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ABSTRACT

Navigation systems have vital importance both in military and civil applications. Hpwever, the error
associated with these systems reduces the efficiency of the navigation system. Kalman filter is a tool that
is commonly used to address this problem. Recently, the modified wave estimator (MWE) has been
proposed as an alternative to Kalman filter for navigation systems. Unlike the Kalman filter, the MWE
defines the process noise as deterministic means. Both estimators have advantages and disadvantages
with respect to each other. This paper proposes an adaptive MWE and an estimator that fuses estimations
from the MWE and Kalman filter. The proposed estimators try to make use of advantages of each
estimator in the best way possible. Performance of the MWE, Kalman filter, the fused estimator and
adaptive MWE are compared through a navigation simulation and results are discussed.
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INTRODUCTION

Navigation is the calculation of relative position and velocity of a physical platform
with respect to a reference coordinate frame or a coordinate grid [3] and navigation
systems have vital importance in military and civil applications. They are employed
to provide coordination and to increase efficiency at military and civil air, maritime
or land vehicles. But, many applications require calculation of the angular velocity
relative to the reference axis as well.

Error produced by navigation systems reduces the efficiency of the system. Thus,
minimizing the error associated with navigation systems is a primary priority. The
most commonly used and probably the most efficient method for this purpose is to
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integrate the systems with complementary features, such as INS and GPS. Kalman
filter is the most commonly used integration tool in navigation applications.
However, recently, new approaches have been proposed, one of which is the
Modified Wave Estimator [5]. In this approach, unlike Kalman filtering, the process
noise is assumed deterministic.

In this paper, Kalman filter and the MWE are discussed as integration estimators in
navigation systems. Also, a novel estimator that that fuses estimations from Kalman
filter and the MWE is proposed. The proposed estimator attempts to exploit the
advantages of both estimators while trying to reduce the errors associated with
navigation systems. Moreover, a novel adaptive structure for the MWE has also
been proposed. The proposed adaptive approach takes the cycle time dependent
structure of the MWE and requirements of navigation systems into account and tries
to improve the performance while reducing the computational load.

This paper is organized as follows; the next section outlines the existing and
proposed estimators for navigation systems where third section explains the
simulation model. Simulation results are presented in section 4 and some concluding
remarks are given in the last section.

INTEGRATION ESTIMATORS

Kalman Filter

Performance of integration methods for navigation systems are determined by the
state estimator employed. Kalman filter is the traditional and the most commonly
used state estimator [10, 11]. The filter produces recursive solution to the linear
quadratic Gaussian problem. If the dynamics of the system is correctly modeled, it
yields unbiased minimum mean square estimation for linear system and
measurement models where the process and measurement noises are white and
Gaussian.

Let's assume that the dynamic process of the navigation error could be defined as
discrete Markov process. Then, the navigation error dynamics are described by

x(k +1) = Fx (k) + (k) (1)

where, X(k) is the state vector (the error in navigation), F and I” are known state
transition and disturbance transition matrices respectively and v(k) is unknown zero
mean white Gaussian noise with known covariance . Measurements are linear
combinations of states, corrupted with white noise given by
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2(k) = Hx (k) + wlk) )

where, H is the known measurement matrix and w(k) is zero mean white Gaussian
noise with known covariance R. v(k) and w(k) are statistically independent. In
general the state vector X(k) includes position, velocity, angle and bias variables. A
good derivation of the Kalman filter equations can be found in [12], here, only the
resulting standard Kalman filter equations are given.

Xk +11k) = rx (k) 3)
wk+1)=2(k +1)- H¥(k+ 1] k) @
Plk+11k)= FP()FT +ror” ©)
sk+1)=mP(k+11 )T + R ©
wle+1)= P11 k)T s(e+1)! @
Rk+11k+1)=X(k+11k)+wle+ 1)k +1) ®)

®

Ple+1)= POk +11 k) -k +1)s(e+ 0w (e +1)"

In Egs 3-9 X (k +1] k) and P(k +1] k) are the state prediction and its
corresponding covariance respectively, X (k +1k+ 1) and P(k+ 1) are updated

state estimation and its corresponding covariance respectively and v(k + 1), St&),
W(k), are the innovation, innovation covariance and the filter gain respectively.

