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Abstract 

 

In wind energy studies, predicting the short-term energy generation amount for wind power plants and determining the production offer 

to be placed on the market play an important role. In this study an hourly short-term wind power estimation of a wind turbine located 

in Turkey with an installed power of 3600 kW has been made. Estimation results were evaluated on a seasonal and annual basis. New 

hybrid models have been developed for short-term wind power prediction, consisting of Bayesian Optimization (BO), Support Vector 

Regression (SVR), Gaussian Process Regression (GPR), Decision Tree (DT), stacking, and bagging algorithms. In the proposed 

prediction approach, it is aimed to reduce prediction errors by combining different regression algorithms with the BO method and 

ensemble algorithms. Unlike other wind prediction studies, BO was used for the first time in the hyperparameter selection of the 

regression algorithms selected as the basic learner in the study. Bayesian optimized decision tree (BO-DT) with the lowest error values 

among the base learners, and Bayesian optimized gaussian process regression (BO-GPR) combined with bagging and stacking. The 

efficiency of ensemble learning algorithms was measured by the statistical measurement methods Normalized Absolute Mean Error 

(NMAE), Normalized Root of Mean Squares Error (NRMSE), and determination coefficient (R2). According to the results, the bagging 

method created with the BO-DT took the annual average NRMSE, NMAE,  R2 criteria of 11.045%, 4.880%, 0.899, respectively, and 

the model with the best performance was selected in terms of both annual and seasonal results. 

Keywords: Renewable energy, Wind power prediction, Bayesian Optimization, Ensemble Learning 

Bayes Optimizasyonu Ve Topluluk Öğrenmesine Dayalı Kısa Dönem Rüzgar 

Gücü Tahmin Yaklaşımı 

Öz 

Rüzgar enerjisi çalışmalarında, rüzgâr santralleri için kısa dönem enerji üretim miktarının tahmini ve piyasaya verilecek üretim 

teklifinin belirlenmesi önemli bir rol oynamaktadır. Çalışmada Türkiye’de bulunan ve kurulu gücü 3600 kW olan rüzgar türbinin saatlik 

kısa dönem rüzgar enerjisi tahmini yapılmıştır. Tahmin sonuçları mevsimsel ve yıllık olarak değerlendirilmiştir. Kısa dönem rüzgar 

gücü tahmini için bayes optimizasyonu, destek vektör regresyonu, gauss süreç regresyonu, karar ağacı, stacking ve bagging 

algoritmalarının birleşiminden oluşan yeni hibrit modeller geliştirilmiştir. Önerilen tahmin yaklaşımında farklı regresyon algoritmaları 

ile bayes optimizasyon yöntemi ve topluluk algoritmaları birleştirilerek tahmin hatalarının azaltılması amaçlanmıştır. Çalışmada temel 

öğrenen olarak seçilen regresyon algoritmalarının hiper parametre seçiminde diğer rüzgar tahmin çalışmalarından farklı olarak ilk defa 

bayes optimizasyonu kullanılmıştır. Temel öğreniciler içerisinde en düşük hata değerlerine sahip bayes algoritması ile optimize edilmiş 

karar ağacı ve gauss süreç regresyonu, torbalama ve istifleme ile birleştirilmiştir. Topluluk öğrenmesi algoritmalarının etkinliği 

istatistiksel ölçüm yöntemleri olan Normalize Mutlak Ortalama Hata (NMAE), Normalize Ortalama Hata Kareleri Kökü (NRMSE) ve 

determinasyon katsayısı (𝐑𝟐) ile ölçülmüştür. Sonuçlara göre bayes algoritması ile optimize edilmiş karar ağacı ile oluşturulan 

torbalama yöntemi yıllık ortalama NRMSE, NMAE, 𝐑𝟐 kriterleri sırasıyla 11.045 %, 4.880 %, 0.899 değerlerini almış ve hem yıllık 

hem de mevsimlik sonuçlar açısından en iyi performansa sahip model seçilmiştir. 

Anahtar Kelimeler: Yenilenebilir enerji, Rüzgar gücü tahmini, Bayes Optimizasyonu, Topluluk öğrenmesi 
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1. Introduction 

The need for energy is increasing day by day due to 

the increase in population, as well as the developments 

in the technology and automation sector developing in 

recent years. However, providing energy from fossil 

fuels both harms human health and causes irreparable 

environmental problems. Increases in population, 

urbanization and energy demand require sustainable 

energy management, technological infrastructure and 

innovative applications. With the developments in the 

last 20 years, it is estimated that the 2% growth in energy 

need will increase by 1.3% in the next 20 years, which 

requires incentives to continuously support the sector 

with innovative systems, products and investments 

(Eroğlu, 2019). In the next 10 years, especially 

alternative energy use will be solar, wind, etc. It will 

depend on the resources, bringing along important 

developments in the energy production industry (Öz & 

Alyürük, 2020). Wind energy is the fastest-growing 

energy type among renewable energy sources globally 

and the most invested energy type in the last 6 years. In 

2019 approximately 15% of the electricity demand in 

Europe, in Turkey about 7% is obtained from wind 

power plants (YEKDEM, 2020). Wind power plant 

installed power in 2023 in Turkey total power installed 

power (100,000 MW) 20%. It is aimed to reach a value 

of 20,000 MW, corresponding to the amount of energy 

(Şenol & Koç, 2015). Considering the wind potential 

and the 2023 targets, although the current installed 

capacity of wind power plant is low, significant 

developments have been achieved in the last decade. 

The electricity consumption in Turkey, which reached 

290.4 kilowatt-hours in 2019, is expected to reach 375.8 

TWh with an annual average increase of 4.8% (ETKB, 

2019). This increase in energy consumption increases 

foreign dependency and causes a current account deficit 

for countries that cannot produce the energy they 

consume and meet this need with imports. When 

examining Turkey's current account deficit, this deficit 

constitutes a significant portion of energy 

imports(Bağcı,2019).

 

 

 
Figure 1. Installed wind power plants by years

 

 In Figure 1, the last twelve years for Wind Power 

Plants in Turkey (1998-2020) is given to the 

development of total installed capacity (TÜREB, 2021). 

