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ABSTRACT

In this paper, a multiresolutional analysis/synthesis algorithm is introduced for the time-scale
modification (TSM) of speech signals. Unlike most time domain methods, this algorithm modifies the
wavelet coefficients of the speech signal instead of modifying the speech waveform itself. In this method
the speech signal is first divided into its subbands in order to obtain more accurately localized temporal
and frequency information for the TSM algorithm. These subbands are then modified using the waveforin
similarity overlap-add (WSOLA) method. Finally, the mverse wavelet transform is applied to these
modified subband signals in order to reconstruct a time-scale modified version of the input signal. It has
been shown that the multiresolutional time-scale modification (MTSM) of speech signals increases the
intelligibility of the reconstructed speech while almost preserving its quality, over the well-known time-
scale modification algorithms, namely the speech transformation system without pitch extraction
(STWPE), sinusoidal analysis-synthesis model (SASM), and WSOLA. In order to assess the performance
of the proposed MTSM algorithm, a novel evaluation procedure based on the subjective listening tests
and statistical methods has been developed.
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1. INTRODUCTION

In many applications it is desirable to transform a speech waveform into a
signal which is more uscful than the original. For cxample, in time-scale
modification speech can be sped up in order to compress the words spoken into an
allocated time interval or to quickly scan a passage. As an application, full-duplex
link can be achieved over a single-channel radio system if both ends of the link
operate in what is known as Time Division Duplex Mode. In this mode the channel
is allocated half of the time to transmit information in each of the two directions.
That is, the radio channel is divided into time slots of T/2 seconds, with each end
transmitting in altemate time slots stated simply when one end is transmitting, the
opposite end is receiving the information and vice versa. In this way a single radio
channel can support information flow in both directions resulting in a virtual full-
duplex link (Serinken, Gagnon, and Erogul, 1997). Alternatively, the articulation
rate can be slowed down to make degraded speech more intelligible. For example, in
phonocardiography, the heart sounds can be slowed down to improve physician’s
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capability in recognition and discrimination of dissimilarities resulting from cardiac
disorders (Erogul, Karag6z, Bahadirlar, 1998).

Speech signals can aiso be slowed down to help the training of language
leamning impaired children (Erogul. Karagéz, 1998). Numerous methods in both the
frequency and time domains have been proposed for the modification of speech
waveforms. The key requirement, however, is that qualities such as naturalness and
intelligibility as well as speaker dependent features such as pitch and formant
structure, be preserved.

One class of methods widely used in the application of time-scale
modification is based on a sinusoidal representation of speech. The system
developed by Portnoff (Portnoff, 1981), a refinement of the phase vocoder,
represents each sine wave component by vocal cord excitation and vocal tract
system contributions. Another approach manipulates an excitation obtained by
deconvolving the original speech with a vocal tract spectral envelope estimate
(Seneff, 1982). This system operates entircly in the frequency domain. Time
expansion is achieved by doubling the unwrapped phase component of the spectrum.
The other system, by Quatieri and McAulay (Quatieri and McAulay, 1986), is based
on a sinusoidal representation that explicitly estimates the amplitude and phase of
the vocal cord excitation and vocal tract system function contributions to each sine
wave.

On the other hand, there are many time domain algorithms for the time-scale
modification of speech signals. One example of a time domain algorithm is the
synchronized overlap-and-add procedure (SOLA) proposed by Roucos and Wilgus
(Roucos and Wilgus, 1985) which uses a modified overlap-and-add (OLA)
procedure on the waveform. Another form of synchronization is obtained by
applying a time domain pitch-synchronized OLA technique (TD-PSOLA) to the
original waveform (Moulines and Chanpentier, 1990). With TD-PSOLA the OLA
procedure is performed pitch-synchronously on the segments that are, accordingly,
excised in a pitch synchronous way from an original signal. A modified version of
TD-PSOLA called the overlap add technique, which is based on waveform
similarity (WSOLA), was proposed by Verhelst and Roelands (Verhelst and
Roclands, 1993). WSOLA ensures sufficient signal continuity at segment joints by
requiring maximal similarity to the natural continuity that existed in the input signal.

