obtained
by Skinner and his co-Workers (1980) in their study of the dielectric re-
laxation by solutions of crystalline polyethylene and by Shore-Zwanzing
(1975) in their study of the relaxation of perpendicular dipole polymers.
More. recently, Skinner (1983) has developed a one-dimensional model,
which is based on both Glauber’s kinetic Ising Model and Glarum’s dif-
fusion model to study the cooperative dynamics of linear chain molecu-
les, Correlation functions are derived from the model well represented by
the Williams-Watts function with v between 1/2 and 3/4.
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The results of the existing normal mode theories for the relaxation
of polymers do not agree well with the experimental findings (McCrum
et al., 1967). Also, the molecular hasis of the normal mode theories is
obscure. The theory of Yamafuji and Ishida (1962) for both « and B-
relaxations is obly able to explain by this means the narrow a- peaks.
In this model mathematical developments involve several approximati-
ons which tend to obscure the details of the model and cast doubt on the
validty of the final expressions. The Dissade-Hill model (1979, 1980,
1983) of dielectric relaxation based on correlated states near phase
transitions appears to be providing some basis for interpretation of the
non-Debye behaviour in condensed matter, but we do not know how
it can be extended to outside the critical region where the most dielectrie
data are measured.

DISCUSSION AND CONCLUSIONS

As in problems of kinetics generally, there is all too often an emba-
rassingly large number of possible explanations of relaxation processes
in dielectrics, with insufficient decisive evidence to reject or to favour
any particular one. Regarding the multi-site models, multiple relaxation
regions can result anisotropies of crystalline fields at a molecule, whether
or not they can be represented by a one molecule barrier model, but
often these are grounds for considering such possibilities as structural
defects by vacancies or impuruties, proton transfe1 in hydrogen bonding
systems, in homogeneties as in mixed crystals or partially crystalline
aggregates, and liquid-like behaviour in amorphous solids. However the
assumption of distribution in relaxation times due to the activation ener-
gies and other factors is arbitrary and has litte molecular significance.

The existing normal mode theories for the relaxation of parallel
dipole components along the polymer chains do not agree well with the
experimental findings summarized in the first section. Also, the mole-
cular basis of the normal mode theories is obscure. The theory of Yama-
fuji and Ishida (1962) is only able to explain very narrow «-peaks wit-
hout invoking the DRT.

The relaxation models based on cooperative relaxation processes
such as Defect-Diffusion model of Glarum, Kinetic Ising model of Gla-
uber appear to be providing some basis for interpretation of the non-
Debye behaviours, but this field needs to be more firmly based on well-
founded theoretical arguments rather than on ingenious conjecture.
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Correlation function approach may be considered to be purely desc-
riptive, 1.e. describing the nature of the dielectric relaxation function
in time after remowing the applied field. The actual time-dependent
form of this function should be derived from first principles i.e. by using
the Hamiltonian of the system for a given physical model. One possible
derivation of the actual time dependent form of dipole correlation func-
tion for only a one-dimensional dipolar chain system has been achieved
in terms of Glauber’s formalism of the Ising model. This method leads
to finite distorsions from the Debye shape and to considerable modifi-
cation of the single-particle relaxation frequency. The works along
this direction should be continued.

We finally come to the conclusion that the existing theories of di-
electric relaxation appear not to offer a satisfactory interpretation of
the experimental observations summarized in the first section. A much
more satisfactory model for the interpretation of this type“of .dieleetric
relaxation data is strongly required. ‘ '

'NOMENCLATURE:
(iw) complex dielectric. permittivity
e (w) frequency-dependent real permittivity
e’ (w) loss factor
w radian frequency
z  (t) dielectric decay or macroscopic correlation function
€s the equilibrium value of the total permittivity.
€ " high frequency part of the permittivity
It)=—dg [ dt electric current or after effect function
T macroscopic relaxation time
X (iw) normalized complex permittivity
X' (w) normalized real permittivity
X" (w) *  nermalized loss factor
v frequency,
Vmax peak frequency of loss curve
Yo ' jumping frequency
H activation energy
k ‘ Boltzmann’s constant . -

T temperature in Kelvin
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€'’ (Wmax) maximum loss factor
7 i(t) single particle correlation function
m(t) dipole moment
fa cononical distribution of the system at equilibrium
Tg glass transition temperature
G{r) function of distribution of relaxation time.
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