As shown in the graph, installed wind power has 

increased 10 times in the last 10 years and exceeded 8 

GW. The ratio of electricity generated from wind energy 

to total electricity generation in Turkey in 2020 was 

8.4%. A ratio of the 8.4% of electricity consumed in 

Turkey is produced from wind energy. It is aimed to 

increase this value to 20% in 2023. 

Electricity generation with wind power has a highly 

variable profile. For this reason, energy prediction 

models based on wind prediction have an important 

place in the reliable, economical and quality operation 

of wind energy resources. Wind energy prediction 

models are used in power systems planning, reserve 

planning, maintenance and repair planning, and bidding 

in the electricity market. Thanks to prediction models, 

power plants can increase their revenues by reducing 

prediction errors in the day-ahead market, thus reducing 

energy imbalances in the electricity market and 

consequently, costs (Karık et al., 2017). Especially, 

short-term wind prediction play an important role in 

day-ahead electricity trade, planning the day-ahead 

electricity system, determining the required reserve 

amount, and making unit commitment decisions 

(Kerem, 2018). Thanks to short-term wind prediction, 

problems such as excessive production planning and 

allocation of excess reserves can be avoided, reducing 

operating costs and integrating more wind energy into 

the system.  

Better predictive models for wind power 

significantly reduce the need for conventional power 
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plants to control energy. At this point, among prediction 

models, especially machine learning methods play a 

major role in the successful integration of wind power 

generation into electrical networks. 

In this study, short-term wind power prediction four 

models based on the Bayesian optimization algorithm 

(BOA) and ensemble learning that can assist system 

operators and producers in more accurate production 

planning and accurate price proposal in electricity 

markets are proposed. Ensemble learning algorithms 

have been preferred in this study because it provides the 

opportunity to obtain higher performance models by 

combining more than one regression algorithm. In the 

parameter setting of regression algorithms, unlike other 

methods, the BOA, which uses the information obtained 

from previous experiments and works quickly, is used. 

Decision tree, Gaussian process regression and Support 

vector regression, which are frequently used in short-

term wind power prediction in the literature, are used as 

regression algorithms. Among the optimized regression 

algorithms, Bayesian optimized Gaussian process 

regression (BO-GPR) and Bayesian optimized decision 

tree (BO-DT) have been chosen as the base learner for 

ensemble learning. In bagging and stacking methods, 

which are ensemble learning methods, different 

combinations of BO-GPR and BO-DT were tried and 

the results were evaluated seasonally and annually in 

terms of NRMSE, NMAE and R2 performance criteria. 

The developed models were used for short term wind 

energy estimation of a wind turbine operating in Yalova. 

The model consisting of the combination of BO-DT and 

bagging algorithm, which has the best performance 

criteria for four seasons, has shown that it is the most 

effective model in short term wind power with annual 

average NRMSE 11.045%, NMAE 4.880% and R2 

0.899. 

The remainder of this work is organized as follows. 

Section 2 summarizes the literature on short-term wind 

power prediction studies. Section 3 and Section 4 

introduces the methods used in the study and proposed 

approach, respectively. Section 5 shows the 

implementation stages of the proposed models in the 

study and the analysis results on the determined wind 

turbine. And finally, Section 6 summarizes the results of 

the proposed short-term wind prediction models and 

their contribution to the literature. 

2. Literature Survey 

There are many studies of machine learning and 

ensemble learning applications in short-term wind 

power prediction in the literature. Lee and Baldick 

proposed 52 artificial neural networks (ANN) models 

and 5 Gaussian process regressions (GPR) models based 

on the GPR model and ANN for prediction at 48 hours 

time horizon. Artificial neural network (ANN) sub-

models predicted future wind power over a 48-hour 

period based on past and predicted wind power data. 

Parallel to the ANN, GPR predict only from historical 

wind power data. The most appropriate prediction from 

more than one prediction value formed for the same hour 

is determined by the decision process (Lee & Baldick, 

2014).  

Chen et al. (2014), combined NWP (Numerical 

weather prediction) model and GPR models to predict 

short term wind power. Wind power was forecasted 

based on the relationship between the corrected data 

after the wind speed data received in the proposed model 

were corrected with Gaussian process. The data set on 

which the model has applied consists of wind speed, 

wind direction, temperature, pressure, humidity and 

wind power and is in a time period of 10 minutes. The 

proposed model was compared with classical wind 

prediction methods such as Multilayer perceptron 

(MLP) and ARIMA, and an improvement between 9% 

and 14% was achieved in error values compared to the 

artificial neural network. 

 Li et al. (2018), proposed a hybrid model based on 

Support vector machine (SVM) using Wavelet 

transform (WT) and Cuckoo search (CS) methods. 

In the proposed model, Fourier, Gaussian and 

polynomial fitting was used to deal with the missing and 

erroneous data, and then the original signal was 

eliminated with WT. With the CS optimization, core 

function of the SVM and the penalty factor are 

optimized, and the prediction accuracy is increased. The 

model created has been applied to the data set consisting 

of hourly wind speed, wind direction, and wind power 

belonging to China's wind power plant. The past 60 days 

(1440 hours) data was used for the training, and the next 

3 days (72 hours) data was used for the test. According 

to the results, the proposed model has fewer error values 

than ARIMA, Support Vector Regression (SVR) and 

Back Propagation Neural Network (BPNN).  

Fu et al. (2019), put forward a SVM model 

optimized with the improved CS method on the data set 

consisting of hourly wind speed, wind direction, 

temperature and wind power. The classic CS method has 

been optimized to prevent the local optimum's easy 

capture in large data sets. The proposed model was 

applied in two data sets, 500 and the other 400 training 

data, and tested with 40 data. According to the results, 

the proposed model gave better results than the SVM 

optimized with classical CS, and it was shown that the 

number of training data was effective on the prediction. 

 Ma & Zhai (2019), established a 2-stage hybrid 

model consisting of WT, Feed-forward artificial neural 

network (FFANN) and Ant colony optimization (ACO) 

methods. In the first stage of the model, meteorological 

parameters such as wind direction, temperature, 

pressure and wind speed were predicted. In the second 

stage, wind speed predictions from the first stage were 

predicted with an ANN optimized with the ant colony 

and wind power sub-series. Wind power prediction 

results are obtained by applying the predicted sub-series 

WT. The proposed model has been more successful than 

ANN optimized with genetic algorithms, ANN 
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optimized with Particle swarm optimization in the next 

24-hour wind power prediction. 