Recently, the development of efficient algorithms for the time-scale and pitch
modification of speech signals has been stressed. In particular, the use of the time
domain SOLA algorithm in the development of these algorithms has been
emphasized (George and Smith, 1997), (Yim and Pawate, 1996). While existing
time domain algorithms are simpler tham frequency domain algorithms, they do not
address the problem of the frequency spectrum similarities in the speech signals, and
therefore some of them produce poor results. Existing frequency domain approaches
require very significant amounts of computation and may produce synthesized
signals with a waveform that differs from the original one.
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The other problems often encountered with some of the time-scale
modification algorithms are the artifacts associated with processing the entire
spectral band. When sinusoidal based techniques are applied, these artifacts often
results in musical noise artifacts that appear due to the correlations being introduced-
in the high frequency regions (Quatieri and McAulay, 1992). Also, music signals
tend to be very complex, containing sharp attacks or transitions. To solve this -
problem, the deterministic part and stochastic part of the input signal are processed
separately instead of processing entire signal. For example, to make the time-scaled -
signals free from the ‘buzzy” quality, the deterministic part and stochastic part are
treated differentially (Laroche, Stylianou, and Moulines, 1993). To preserve edges,
relative distances between the edges and stationary components (noise), the signal
was represented as the sum of sinusoidal components and a residual (edges and
noise) by Hamdy et.al. 1997. In their approach the decomposition was computed via
a combined harmonic and wavelet representation. Time scaling was performed on
the harmonic components and residual components separately. They analyzed the
residual with a wavelet transform and performed the time-scale modifications in the
wavelet domain. In our approach, entire signal was analyzed with wavelet transform
and time-scale modification was performed on the subbands.

The major difficulty in designing a speech-rate change system based on short
time Fourier transform (STFT) results from the uncertainty principle, i.e., the
analysis window can not be arbitrarily short in time and in frequency (Portnoff,
1981). Unfortunately, the time and frequency resolution is the same over the time
and frequency plane. Furthermore, the vocal tract system is modeled as almost
stationary for the duration of its memory under the assumptions in (Portnoff, 1981).

Despite these assumptions, speech signals under consideration are inherently
non-stationary, and the wavelet transform can be used cffectively in TSM
applications (Erogul, 1997) since (a) decomposition of a signal spectrum into its
subbands allows to operate on different resolution levels, where the degree of
nonstationarity is reduced (Krim, Pesquet and Drouiche, 1993), (Sankur, Giiler and
Kahya, 1996), (b) observation of a signal in the subbands is advantageous especially
when one would like to take into account the signal characteristics which may affect
little the total spectrum, but may have more bearing on one of the band spectra. For
example, in our particular application, the modification of each signal subband via
WSOLA is useful since different “useful” signal information is accessed and
zoomed in each subband. In other words, WSOLA takes into account the correlation
in between the signal frames. Hence, each subband signal carries more refined
information for better operation of WSOLA compared to the original full-band
signal. In addition, rather than using the same analysis filter over the entire
frequency spectrum, a tree-structured filter bank can be used to overcome the
restrictions imposed by the STFT. It has therefore been proposed that the Wavelet
analysis provides more accurately localized temporal and frequency information for
non-stationary speech signals. The pre-processing of the signals by using the
wavelet analysis produces better results than the other well-known methods for the
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TSM of speech signals. The subband approach introduced by Quatieri et al., 1995, to
expand transient signals combines Wavelet Transform and Fourier Transform, but
requires complex mathematical calculations such as “birth and death” tracking of
frequency components, phase unwrapping, phase corrections among subbands, etc.

In this work, a novel TSM method based on the multiresolution decomposition
of speech signals is proposed. It is shown that a combination of the time domain
approach, WSOLA, and the wavelet transform can be used to construct a high
performance and mathematically inexpensive —multiresolutional time-scale
modification (MTSM) algorithm in which wavelet coefficients are modified using
the WSOLA algorithm. The proposed method will be called multiresolutional time- -
scale modification (MTSM) in the sequel. Performance of the MTSM algorithm is
assessed via a novel test method and procedure based on the quantitative evaluation
of human observers’ subjective judgements.

