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ABSTRACT

The laminar flow of Newtonian and non-Newtonian fluids with constant and variable
shear-rate parameters are studied theoretically. Numerical solutions for the concentration,
particle path are obtained using finite differences and A.D.I. method in 3D cylindrical cavity.
Mixing properties are investigated by tracking the motion of a number of selected fluid
particles and by simulating the dispersive mixing of a ‘coloured’ fluid injected into the
cavity while at rest in both cylinder and concentric cylinder driven flow. The stability of
consentration intemsity is investigated for a wide range of Newtonian and non-Newtonian
fluids. The effects of inertia and elasticity are of particular interest. The instabilities are
characterised by control parameters: the Reynolds, Weisenberg and Schmidt numbers.

- 1. INTRODUCTION

This paper is aimed to make a contribution to the study of the
mixing of viscoelastic fluids at Re=1, Re=10 and Re=100. Such mixing of
viscoelastic fluids is a commonly used but is not well understood in the
industrial processing of the fluids due to difficulties that occur with
computing the velocity field [1] and these difficulties make the analysis of
mixing flow - very complicated. Considered in both Newtonian and
non-Newtonian fluids for the concentration results and the dispersive
mixing genecrated by the flow patterns of the cylinder cavity flows in two
cases namely cylinder and concentric cylinder driven flow. It is assumed
that the dye initially occupies the half of the cavity and there is no
chemical reaction in the concentration flow equation. Results for fluid
particle speed and concentration results are obtained by numerical

simulation.
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2. THEORY

Considered in an incompressible viscoelastic CEF fluid in a closed
cylinder cavity with the density of fluid taken as constant. Furthermore it
is assumed that the flow is axisymetric for simplicity there is no
dependence of flow on the rotational 6 direction. The main features of
the cylindirical flow driven by walls rotating with constant angular velocity
are the primary flow in the direction of rotation, and the secondary flow
perpendicular to the primary flow. The velocity vector V, = (u, 2, w)
where Q = % . The flow equation can be non-dimensionalised by using
the same ideas as in part [2]. The same viscosity function model and
fluid model as in part 1 are used in part 2 as well. In this paper
numerical solutions for two categories cylindirical driven cavity flow

namely

1. Cylindirical Cavity Driven Flow,

2. Concentric Cylindrical Cavity Driven Flow
are¢ presented.

The governing equations of the motion of unsteady incompressible
flow of a CEF fluid with shear-rate dependent viscosity can be written as:
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where Re = pQR?’M(©O) and R is thc outher radius of the cylinder
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The rotational speed equation becomes
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Equations (4) - (5) and (17) will be solved by using the same
approach as in part 1 and suitable boundary conditions and initial values.
the velocity components may be taken as u = 0, w = 0 on the
boundaries. The rotational speed in the cavity is taken as € = V? . The
stream function remains constant and is taken as zero on the boundaries.
The boundary condition on each type of cylinder cavity geometry is given
by considering the vorticity-stream function boundary formulation as
follows:

In this case the dye is similarly ‘injected’ into the flow domain
while the fluid is at rest but its quantity is measured as 4 and 16/3
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respectively as shown in figure 1. For the concentration equation we
employ the homogenous Neumann type boundary for boundaries. We
therefore use the gradient at every point of boundary which is % =0,

. T
where n is outward normal.
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Figure 1: Boundary conditions for cylinder and concentric cylinder driven cavity flow

The other consideration for the concentration equation is the initial
condition. The ordinary differential equations of particle paths are given in

the following system with respect to Cylindrical co-ordinate system (r,9,z)
£ x50 = V(x0) (19)

where i = 1,2, x; = r and x, = z. The variable V, represents the velocity
components in the r and z directions respectively. The above system is
considered with initial conditions r(0) = r, and z(0) = z,. The velocity
fields is obtained numerically as explained in part 1 [2] by considering

the velocity components in terms of a stream function in the r and z

directions, so that u = - %— %\I—' and v = % B_\V . The solution is obtained
Z
to O(At>h?k? in the AD.I. method. The pertinent equations are
= At |/,
X = 3+ A [Vig) + Vi) (20)

where y, = X, + AtVO(zi). Then the Modified-Euler method [3] is used as
in part 1.
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3. THE FINITE DIFFERENCE METHOD

To solve the equations (4), (5) and (17) numerically by finite
differences for the time-dependent incompressible flow, Peaceman-Rachford
approximation method is used. The stream-vorticity equation can be
expressed as in form (21)