 Li et al. (2020), proposed a hybrid model consisting 

of a SVM and improved Dragonfly algorithm (IDA) has 

been proposed for short term wind power forecasting. 

The IDA is used to select the optimum parameters of the 

SVM. The proposed model was tested on a data set 

consisting of hourly wind speed, wind direction and 

wind power in 2017 of a wind farm located in France. In 

the hybrid model proposed for short-term wind 

forecasting, the past 6 days (144 hours) data are 

determined as training data, and the next 2 days (48 

hours) data are determined as test data. The proposed 

model gave better short-term wind power forecasting 

results than ANN and GPR methods. 

Recently, ensemble learning applications have 

increased in wind power forecasting by combining 

multiple forecasting methods, offering more generalized 

performance and reliability. 

Heinermann & Kramer (2016), applied the k nearest 

neighbor (k-NN), Decision tree (DT) and SVM methods 

to short-term wind power. DT and SVM methods that 

predict with less error are combined with heterogeneous 

ensemble learning. With the created heterogeneous 

ensemble learning models, both an increase in 

prediction accuracy and a decrease in runtime were 

achieved.  

 Ahmad et al. (2018), applied Random Forest (RF) 

and Extra Trees (ET) method to investigate the effect of 

ensemble learning methods on improving calculation 

costs and prediction accuracy in hourly wind power 

prediction. The results were compared with the SVM. 

According to the prediction performance results of the 

methods, RF and ET, which are tree-based ensemble 

learning methods, gave better results than the SVM. In 

addition to the prediction accuracy, the ET method has 

less training and testing time than the other two 

methods.  

Banik et al. (2020), used Boosting, Gradient 

Boosting and Extreme gradient boosting (XGBoost) 

methods as predictors, outliers were removed in the data 

set consisting of hourly data from 2014, and the 

relationship between wind power and meteorological 

parameters was determined with the Pearson correlation 

heat map. According to the results, a strong correlation 

was found between wind power and wind speed, wind 

direction, temperature and humidity, and other 

parameters were not included in the model. Then, 5-fold 

validation was applied to the models and predictions 

were made in two different time horizons, 1 hour and 1 

week. According to R2 and RMSE criteria, XGBoost 

ensemble gave the best results compared to other 

methods.  

Tahir et al (2018), proposed a two-layer stacked 

ensemble-based model consisting of Random Forest, 

Support vector machine and Radial Basis Function 

Neural Network methods for very short-term wind 

power forecasting. The output values obtained with the 

support vector machine, random forest and radial basis 

function neural network models in the first layer of the 

model are combined with the support vector machine in 

the second layer and wind power are forecasted. 

According to the results, the proposed stacked 

ensemble-based model has been more successful than 

the classical support vector machine, linear regression, 

regression tree, random forest in very short-term wind 

power forecasting. 

In this study, SVR, GPR and DT were applied in 

order to predict short-term wind power on a data set 

consisting of hourly wind speed, wind direction, 

temperature, pressure, relative humidity and wind 

power. In order to optimize the regression algorithms, 

unlike the optimization algorithms such as CS, ACO, 

PS, which are used in wind prediction studies in the 

literature, the BO was used.  In order to reduce the 

prediction error of optimized regression algorithms and 

provide an improved prediction performance, these 

algorithms are combined with the ensemble learning 

methods, bagging and stacking. In the literature, DT and 

GPR algorithms, which are frequently used as single 

models in wind power prediction, are combined with the 

stacking algorithm in the study and different models are 

proposed. 

 

3. Materials and Methods 

3.1. Gaussian Process Regression 
 

Gaussian process regression (GPR) is a kernel-based 

nonparametric probabilistic model. The Gaussian 

process estimates the final probability distribution based 

on a previous probability distribution and updates the 

previous probability distribution based on training data. 

A Gaussian process model predicts response variables 

with the new input vector and training data by defining 

the relationship between input variables and target 

variables (Rasmussen & Williams, 2006). Regression 

model function: 

 

y= 𝑓(𝑥) +  𝜀               𝜀 ≈ 𝑁(0, 𝜎𝑛
2

    
)                        (1) 

      

where y is the target variable, and x is the input 

variable. The average of ε, which is additive noise, is 0 

and it is assumed to be normally distributed (Wan & 

Sapsis, 2017). A Gaussian process mean function is 

expressed by m(x) and covariance function k(x,x'):                                                   

 

𝑚(𝑥) = 𝐸[𝑓(𝑥)]                                                       (2)     

                                                                                                          

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥)) (𝑓(𝑥′) − 𝑚(𝑥′))]      (3) 

 

The model is defined as follows: 

 

𝑓(𝑥) ≈ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))                                      (4)       

                                                                               

Assuming that the training dataset of the Gaussian 

model is represented by  𝐷 = {(𝑥𝑖,𝑦𝑖) = |𝑖 =
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1,2, . . . . . . 𝑁|} 𝑥 𝜖 𝑅𝑑, 𝑦𝜖𝑅 where x is the input y is 

output, 𝑅𝑑, d-dimensional R is the one-dimensional 

vector space. The Gaussian distribution with D, a linear 

combination of Gaussian parameters, is given in 

Equation 5. 

 

𝑦 ≈ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)  + 𝜎𝑛 
2 𝐼𝑛)                              (5) 

                                                                              

Where I denote the identity matrix. The covariance 

function is the central component in the GPR model, so 

function selection is critical. It is the most commonly 

used quadratic exponential in the literature from 

different functions such as linear, exponential, matern, 

rational quadratic, squared exponential. This can be 

explained by the fact that the function is infinitely 

differentiable and therefore, uniformly distributed. 

Because of these properties, the squared exponential 

kernel function is frequently used in studies on energy 

estimation (Heo & Zavala, 2012). In this study, the 

squared exponential function used as the covariance 

function is shown in Equation 6. 