II. FRAMEWORK
A. Wavelet Basis

A signal can be represented in many different forms. The optimal
representation of the signal must be defined in terms of the specific problem being
considered. For our particular application, the intention is to represent the signal in
such a way as to maximize the time and frequency resolution so that time-scale
modification algorithms will be able to modify the signal in a better manner.

The continuous wavelet transform (CWT) of the input signal, x(?), is defined as
(Rioul and Vetterli, 1991):

CWTx(t.a) = [x(Dh}, (D dt
where k7, (t) is the complex comjugate of the wavelet, h,.t). The wavelets

themselves are scaled and translated versions of the basic wavelet prototype A(?),
called the mother wavelet, and are given by:

1
ha, 7(t) J;
Reconstruction of the original signal can be accomplished by summing up all
the orthogonal projections of the signal onto the wavelets through the use of the
inverse Wavelet transform, which is given by:

-d%lz where c is a constant that depends only on
a

h(ti) where a>0 is the scaling factor.
a

x(t)=c ﬂCWTx(’t,a)ha, (t)
a>0
h(t).

To remove the redundancy from the continuous wavelet transform, discrete
values for the scale and translation parameters can be used and the wavelet basis
functions can be implemented as a finite impulse response (FIR) filter or an infinite. -
impulse response (ZIR) filter depending on the particular properties required. For the
Wavelet transform, a QMF pair is called a wavelet filter and can be represented by a
sequence of coefficients. These coefficients must satisfy certain conditions
(Wickerhauser, 1992). Daubechies derived a series of filters that satisfy these
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conditions and form an orthogonal basis. Quadrature mirror filters allow for the
perfect reconstruction of a signal which has been passed through a QMF pair
(Daubechies, 1988).

Two-band filter banks are convenient, but subband applications generally
require a resolution greater than that given by two-band systems alone. To address
this issue, two-band filter banks were typically embedded in tree structures. By -
cascading the two-band filter banks such that each band is split in two successively,
an infinity of decompositions can be realized. .

B. Time-Scale Modification

Four different TSM algorithms namely the MTSM, STWPE, SASM and
WSOLA, were used in the time-scale modification of speech signals. The first
algorithm is the proposed MTSM method which operates in the subbands of the full-
band signal rather than the full-band signal itself. In other words, in MTSM, each of
the subband signals are first modified using WSOLA and then they are synthesized. -
The MTSM algorithm is detailed in Section 3. On the other extreme, WSOLA,
STWPE and SASM directly operate on the original full-band signal. These three
methods were used to assess the performance of the proposed MTSM algorithm.

In this work, Waveform Similarity Overlap-and-Add (WSOLA) technique -
is used both in the MTSM method and in the TSM of the original full-band signal.
WSOLA seeks to find a segment that will overlap-add with the previous segment -
which lies within the prescribed tolerance interval around the synthesis instant. The

position of the best segment m is determined by finding the value A pptimem 1718

within a tolerance region [-Apa.. Ama] around the analysis instant that maximizes
the cross-correlation coefficients between the previous segment and the segment
under consideration.

The second TSM algorithm, the speech transformation system without pitch
extraction (STWPE) developed by Seneff (Seneff, 1982), is capable of independent
manipulation of the fundamental frequency and spectral envelope of a speech
waveform. The system developed by Seneff deconvolves the original speech with
the spectral envelope estimate to obtain a model for the excitation. Hence, explicit
pitch extraction is not required. To alter only the temporal characteristics the phase
spectrum must be modified: Seneff’s method is essentially equivalent to that used in
a standard phase vocoder.

The third approach used in this study utilizes a sinusoidal analysis-synthesis
model (SASM) that is based on the amplitudes, frequencies, and phases of the
component sine waves (Quatieri and McAulay, 1986). The reconstruction requires
the manipulation of functions which describe the time evolution of the vocal cord
excitation and vocal tract system contributions of the amplitude and phase of each
sine wave component. The parameters used in these functions are estimated from the
STFT using a simple peak-picking algorithm. Rapid changes in the highly resolved
spectral components are tracked using the concept of “birth” and “death” of the
underlying sine waves. In the sine wave model for time-scale modification the
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events which are time-scaled are the system amplitudes and phases, and the
excitation amplitudes and frequencies of each underlying sine wave.