B1‘Vi,i = Bz"’m,j + Bs‘l’i—u + B4‘|’i,j+1 + Bs‘l’u~1 + By 2

and discretised then the coefficents of the equation now become
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where the vorticity is defined as ® = r{, and from now on this

formulation will be used for the vorticity equation. On using the AD.L
[5,6] method to solve the time-dependent equations by using standart
central differences with IT = A—zt and s = AL a5
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For the AD.I. method when we put { in equations (22) and (23) as a
dependent variable the vorticity equation can be discretised as
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For cylinder driven cavity flow the AD.I. solution process is similar
to the 2D cavity driven flow [2] and the stability condition of the (M-1)
(N-1) equations can be determined as previously. This solution process is
stable when
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Similarly, considered in € as a dependent function in the equation (22)
and (23) we have
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The stability conditions for the rotational speed and concentration
equations are calculated as before and obtined respectively

3
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h(ru)ReSc

in equation (27). Also, it is required that < 2 in equation (28),

3
and (kw) ReSc < 2 in equation (29). (r + 0'5h)

However, the method yields a pair of implicit equations. The solution
of each equation is obtained through the Gaussian Elimination direct type
method which is well explained in Smith [7].

4. RESULTS

Time-dependent flow equations are solved by using
Peaceman-Rachford method for the dispersive mixing generated by the
cylindrical cavity flow. Moreover, flow motion is generated by rotation of
the walls. First consideration is given to the convergence of the solution
by comparing calculations for various grid widths denoted by h. Results
have been evaluated near the top wall for the vorticity and it is evident
that convergence to 4 decimal places has been achieved at Re=10 as h
decreases. In this case both Newtonian and Boger fluid take the same
convergence values as shown in figure 2. Then our problems are solved
computationally in two categories as follows

i. Cylindrical Driven Cavity Flow,
ii. Concentric Cylinder Driven Cavity Flow.
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Figure 2: Convergence criterion for vorticity at Re=10 for time-dependent fluid flow
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It is assumed that the dye initially occupies in the top half of the
cavity region, and there is no chemical reaction for the dispersive mixing
problem of cylinder driven cavity flow. The concentration equation is
solved numerically in the cylinder configuration. We have three main
parameters which are Reynolds number Re, Schmidt number Sc and
Weisenberg number Wi.

4.1. Cylindrical Driven Cavity Flow

Considered in the concentration contours as generated in two cases
such as two walls rotating in the same direction and in opposite
directions, respectively. Here initially the dye is injected into the cavity
region while the fluid is rest and its quantity is measured as 4 duc to the
average value throughout the geometry is being set as 1. With Re=1 we
have a linear distribution of the concentration intensity and this behaviour
is seen in all types of fluid cases as shown in figure 3. When the Reynolds
number increases the advection force begins to dominate the flow so that
the colour band is spread out quickly as seen in figure 4 at Re=10.
Therefore, as Re increases the advection term firmly dominates the flow
and the colour band spreads out between streamlines in the centre region
and there is small circulation nearer the left wall shown in figure 5.
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Figure 3: Concentration contours for Newtonian fluid at Re=1, Sc=50
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Time-dependent 30x30 10s, OT=-0B=1
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Figure 4: Concentration contours for viscoelastic dilatant fluid at Re=10, Sc=50
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Figure 5: Concentration contours for viscoelastic pseudoplastic fluid at Re=100, Se=50

In case of two walls rotating in the same direction with constant
angular velocity, all results show similar behaviour as in the two walls

rotating in the opposite directions.
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4.2. Concentric Cylinder Driven Cavity Flow

In this case the concentration problem is undertaken as two walls
rotating in the same direction and also in opposite directions respectively.
The dye is similarly ‘injected’ into the flow domain while the fluid is at
rest but in this case its quantity is measured as 16/3 because the average
value throughout the geometry set as 1. As the two walls rotate in the
same direction we have a linear distribution of the concentration intensity
throughout the flow region. Similarly as the Re number increases the
advection term dominates the flow and at Re=100 the colour is highly
dispersed in the centre region and usually follows the flow. Moreover, the
concentration intensity is spread out slightly more due to there is small
diffusion, where the circulation is weaker. In the case of the
non-Newtonian fluid the concentration intensity spreads out more quickly
near the left wall as shown in figure 6 and 7 at Re=100 and 100.