 

𝑘(𝑥 𝑖, 𝑥 𝑗 | 𝜃)  = 𝜎𝑓
2𝑒𝑥𝑝 [−

1

2
   

( 𝑥 𝑖 −𝑥 𝑗 )𝑡  ( 𝑥 𝑖 −𝑥 𝑗 )

𝜎𝑙
2    ] (6)                                       

                                                                         
In the equation, 𝜎𝑓  refers to the signal standard 

deviation, and 𝜎𝑙 refers to the feature data's length.     

                                                                    

 

3.2. Support Vector Regression 
 

The support vector machine (SVM) is one of the 

most frequently used methods for predicting renewable 

energy generation (Zendehboudi et al., 2018). The 

method provides flexible control over the model 

complexity. Thus it gives successful results in solving 

nonlinear problems even in a small training set (Deng et 

al., 2018). The SVM aims at minimizing the structure 

risk in contrast to conventional experimental risk 

reduction. It tries to minimize the upper limit of 

education error and generalization error consisting of the 

sum of a confidence interval (Dong et al., 2005). 

𝑥𝑖 represents the vector of input parameters, and 𝑦𝑖   

represents the output value (i represents data point ith in 

the data set). In this case, the sample set can be defined 

as {(𝑥𝑖 , 𝑦𝑖  )}𝑖=1
𝑛  where N represents the total number of 

samples. 

 

𝑦 = 𝑓(𝑥) = 𝑊. ∅(𝑥) + 𝑏                                             (7)    

 

In Equation 7, W denotes the feature vector, b is the 

intersection vector, and ∅ (x) is the high dimensional 

space. In Equation 8, the regulated risk function is given 

to estimate the W and b coefficients (Li et al., 2009).      

                                                                             

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 =
1

2
|𝑊|2+C

1

𝑁
∑ 𝐿𝜀(𝑦𝑖 , 𝑓(𝑥𝑖))𝑁

𝑖=1                 (8)     

                                                               

𝐿𝜀(𝑌𝑖 , 𝑓(𝑥𝑖))=

{
0,                                        |𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀|

|𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀|                                𝑜𝑡ℎ𝑒𝑟𝑠
             (9)   

      

|𝑊|2 is the regulated term, while C is the penalty 

factor determining the balance between pattern 

smoothness and training. The second term of Equation 8 

is empirical error measured by the density loss function 

ε given in Equation 9. To estimate W and b, the equation 

given above is converted into the objective function in 

Equation 10.       

                                                                                                  

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝜁1𝜁1
∗ 𝑊 𝑏:

1

2
|𝑊|2+𝐶 

1

𝑁
∑ (𝜁1 + 𝜁1

∗)𝑁
𝑖=1       (10)                                                          

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {

𝑦𝑖 − 𝑊. ∅𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜁1

𝑊. ∅𝑥𝑖 + 𝑏 ≤ 𝜀 + 𝜁1
∗, 𝑖 = 1,2, … . 𝑁

𝜁1 ≥ 0  𝜁1
∗ ≥ 0

 

 

Here 𝜁1
∗ refer to artificial variables. Equation 10 is 

written as when the kernel function is 𝐾(𝑥𝑖 , 𝑥𝑗): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 {𝑎𝑖}{𝑎𝑖
∗}=

1

2
∑ ∑ (𝑎𝑖 − 𝑎𝑖

∗)𝑁
𝑗=1

𝑁
𝑖=1 .(𝑎𝑗 −

𝑎𝑗
∗).𝐾(𝑥𝑖 , 𝑥𝑗) − 𝜀 ∑ (𝑎𝑖 − 𝑎𝑖

∗) 𝑁
𝑖=1 +∑ 𝑦𝑖

𝑁
𝑖=1 (𝑎𝑖 − 𝑎𝑖

∗) (11) 

                                                                                                           

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
∑(𝑎𝑖 − 𝑎𝑖

∗) = 0

𝑁

𝑖=1

(𝑎𝑖 − 𝑎𝑖
∗) ∈ [0, 𝐶]

 

 

In Equation 11, 𝑎𝑖  and 𝑎𝑖
∗ represent Lagrange 

factors, and i and j represent different examples. In this 

case, Equation 7 is expressed as follows (Li et al., 2009): 

 

𝑦 = 𝑓(𝑥) = ∑ (𝑎𝑖 − 𝑎𝑖
∗)𝑁

𝑖=1 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏                (12)                                                        

 

3.3. Decision Tree 
 

Decision tree (DT) is frequently used in 

classification and regression problems because of their 

low computational costs and easy interpretation. Since 

short-term wind power prediction is a regression 

problem, the study focuses on the principle of regression 

trees. The DT is usually a binary tree in each node where 

a decision criterion is defined, taking into account a 

particular feature of the test model. A tag is assigned to 

each leaf node in the tree, so the practitioner can easily 

understand the tree's decisions (Hastie et al., 2009; 

Bishop, 2006). 

Building regression trees is the process of creating 

an iterative tree by selecting the most appropriate 

features and split points based on the minimum square 

error (Breiman, 1984). Thanks to the tree's ability to be 

adjusted according to the properties of the data set, there 

is no need to pre-set the function structure, and it can be 

worked with both discrete and continuous variables. A 

simple decision tree is a binary tree consisting of two 

leaf nodes, a root node, and a branch. The decision tree 
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is denoted by ℎ(𝑥; 𝑎𝑚), where  𝑎𝑚  is the characteristic 

variable and split point in the m-th iteration. The 

examples given are 𝑅 = {𝑥𝑖  , 𝑦𝑖}𝑖
𝑁 and 𝑥𝑗   are continuous 

variables. In the R set, 𝑥𝑗 takes n different values. The 

values are written as {𝑥𝑗
1, 𝑥𝑗

2, … . . 𝑥𝑗
𝑛}  on an increasing 

level and the set R is divided into 𝑅+ and 𝑅− according 

to the division point s. If the value of 𝑥𝑖𝑗  is less than the 

s value, it is included in the  𝑅− set, if it is large, it is 

included in the 𝑅+ set (Equation 13). 