HI. MTSM METHOD

The proposed multiresolutional time-scale modification (MTSM) method is based
on the use of the wavelet transform in association with the conventional WSOLA
algorithm for TSM of speech signals. The steps of the method are given and detailed
below.

(i) The original fullband speech signal is first decomposed into its subband

components via the wavelet transform,

(i) TSM of cach of the subbands is then obtained using the WSOLA

algorithm,

(iii) Finally, an output signal is synthesized from the modified subband

signals,

The wavelet coefficients of the input speech signal are obtained using an 11-
level Quadrature Mirror Filter Bank (QMF) based on Daubechies 4,...,20 filters
(DAUB4, ..., DAUB20) (Daubechies, 1992). As the filters increase in length, they
also increase in smoothness. A longer filter is suitable for representing low
frequency signals, while a short filter would be ideal for high frequency
applications. The high pass and low pass filters (h(n) and g(n), respectively are
related by:

h(L-1-n)=(-1)"g(n)
where 7 is the filter length. The synthesis filters 4 (n) and g'(n) are identical to the
analysis filters #(n) and g(n), but are reversed in time.

A tree structured filter bank was used to perform the transform. Taking as an
example the decomposition of the input speech signal onto the basic wavelet
packets, the high-pass filter of the QMF pair was first applied to the signal and the
result was decimated by 2. Then the low-pass filter was applied to and the result was
decimated by 2. What this has done is to split the original signal into two parts, high-
pass part and a low-pass part, each has half of the length of the original signal. The
above procedure produces the first level wavelet packet transform. Decomposing the
signal onto the general wavelet packet requires to apply the QMF pair to all of the
high-pass and low-pass resuits of the previously calculated level as shown in Figure
1. The filtering is continued until the output of each filter is a unit length sample. For
a signal with a length of 2048 samples, N, there would be a total of 11 levels of
filters (N = 2"*'*) The entire process produces a large library of wavelet
coefficients. The proposed algorithm is capable of selecting a number of different
bases, such as wavelet basis, user selected level basis, threshold criteria basis and
minimal entropy criterion basis. The easiest of these is to select “a user selected
level basis” which simply takes the coefficient from the selected level and writes
them to a data file. To process a waveform over successive frames, the filterbank is
applied to the first frame of length 2048. To divide entire signal into the subbands
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the above procedure is repeated until the last frame is reached. These subbands are
then modified using the WSOLA time-scale modification algorithm. Finally, the
inverse Wavelet transform is applied to the modified coefficients produced in order
to reconstruct a time-scale modified version y(i) of the input signal x(m). A block
diagram illustrating the overall approach is given in Figure 1.
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sample sampie
by 2 by 2

Fig. 1. Block diagram of the multiresolutional time-scale modification algorithm.

As mentioned in Section 2, the performance of the proposed MTSM method
was assessed with respect to three other single-band TSM algorithms, namely, -the
STWPE, SASM, and WSOLA. Note that, in the proposed MTSM method, the time-
scale modification is performed on the subband signals using the WSOLA, while:
STWPE, SASM, and WSOLA algorithms directly operate on the fullband signal.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to show how a multiresolutional analysis technique can be used in the
TSM of speech signals, the above algorithm has been applied to speech signals from
both genders, and its performance evaluated through a series of subjective listening
tests.

As an example the word /Boby/, recorded at 8 kHz sampling rate and spoken by
a male, was used as the original signal and is shown in Figure 2.
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Fig. 2. Original speech sample: The word /Bob/.

The proposed MTSM algorithm was then applied to the sample speech signal. In the
application of the method, subbands of the original signal were obtained by using
DAUB 10 filters. These subbands were then modified using the WSOLA algorithm.
The inverse wavelet transform was then applied to these modified subbands in order
to reconstruct a time-scale modified version of the input signal. Figure 3 shows the
time-scaled and reconstructed versions of the original signal using the MTSM
method.
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Fig. 3. Multiresolutional time-scale modification of the original signal. Subbands
were modified by using the WSOLA algorithm: (a) Compressed version (Ratio =
0.5) of Fig.2; (b) Expanded version (Ratio = 2) of Fig. 2; (c) Reconstructed version
(Ratio = 0.5/2) of Fig. 2.