Modified Wave Estimator

The MWE technique [5] assumes that input disturbances can be described as
deterministic means for short time periods. It models input disturbances as known
base functions with unknown intensities, which can be estimated.

It is possible to describe the navigation system error model in a deterministic sense
during a short time interval N7, where T is the sampling period and NT is called the
cycle time as shown in Fig 1. Here, the main issue is the selection of an appropriate
cycle time. A small cycle time allows a more accurate representation of the system;
however, it may not be sufficient for all the state vectors to converge. On the other
hand, a large cycle time ensures convergence, but it may degrade the estimation
accuracy. A more prudent approach is to segregate the state variables into two
groups based on their degree of observability [5]. The observability condition is
defined as the ability to determine the state variables from the taken measurements.
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In this approach the first group consists of all the strongly observed states and the
second group is composed of all the weakly observed states.

A

x(t)‘—-\ est x(t) ,\

5(0)

3(2) JON
| ' 16(3) 12
>
NT 2NT 3NT  4NT SNT
Figure 1: Modified wave estimator modeling of input disturbances

Through separation, the basic system model has two components in a wave cycle.
The first component is the influence of the strongly observed states on themselves
and the second component is the influence of the weakly observed states on the
strongly observed states. Thus, the basic model ofthe system can be completely
described as; )

x(e+1)=x(+1)+ x (K +1) (10
With initial conditions X 0 (O) =X (0) ve X ! (O) =0.

xO(k+1) = F(k)x° (k)
x (k1) = F()x (k) + Gelk)
e(k + l) = Le(k)

where, X is the strongly observed state vector, X’ is the influence of strongly
observed state vector on themselves (nxl), X' is the influence of weakly observed
states on strongly observed states (nxl), F is the state transition matrix of the
strongly observed states (nxn), G is the influence matrix expressing the effect that
the weakly observed states has on the strongly observed states (nxk), e is the weakly
observed state vector (kx/) and L is the state transition matrix of the weakly observed
states (kxk). Detailed information about the MWE and the segregation could be
found in [5]. State and state covariance update along with the estimator gain
equations are given in Eqs 12-15

11

(12)
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where the matrix D(k + 1) propagates the influence of weakly observed states on
strongly observed states throughout the wave cycle.

Fused Estimator

The basic principle of the newly proposed fused estimator is to make use of good
parts of the MWE and Kalman filter. Kalman filter produces better estimates for the
strongly observed state, i.e., position, whereas the estimation accuracy is higher for
weakly observed states, i.e., velocity and angle, for the MWE approach [5}.
However, despite the improved performance for the weakly observed states, the
MWE suffers from delay (which is equal to the cycle time) in estimation process
and high computational burden. With the recent technological developments in
computer technology, the computational burden might not be an issue. In fact when
the accuracy of all the states is of importance advantages of both estimators could be
exploited by employing them both and fusing their estimates in an appropriate
manner. Data fusion techniques are frequently used in navigation and target tracking
systems where the reliability is of utmost importance. Please see [13-15] for more
information on data fusion.
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The fusion equation under the error independence assumption for the estimated
states is given by [16];

#)=PlP % + PR, ot Pz | (16)
where the covariance fusion equation is,

_[p-1 ~1 -1\ (17)
P=(P+P" +.. .+ P")

If the above data fusion method is applied to two minimum mean square estimators
(Kalman and the MWE in this case), the state and the its covariance are described
by,

X = P(Pk;;man Xkalman + PG_AK XGDK) (18)
- ) 19
P:( ka}man +PGll)K) ( )

Adaptive Modified Wave Estimator

Selection of the cycle time determines the performance of the MWE in terms of
error reduction. For instance, longer cycle times will unnecessarily increase the
computational burden if the error is steadily changing. On the other hand shorter
cycle times will have problem in dealing with sudden changes in error.
Unfortunately, in the MWE cycle time has to be pre-selected and there is no
mechanism to change it according to error characteristics. Thus, adaptively changing
cycle time with the error characteristics would both improve the estimations and
reduce the computational burden. Moreover, a navigation system with such an
estimator should better react to different measurement units employed for different
applications.