 

𝑅+(𝑗, 𝑠) = {𝑥𝑖𝑗|𝑥𝑖𝑗 ≥ 𝑠}                                                                                                                                       

                                                                            (13) 

𝑅−(𝑗, 𝑠) = {𝑥𝑖𝑗|𝑥𝑖𝑗 < 𝑠}   

 

The predicted value in each set must be equal to the 

output value or all samples' mean. The predicted value 

for the set 𝑅𝑚  with the number of data 𝑁𝑚 is calculated 

𝑐𝑚  with 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 14. 

   

 

𝑐𝑚 =  
1

𝑁𝑚
 ∑ 𝑦𝑖𝑥𝑗 ∈ 𝑅𝑚

                                          (14) 

 

The set consisting of all possible values of the 

division points s for each value of the continuous 

variable 𝑥𝑖𝑗 is shown by Equation 15.            

                                                                         

𝑆𝑥𝑗
= {

𝑥𝑗
𝑖+ 𝑥𝑗

𝑖+1

2
 |1 ≤ 𝑖 ≤ 𝑁 − 1}                             (15) 

                                                                   

To find the appropriate feature 𝑥𝑖𝑗  and the split point 

s, all the split points for all properties should be 

examined and selected as the final split point with 

minimum loss. Here the loss can be calculated by 

Equation 16. 

 

Ψ(𝑗 + 𝑠) = ∑ (𝑦𝑖 − 𝑐𝑠
+)2

𝑥𝑗 ∈𝑅+ 
+ ∑ (𝑦𝑖 − 𝑐𝑠

−)2
𝑥𝑗 ∈𝑅− 

                                                            

(16) 

 

Finally, the optimal feature variable and the split 

point are written as in Equation 17.  

 

(𝑗∗, 𝑠∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗,𝑠 ∑ (𝑦𝑖 − 𝑐𝑠
+)2 +𝑥𝑗 ∈𝑅+ 

∑ (𝑦𝑖 − 𝑐𝑠
−)2

𝑥𝑗 ∈𝑅− 
                                                   (17) 

 

3.4. Bayesian Optimization Algorithm 

 
Hyperparameter selection plays an important role in 

the success of machine learning algorithms. Grid search, 

which is frequently used in hyperparameter 

optimization, becomes complicated when the parameter 

space size is high while performing a comprehensive 

search in simple models (Cornejo-Bueno et al., 2018; 

Alade et al.,2019). Since the random search algorithm 

works by randomly sampling the search field, it does not 

use the information obtained from previous 

experiments. This situation creates a problem, especially 

in hyperparameter selection problems where the 

function is unknown, and the cost of running an 

experiment is high. BOA comes into play at this point 

(Wang et al, 2012). BOA estimates the posterior 

distribution of the objective function using the Bayes 

theorem and determines the hyperparameter 

combination of the next example according to this 

distribution. Unlike the random search, it uses all the 

information obtained from the previous experiment and 

tries to find the parameter to bring the result to the global 

maximum. To avoid native optima, exploration and 

exploitation need to be changed. The gain function is 

defined to encrypt this exchange. The gain function 

returns the utility estimates of the candidate points for 

the next step of f(x) and selects 𝑥(𝑡+1), which produces 

the maximum utility. 

In this study, the expected improvement (EI) is used 

as the gain function. The value x looking for the global 

minimum of the given function f (x) is obtained as in 

Equation 18: 

 

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸(𝑚𝑎𝑥{0, 𝑓𝑡+1(𝑥)  −  𝑓(𝑥+)}|𝐷𝑡      (18)                                                         

 

Where D represents the number of x components. 

When a Gaussian process is used, it is expressed for EI 

as: 

𝐸𝐼(𝑥) {
(𝜇(𝑥) − 𝑓(𝑥+))𝜑 (𝑧) + 𝜎(𝑥) 𝜑 (𝑧), 𝑖𝑓 𝜎(𝑥) > 0

0,                                                              𝑖𝑓𝜎(𝑥) = 0 
                                            

 

(19) 

 

𝑧 =
𝜇(𝑥)−𝑓(𝑥)+

𝜎(𝑥)
                                                      (20)         

                                                                            

3.5. Bagging 
 

In the bagging approach is aimed to create 

independent predictors by using the samples of the 

training set and the average or voting of the output of the 

prediction methods. When more than one similar dataset 

is created by re-sampling with preloading, the variance 

of the output error decreases and overfitting is solved 

(Breiman, 1996). Breiman (1996) showed also that 

bagging method gives better results than the single tree 

in both classification and regression problems. 

In bagging, in the first step, N new training data of n 

dimensions are created, in which n of the n samples are 

selected homogeneously by changing from the original 

data set. Then, each tree in the community is 

individually trained with relevant new training data. For 

example, in this study, 50 trees were used in bagging tree 

models. In the last step, the average of all predictions is 

calculated to make a final forecast. In the bagging trees 

model, the prediction is defined as: 

 

�̂� =
1

𝑁
∑ 𝑓𝑖

𝑁
𝑖=1 (𝑥)                                                 (21)  
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 Here  𝑓𝑖 shows the generating trees, i shows the boot 

data and each tree model created is trained on the boot 

data. 

 

3.6. Stacking  
 

The stacking method, known as a batch 

generalization, is a method of different levels that 

combines different prediction models in a single model. 

The approach aims to minimize the errors by reducing 

the bias of the generalizers by introducing an optimal 

learning system with the concept of meta-learning 

(Wolpert, 1992; Van der Laan et al., 2007).  

The stacking approach consists of two levels, level-

0 and level-1. In Level-0, different prediction models are 

trained, and the output variable is predicted. The 

predictions obtained at Level-0 are used as input for 

Level-1. The model in Level-1 is called a meta-model 

and learns with the previous level models that give the 

best prediction of each model of the previous level 

(Shamaei & Kaedi, 2016; Serbes et al., 2015; 

Petropoulos et al., 2017). The number of levels is not 

limited to 2 in the stacking method. According to the 

method's working principle, the n-level model uses the 

prediction of the n-1 level models. In the stacking 

method, the change in the prediction results is due to the 

diversity of models at different levels. This is because 

models with different generalization rules tend to 

produce different results (Mendes-Moreira et al., 2012). 