As mentioned above, WSOLA is used in order to obtain the TSM of the
subband signals in the MTSM method, furthermore subbands can also be modified
using various TSM algorithms found in literature. Figures 4 and 5 illustrate the time--
scaled and reconstructed versions of the original signal in which the subbands are
modified by using STWPE and SASM algorithms, respectively. ~
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Fig. 4. Time-scale modification of the original signal. Subbands were modified by
using the STWPE algorithm: (a) Compressed version (Ratio = 0.5) of Fig.2; (b)
Expanded version (Ratio = 2) of Fig. 2; (¢) Reconstructed version (Ratio = 0.5/2) of

Fig. 2.
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Fig. 2.
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Careful examination of Figure 2, original signal, and 3(c), 4(c), 5(c),
reconstructed signals, shows that the MTSM algorithm, in which subbands are
modified by using the WSOLA algorithm, Figure 3(c), preserves the envelope of the
modified signal best. Furthermore, as will be demonstrated, subjective listening tests
applied to original full-band speech signals prove that the performance of WSOLA
is considerably better than the STWPE and SASM algorithms. Therefore, WSOLA
seems to be the best choice to be applied to subband signals. In conclusion, the
MTSM method consists of decomposition of the original fullband signal into its
subbands using the wavelet transform, the TSM of subband signals using WSOLA,
and reconstruction via the inverse wavelet transform.

Test Procedure

Three different test procedures were used in order to evaluate the performance
of the MTSM algorithm. To evaluate the intelligibility of the reconstructed speech,
the diagnostic thyme test (DRT) was used in the first test. To assess the speech
quality, the mean opinion score (MOS) test was used while the degradation mean
opinion score (DMOS) test was used to measure degradation in the quality of the
reconstructed speech with respect to a reference (Papamichalis, 1987).

The DRT works as follows: It uses a corpus of words, 232 words in 116
rhyming pairs. In a given instance, one word of the pair is presented and the listcner
is asked to determine which word was spoken. The two words of each pair, for
instance "Bob", "Gob", differ only in one attribute of the first consonant. So, a
correct response from the listener indicates that the speech processing system under
examination preserves that attribute. Source speech samples for the DRT were
obtained from three male and three female talkers (CRC, 1997). In all cases the
sampling frequency was 8kHz. Six different filesets, containing the same words but
spoken different talkers were used. A fileset corresponds to a speaker. Speech
sample durations in filesets are between 5 minutes 41 seconds and 5 minutes 55
seconds.

In MOS procedure, one sentence is presented on each trial, and the listener
is asked to rate the sample according to the absolute scale, ranging between 1 and 5.
The quality scale ranges from “bad” for grade 1 to “excellent” for grade 5. The
drawback of this procedure is that, ceiling and floor effects may obscure real
differences in performance. To overcome this limitation, the degradation mean
opinion score test was also used.

In DMOS procedure two samples are presented on each trial, a reference
sentence and a test sentence. Listeners are asked to rate the quality of the second
sample relative to the quality of the first. The quality scale ranges from “very much
poor quality” for grade 1 to “the same or better quality” for grade 5.

Source speech samples for the MOS and the DMOS tests were obtained from
six males and six females. These sources had sampling frequencies of 16kHz
(TIMIT. 1990). The MOS and the DMOS use Harward type-sentences. Two
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sentences, one spoken by a male and the other by a female, are used in each sample
separated by a short silence. Sample durations are between 6 and 9 seconds.

Twenty-eight subjects were accessed to this study. Listeners were drawn
from the Communications Research Centre (CRC), Ottawa, Canada, and from the
ordinary people. Many of these subjects drawn from the CRC are familiar with the
testing procedure and they are sophisticated technically and know much about
speech technology. Subjects drawn from ordinary people have had no experience
with speech evaluation.

Subjects were told that the samples they were going to listen to had been
ptocessed by a different TSM algorithm, and were given a simple general
description of what TSM is used for. Theyv were then told that they should listen
carefully to the samples, and try to make distinctions between them in their choice of
ratings. Printed instructions were given to the listeners.