Time-dependent 30x30 10s OT=0B=1

Figure 6: Concentration contours for viscous pseudoplastic fluid at Re=10, Sc=50

In the case of the two walls rotating in opposite direction, there is a
linear distribution in the fluid domain at Re=1 in both viscous and
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viscoelastic cases since there is small secondary flow. A similar
distribution is observed at Re=10 and 100 as in the two walls rotating in
the same direction.
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Figure 7: Concentration contours for viscous pseudoplastic fluid at Re=100, Sc=50

5. PARTICLE PATHS AND DISCONTINUOUS PERIODIC 3D
CAVITY FLOW

In this section particle paths are investigated by using a
discontinuous periodic motion as the top and bottom walls of the cylinder
rotate with a periodic motion as shown in figure 8. Although this motion
is related to a mixing process, we only deal with particle paths of the
fluid and omit an analysis of chaotic motion. Furthermore, considered in
the fluid motion in two different cases; at first the flow motion is
generated in a whole cylinder secondly it is generated in a concentric
cylinder. The solution of the flow then depends on either the period of
the motion (T) and on the Reynolds number Re. At first the top wall
moves to the right for a period of T. Then it stops and the bottom wall
starts moving in the opposite direction for a duration of T. The cycle is
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repeated until the desired number of times. The flow is simulated for a
duration of 100 seconds for periods T=2. Furthemmore, there were three
particles initially located in the cavity’s vertical middle line r = 0.5.
Results are presented for fluid particle paths in (r, z) cylindrical
co-ordinate system of cylinder cavity.

(9] »

v

T T T

Figure 8: The diagram of the Periodic motion

5.1. The Particle Paths of the Cylinder Driven Cavity Flow

In both viscous and viscoelastic fluid are examined at Re=10 and
Re=100 respectively. For Re=10 the results is shown in figure 9, this can
be described as the trace paths of three particles. The outer particle (top
figure) paths travel a wider orbit in the cavity. However, all three particle
paths become ‘flatter’ near the top wall of the cavity. This behavior is
shown in figure 9 at Re=10 for Newtonian fluid. The middle and lower
figures show the traces obtained for the periodic motion of the particles
by considering the r and z positions with time. As Re increases, for
example Re=100, it is found all three particles move faster and travel
more widely due to advection force dominating flow. Therefore all three
particle paths become more ‘tightly bound’ together in the flow.

52. The Particle Paths of the Concentric Cylinder Driven Cavity
Flow

In this case, initially the particles are being placed in the mid-cavity
vertical line equally spaced (r = 0.75). Figure 10 shows the trace paths of
three particles at Re=10. The outher particle (top figure) is placed initially
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at (0.75, 0.5) and occurs at more place in the cavity. Moreover, all three
particle become ‘flatter’ near the top wall of the cavity. This behaviour
shown in figure 10 for the Newtonian fluid after 80s in simulation time.
As Re increases the outer particle (top figure) moves to the top wall
where it remains thereafter. Moreover, the inner particles move faster and
occurs at more places in the cavity. Also it can be seen that the particle
paths are ‘tightly bound’ due to advection term dominates to flow. The
middle and lower figures show the traces obtained of the periodic motion
of the particles by considering the r and z with time.

6. CONCLUSION

In the 3D numerical simulation indicates that the investigation of
mixing behavior and particle paths of viscous and viscoelastic fluids with
constant or variable viscosity by using a cavity flow domain on a
discretised ficld with an acceptable amount of error. In this paper new
results for shear-dependent viscoclastic fluid flow were found. Mixing
properties are sought in two cases: firstly by analysing the dispersive
mixing of a ‘coloured’ portion of the fluid ‘injected’ into cavity at rest
and secondly by the tracing of a number of selected fluid particles within
the cavity by using discontinuous periodic wall motion. The results of
viscoelastic fluid to be almost industinguishable from the viscous flow. In
other word there is no much difference between the viscous and
viscoelastic flow propagation in the flow domain. The flow process is
very stable or low Re and as Re number increases the advection term
starts dominating the flow. Furthermore, for low Reynolds number the
‘coloured’ band spread out horizontally in the cavity’s centre region
because of the relatively weak flow induced and diffusion was dominant.
As the Reynolds number increases there is better fluid transportation and
associated dispersive mixing. Specially in many cases the concentration
intensity is seen to spread out more quickly near the left wall in case of
the non-Newtonian fluid. On considering mixing properties by tracking
particles paths, it was found that for low Reynolds number the particles
followed ‘flatter’ paths nearer the top plate. Moreover, as Re increases the
particle paths become more ‘tightly bound’ in the flow for both the
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cylinder and concentric cylinder cases. In addition, the outer particle path
was found to stop against the top wall at Re=20 for concentric cylinder
case.
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