 

3.7. Model performance evaluation 
 

Different performance criteria such as Normalized 

Absolute Mean Error (NMAE), Normalized Root of 

Mean Squares Error (NRMSE) and determination 

coefficient ( R2) have been used to test the success of 

models used in short-term wind prediction. The 

performance criteria used are given in Equation 22-24. 

 

𝑁𝑅𝑀𝑆𝐸 (%) =
√

1

𝑁
∑ (𝑓𝑖−𝑦𝑖)2𝑁

𝑖=1

𝐶
 100                           (22)           

                                                              

𝑁𝑀𝐴𝐸 (%) =
1

𝑁
∑ |𝑓𝑖 −𝑦𝑖|𝑁

𝑖=1

𝐶
 100      (23)                                                              

  

𝑅2 = 1 −
∑ (𝑓𝑖 −𝑦𝑖)2𝑁

𝑖=1

∑ (𝑓𝑖 −𝑓�̅�)2𝑁
𝑖=1

                                            (24)                                                       

 

Performance criteria are proportioned to the amount of 

installed power to measure the accuracy of wind energy 

prediction models in percentage terms and not be 

affected by the characteristics of the wind turbine (Chen 

et al., 2013). In the equations, N is the number of data, 

𝑓𝑖 is the actual value, 𝑦𝑖 is the predicted value, and 𝑓�̅� is 

the average actual value. In Equation 22 and Equation 

23, C represents the installed power. The turbine 

capacity used in the study is 3600 kW. 

 

4. Proposed Approach for Short Term Wind 

Power Prediction 
 

In the study, a hybrid approach consisting of BO, 

GPR, DT, SVR, bagging and stacking methods is 

proposed for short term wind prediction. The phases of 

the proposed approach are as follows: 

Step 1. Data Collection and Data Preprocessing 

• The data set consisting of SCADA data and 

meteorological parameters is rearranged so that 

the time step is 1 hour. 

• The data for 15 days randomly selected from 

January, April, July and October are defined as 

test data and the remaining 6981 data as 

training data. 

• Missing data is completed using the k-NN 

algorithm. 

• The data is brought to the 0-1 range by 

applying max-min normalization to the data 

set. The formula used for normalization is 

given in Equation 25: 

 

𝑥𝑛𝑜𝑟,𝑖 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                               (25)                                                                                          

 

 Step 2. Bayesian Optimization of base learners 

• BO is applied to find optimum 

hyperparameters of SVR, GPR and DT 

algorithms. 

• Prediction results of GPR, DT and SVR 

algorithms are obtained with optimized 

hyperparameter values and denormalization is 

applied. 

• The algorithm or algorithms with the least error 

values are selected as base learner for ensemble 

learning according to NRMSE, NMAE and  R2 

performance criteria. 

Step 3. Ensemble Models  

• Ensemble learning models (bagging and 

stacking) are created with different 

combinations of algorithms selected from 

among the optimized algorithms. The 

estimation results of hourly test data 

determined by the created ensemble learning 

models are obtained. 

• Denormalization is applied to the obtained 

prediction results. 

Step 4. Comparison of developed models 

• Prediction results of Bayesian optimized GPR, 

SVR, DT, bagging and stacking models created 

by working with SVR, GPR, DT algorithms 

trained with default parameters are obtained. 

• The denormalized prediction results are 

compared seasonally and annually in terms of 

NRMSE, NMAE and  R2 criteria. 
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5. Application 
 

5.1. Data Collection and Data Preprocessing 
 

In the study, a wind turbine located in Yalova was 

chosen for the application. The turbine characteristics 

are as follows: capacity 3600 kW, rotor diameter 116.8 

meters, cut-in wind speed 3 m / s, cut-out wind speed 25 

m / s. The data are wind speed, wind direction, 

temperature, air pressure, relative humidity, and wind 

power for 2018. The parameters used in the studies in 

the literature were taken into consideration while 

creating the data set in this study (Chen et al., 2014; 

Banik et al., 2020, Ahmad et al., 2018). The wind turbine 

scada dataset on the Kaggle website was used in the 

article for short term wind power prediction (Erisen, 

2019). Meteorological data were obtained from on the 

National Weather Service Center Environmental 

Forecast Climate (NOAA) website (NOAA, 2018). The 

data obtained have been rearranged so that the time 

interval is 1 hour and consists of 8399 samples. The 228 

missing data points in the data set were completed with 

the k-NN algorithm (Gao et al., 2020). 

The fact that the parameters used have different 

value ranges affects the prediction accuracy and causes 

uncertainty. In order to prevent this situation, the 

normalization process was applied to the data set by 

using Equation 25. While normalizing the wind 

direction data, it was first converted to radians, then sine 

and cosine values were calculated (Li et al., 2020).  

In wind power prediction studies, it is seen that the 

data have a periodic pattern between seasons. For this 

reason, in many studies in the literature, predictions 

were made by creating training and test data containing 

data for each season, considering seasonal 

characteristics (Esfetang & Kazemzadeh, 2018; Zheng 

et al., 2017; Acikgoz et al., 2020). In this study, 

randomly selected 15-day data for January, April, July 

and October were used for the test data, and the 

remaining data were accepted as training data. 

 
Figure 2. Wind power time series in 1-h time period in 

2018 

 

5.2. Bayesian Optimization of base learners 

 
MATLAB 2020a program was used to create short-

term wind power prediction models. GPR, DT and SVR, 

which are the selected prediction algorithms, were first 

applied with default parameters. The hyperparameter 

values that minimize the loss of 5- fold cross-validation 

with the BOA investigated. In the study, expected 

improvement is used as the acquisition function, which 

expresses how the parameter space should be 

investigated during BO. 

 In the first step of BO, initial hyperparameter values 

are assigned to the model. The model learns 4/5 of the 

data and tests it over 1/5. In each iteration, a new 

hyperparameter vector is created and the loss function 

value (log(1+loss)) is calculated. After the iterations are 

completed, the best hyperparameter vector that makes 

the loss function minimum is selected. With the selected 

hyperparameter vector, the final model is trained on the 

whole data set and the prediction results are obtained. 

Optimum values of sigma parameter in GPR, kernel 

function, box constraint, epsilon parameters in SVR and 

min leaf size and max num split parameters in DT were 

investigated. 