To emphasize the effects of algorithms on speech signals, speech samples
were first compressed by a factor of 0.5, and then expanded by a factor of 2 in order
to recover the original signal. In order to evaluate the performances of algorithms
and to assess the performance of the proposed MTSM algorithm, modified versions
of reconstructed speech signals using the MTSM, and original single band speech
signals via STWPE, SASM and WSOLA _algorithms were recorded on audio tapes.
All of the recordings used in the subjective listening tests were taken under quict
conditions.

In the DMOS test a reference sample, processed through the WSOLA
algorithm was presented first on each trial followed by the identical sample
processed through the other three algorithms (MTSM, STWPE, SASM). All subjects
Judged each of the TSM algorithms with different speakers.

Statistical Analysis and Results

One-way ANOVA technique was used for statistical .analysis. All statistical
tests were evaluated at the 0.01, 0.05 and 0.1 levels of significance.

In the DRT, it was found that the MTSM algorithm increases the intelligibility
of the reconstructed speech over the other three test algorithms (p=0.09<0.1). The
mean and standard deviations of each algorithm’s score for the DRT are given in
Table-1.

TABLE I
THE DRT TEST RESULTS
Test DRT
Algorithms MTSM STWPE SASM WSOLA
Std. Dev.(c) 0.69 0.62 0.74 0.84
Average (%) 93 92 90 92

The MOS test demonstrated that the MTSM algorithm preserves the quality of
modified speech over the other STPWE and SASM test algorithms (p=0.000<0.01).
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Statistical analysis of speech quality also demonstrated that there is no significant
difference between the STWPE and the SASM algorithm according to 0.03 criteria
(p=0.52>0.05). In MOS test, on the other hand, performance of WSOLA algorithm
was found to be slightly better than that of the MTSM algorithm, i. e. means of
WSOLA and MTSM are 3.97 and 3.76, respectively (see Table II). But. the
statistical analysis of the result showed that the difference is not significant
according to 0.05 criteria (p=0.395>0.03).

TABLE 11
THE MOS AND THE DMOS TESTS RESULTS

Test MOS
DMOS

Algorith MTSM | STWP | SASM | WSOLA | MTSM | STWPE | SASM
ms E

Std. 0.69 0.62 0.74 0.84 0.85 0.71 0.66
Dev.(o)
Average 3.76 1.84 2.55 3.97 4.07 1.89 2.72

The DMOS test also demonstrated that the MTSM algorithm preserves the
quality of the modified speech better than the STWPE and SASM do
(p=0.000<0.01). Statistical analysis also indicated that the SASM preserves the .
speech quality better than the STWPE algorithm does (p=0.013<0.05).

Subjective evaluation test results show that the MTSM increases the
intelligibility of the reconstructed speech signals while almost preserving the quality
of the modified signal.

V. CONCLUSIONS

There are two methods of time-scale modification which can be used in the
subband approach. One works in the time domain, i.e., compresses or expands the
wavelet coefficients in the time domain. The other works in the frequency domain,
1.e., the modification of subband signals in the frequency domain. The WSOLA, and
the SASM and STWPE algorithms were used as examples of the former and latter
methods, respectively.

The application of the Wavelet transform to the analysis, modification and -
synthesis of non-stationary speech signals suggests that this approach can be used to
increase the intelligibility of time-scale modified speech with the desired time-scale -
modification while preserving the pitch and formant structure of the original signal.
Such an algorithm was developed and was demonstrated to be also capable of
producing high quality rate-changed speech. It was also shown that it is possible to
use this approach in conjunction with various TSM algorithms found in literature.
The same approach can also be extended to the pitch modification of speech signals.
Another approach might be to modify each subband by a different TSM algorithm




TIME-SCALE MODIFICATION OF SPEECH SIGNALS BASED ON WAVELET TRANSFORM 53

rather than modifying all of the subbands via a single TSM algorithm. For example,
first subband signal might be modified using the STPWE algorithm, while the
second one is modified with the SASM. and so on. Such a treatment might improve
the performance of the proposed MTSM method.
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