Table 1 expresses the DT models in the BO 

iterations. Fig. 3 shows the minimum objective plot 

versus the number of function evaluations for the 

different decision tree models.

Table 1. The Bayesian optimization iterations for the DT model 

Iter Eval Result Objective:log

(1+loss) 

Objective 

Runtime 

BestSoFar 

(observed) 

BestSoFar

(Estim.) 

MinLeafSize MaxNumSplits 

 

1 Best 0.011502 0.051844 0.011502 0.011502 467 15 

2 Accept 0.023687 0.036668 0.011502 0.012333 1748 922 

3 Best 0.0092397 0.063725 0.0092397 0.0092528 20 152 

. . . . . . . . 

. . . . . . . . 

36 Best 0.0088459 0.070322 0.0088459 0.0089 3 220 

. . . . . . . . 

. . . . . . . . 

48 Accept 0.0095316 0.056205 0.0088459 0.0088483 79 37 

49 Accept 0.0093518 0.063937 0.0088459 0.0088493 28 504 

50 Accept 0.010085 0.054857 0.0088459 0.0088499 2 17 
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According to the optimization results, the model 

reached the minimum objective function value by taking 

Min leaf size 3, and Max num split 220 in the 36-th 

iteration. 

The Table 2, expresses the GPR models in the 

Bayesian optimization iterations. The Fig. 4 shows the 

plot of the minimum objective versus the number of 

function evaluations for the different GPR models.

 
 

 

 

 
 

 

Table 2. The Bayesian optimization iterations for the GPR Model 

Iter Eval Result Objective: 

Log (1+loss) 

Objective 

Runtime 

BestSoFar 

(observed) 

BestSoFar 

(Estim.) 

        Sigma  

 

1  Best       0.0089561  60.936    0.0089561     0.0089561       0.030826  

2  Accept     0.084427  73.087    0.0089561      0.013786     0.00016228  

3  Accept     0.022513  66.347    0.0089561      0.015651      0.0017231  

. . . . . . . 

. . . . . . . 

11  Best       0.0068647  67.936    0.0068647     0.0069051       0.11505 

. . . . . . . 

. . . . . . . 

28  Accept      0.060073  65.317    0.0068647     0.0069193       0.011038  

29  Accept     0.0069398  30.578    0.0068647     0.0069199       0.052232  

30  Accept      0.022756  57.746    0.0068647     0.0069209      0.0029126  

 

 
Figure 4. The minimum objective versus the number of 

function evaluations for the GPR 

 

 

 

 

According to the results, the model reached the 

optimum result and minimum cross-validation loss in 

the 11-th iteration. Sigma took the value of 0.11505 in 

the optimum model. 

The Table 3, represents the SVR models in the 

Bayesian optimization iterations. The Fig. 5 shows the 

plot of the minimum objective versus the number of 

function evaluations for the SVR model.

Figure 3. The minimum objective versus the number 

of function evaluations for the DT 
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Table 3. The Bayesian optimization iterations for the SVR model 

Ite

r 

Eval 

result 

Objective:log(1+

loss) 

Objective 

runtime 

BestSoFar 

observed 

BestSoFar 

estim. 

BoxConstr

aint 

Epsilon KernelFunct

ion 

1 Best 0.12055 0.98747 0.12055 0.12055 0.082336 17.448 Linear 

2 Best 0.018887 39.963 0.018887 0.02644 0.0039777 0.00131

06 

Polynomial 

3 Accept 0.12055 0.24973 0.018887 0.024742 61.741 0.94565 Polynomial 

. . . . . . . . . 

. . . . . . . . . 

25 Best 0.0096151 1036.7 0.0096151 0.0096458 399.1 0.01481 gaussian 

. . . . . . . . . 

. . . . . . . . . 

28 Accept 0.0096409 826.89 0.0096151 0.009604 841.24 0.06418

4 

gaussian 

29 Accept 0.12055 0.67599 0.0096151 0.0096046 0.0010709 47.876 polynomial 

30 Accept 0.12055 0.67059 0.0096151 0.0096049 0.0010016 45.804 gaussian 

 
Figure 5. The minimum objective versus the number of 

function evaluations for the SVR 

The SVR model has reached the optimum 

hyperparameter values in the 25-th iteration. The Kernel 

function of the optimum model is gaussian and Box 

constraint, Epsilon hyperparameters values are 399.1, 

0.01481, respectively. 

 

5.3.Selection and training of base learners 
 
Table 4. Comparison of different regression algorithms used 

as base learner 

 Performance criteria 

Base 

Learner 
NRMSE (%) NMAE (%) R2 

BO-GPR 12.863 5.862 0.873 

BO-SVR 13.821 5.700 0.845 

BO-DT 12.512 5.694 0.866 

 

BO has been used to improve base learner prediction 

performance. Table 4 shows a comparison of the BO-

DT, BO-SVR and BO-GPR algorithms with BO as the 

base learner. According to NRMSE, NMAE, R2 

performance criteria, BO-GPR and BO-DT models have 

higher prediction performance than BO-SVR. Since no 

choice could be made between BO-GPR and BO-DT in 

terms of performance criteria, it was decided to use both 

as base learner in the study. 

 

5.4. Ensemble Models 
 

Table 5 lists the ensemble learning algorithms and 

parameters of the algorithms examined in this article. In 

the bagging algorithm, the BO- DT that generates fewer 

error predict compared to BO-GPR and BO-SVR was 

chosen as the basic learner. The bagging model 

prediction result was obtained by averaging 50 BO- DT. 

Bayesian optimized decision trees were trained with 

examples that are homogeneously selected from the 

original data set. In the stacking models, 3 different 

models were created by considering 2 levels. The first 

level BO-DT, BO-GPR and bagged tree model results 

are combined with the second level linear regression 

(LR) and BO-DT. It is aimed to create a model with 

better performance than both methods by combining 

BO-GRP and BO-DT models with meta learner in 

stacking models. For this purpose, the LR algorithm is 

also used as a meta learner, as it is a fast and less 

complex method, which increases the stacking 

performance, except for the BO-DT model. 
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Table 5. Parameters of all prediction models 

Model Parameters 

BAG Base learner: BO-DT (Min Leaf Size: 3, 

MaxNumSplit: 220), Number of tree:50, 

Bagging size percent: 50% 

STACK1 Base learner: BO-DT (Min Leaf Size: 3, 

MaxNumSplit: 220), BO-GPR (Sigma: 

0.11505) Meta learner: BO-DT 

STACK2 Base learner: BO-DT (Min Leaf Size: 3, 

MaxNumSplit: 220), BO-GPR (Sigma: 

0.11505) Meta learner: LR (Lamda: 

1.8584e-05, Learner: leastsquares) 

STACK3 Base learner: BO-DT (Min Leaf Size: 3, 

MaxNumSplit: 220), BO-GPR, Bagged 

tree Meta learner: LR (Lambda: 1.8584e-

05, Learner: leastsquares) 

 

 

5.5. Experimantel Results 
 

Table 6 contains seasonal performance criteria and 

the average values of all models used in the study. 

When Table 6 is examined, it is seen that BO reduces 

the prediction error of the basic learners for each season. 

In addition, it has been demonstrated that the optimized 

GPR, SVR, DT of bagging and stacking algorithms 

improve the predictive performance of bagging and 

stacking models. The corresponding performance 

improvement was measured by the R2, NRMSE and 

NMAE performance criteria. The ensemble learning 

algorithms created in the study were more successful in 

short-term wind power prediction than single algorithms 

for all four seasons. Considering the seasonal 

performance, it is seen that prediction errors are higher 

in winter and spring seasons. The reason for this is the 

fluctuations and sudden changes in the parameters 

during these seasons. Since this difference is less in 

summer and autumn seasons, the performance of the 

models is also better in this direction. When the annual 

and seasonal prediction results are examined, the 

average R2, NRMSE, NMAE values of the bagging 

model with the best performance among the suggested 

methods were measured as 0.899, 11.045% and 4.880%, 

respectively.

Table 6. Seasonal and average results of models for 1-h prediction 

  Methods 

Seasons Performance 

criteria 

GPR DT SVR BO-

GPR 

BO-

DT 

BO-

SVR 

BAG STACK1 STACK2 STACK3 

Winter R2 0.868 0.707 0.502 0.869 0.809 0.723 0.870 0.801 0.782 0.823 

 NRMSE(%) 13.563 21.902 27.518 13.460 15.940 21.459 13.356 17.666 17.039 15.875 

 NMAE(%) 8.499 9.773 18.913 8.299 9.065 10.820 8.259 9.041 9.359 8.889 

Spring R2 0.730 0.776 0.770 0.803 0.824 0.842 0.888 0.882 0.874 0.887 

 NRMSE(%) 19.872 17.832 17.745 19.174 15.592 13.856 13.830 13.953 13.954 13.894 

 NMAE(%) 8.709 7.916 10.354 8.512 6.320 5.407 5.388 5.636 5.408 5.980 

Summer R2 0.881 0.919 0.801 0.915 0.925 0.910 0.926 0.910 0.922 0.918 

 NRMSE(%) 10.203 8.124 14.931 9.694 8.051 10.578 8.001 9.067 8.089 8.231 

 NMAE(%) 3.876 3.992 8.950 3.864 3.481 3.513 3.320 3.802 3.321 3.689 

Fall R2 0.907 0.876 0.861 0.908 0.908 0.905 0.912 0.900 0.909 0.906 

 NRMSE(%) 9.202 11.890 12.373 9.124 10.464 9.390 8.992 9.342 9.034 10.034 

 NMAE(%) 2.790 4.963 6.861 2.771 3.912 3.059 2.650 3.564 4.139 3.366 

Average R2 0.846 0.819 0.733 0.873 0.866 0.845 0.899 0.873 0.872 0.883 

 NRMSE(%) 13.210 14.937 18.141 12.863 12.512 13.821 11.045 12.507 12.029 12.009 

 NMAE(%) 5.968 6.661 11.270 5.862 5.694 5.700 4.880 5.511 5.531 5.482 
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6. Conclusions 

 
In the study, prediction models based on BO, 

machine learning and ensemble learning algorithms 

were created for short term wind power prediction. In 

the models, analyzes were carried out by considering 

both statistical (SCADA records) and physical 

(meteorological parameters) data. The missing data in 

the data set created in the first step of the study were 

completed with the K Nearest Neighbor algorithm, and 

test and training data sets containing data for each 

season were created. For this purpose, the months of 

January, April, July and October were chosen to 

represent the winter, spring, summer and autumn 

seasons. In the second step, hyperparameters of the DT, 

SVR and GPR algorithms selected as base learner for 

wind power prediction were optimized with the 

Bayesian algorithm. The Bayesian optimized decision 

tree (BO-DT) that reaches the least prediction error was 

chosen in the bagging model. Stacking models include 

the Bayesian optimized GPR (BO-GPR) in addition to 

the BO-DT. When the results of the analysis are 

analyzed seasonally and annually, it is seen that the 

ensemble learning algorithms are more successful in 

wind power prediction than single methods. The annual 

average R2, NMAE and NRMSE values are 0.899, 

4.880%, 11.045%, respectively, and the average 

calculation time of the bagging model performs better 

than other wind energy prediction models, is less than 

10 seconds.  

The conclusions of the study can be summarized as 

follows: 

• BOA was used for the first time in short-term wind 

energy prediction and has increased the prediction 

performance of regression algorithms. 

• In the study, GPR and DT algorithms, which gave 

successful results in wind power prediction studies, 

were combined with the stacking algorithm for the 

first time and a model with higher performance than 

both methods was provided. 

• Successful results were obtained by adding BO to 

the bagged tree model, which is also included in 

wind power prediction studies in the literature. 

• It has been shown that the prediction errors of the 

models change depending on the seasons. All 

models created have fewer prediction errors in the 

summer and autumn seasons compared to the 

winter and spring seasons. 

 

In future studies, the proposed model will be 

developed as follows: 

• Optimum hyper parameter values of bagging and 

stacking algorithms, which are meta-learners, will 

also be investigated with BOA. 

• In order to improve the data quality, which directly 

affects the prediction performance of the model, 

outliers in the data set will be detected and cleaned. 
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