The question is how to vary the cycle time. Although the MWE has been proposed
as an alternative to Kalman filter it possesses some of Kalman filter's important
features. One of them is the ability to tell how well it is doing through its
covariance. Thus if a metric could be defined based on the covariance it could be
used to adaptively vary the cycle time. In [1] a statistical test namely, normalized
innovation squared (NIS), was defined for Kalman filter to monitor the filter's
performance where a small NIS indicates that the filter model matches system thus
produces better. On the other hand growing NIS means that the system is no longer
matched by the filter. NIS could also be defined for the MWE and by monitoring it
and comparing with a predetermined threshold, the cycle time could be adaptively
varied. Under the consistent filter assumptions the NIS has a chi-square distribution
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with n, degree of freedom where n,, is the dimension of the measurement. Thus, an
acceptance region could be determined for a given hypothesis from chi-square

tables. Varying the cycle time adaptively helps the MWE produce better estimates
with reduced computational load.

Innovation covariance is defined by Eq 20 where NIS for the MWE is given by Eg
21,

s(k+1) = HrP(k + 11 k+ )P T

+ HD(k + I)E[eoeg ]DT (k+1)u" (20)
FR- HF‘P(k)E[eOeg ]DT(k a7

— 1Dk +1)Elegeq foT (k)FT 1"

ey ()= T ()5 v(e) @b
If NIS, calculated through Eq 21 is below the predetermined threshold then the
estimator is doing well and a smaller data set is enough for estimation, thus the cycle

time can be reduced to save computational power. On the other hand when NIS goes
above the threshold the cycle time must be increased for better estimation.

Simulation Model

This section outlines the error model for the navigation system used in the
simulations. The INS system for a single axis may be described as [17]

éPE:WE

§VE = _g¢N + B, @)

¢.N = 5;15 + 8wy

B, =-p,B; + \/20'12ﬂ1 w
bay =-p,00, +\/20'22182 W,

where, 0P, is the position error on the given axis (m), oV is the velocity error on

the same axis (m/s), @, is the attitude error (rad), B is the accelerometer bias
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(m/s?), o w 1s the qyro drift rate (rad/s), o, ,31 are the parameters of the shaping

filter to represent the accelerometer bias (m/s° and 5™ respectively), c,,, are the
parameters of the shaping filter to represent the gyro drift (m/s” and s respectively)
and w;, W, are white noise.

The gyro drift rate and accelerometer bias are modeled through shaping filters
employing first order Gauss-Markov process with different parameters for each.
Measurements are the position difference between the INS and GPS where GPS's
position error is assumed to measurement error.

PINS =P

True

+ 6P
PGPS = PTrue tv (23)

2z, = Py = Popg =P +v,
SIMULATION RESULTS

In the simulations, the INS accelerometer and gyro noises are assumed to be zero
mean white, Gaussian with 2500x10™"? (ug)’/Hz and 1x10”° (deg/s)’/Hz variances
respectively where the GPS noise has also been taken as zero mean white, Gaussian
with 100m” variance. For the adaptive MWE, the acceptance region, that the chosen

cycle time is correct, hypothesis has been determined to be 0.5<e, (k)s L5,

Smaller cycle time has been used as long as the calculated NIS is in this region and
the NIS has been increased as soon as NIS fell outside of this region.

Table 1 presents the performance improvement of the MWE with respect to Kalman
filter for 25 Monte Carlo runs. As the cycle time increases so does the estimation
performance of the MWE, however, after a certain point longer cycle time allows
more noise into the system then the performance starts to degrade. As it can be seen
in Table 1 the maximum improvement is achieved when the cycle time is 250 s after
which the performance deteriorates.

RMS position, velocity and angle errors for the Kalman filter, MWE and fused
estimator are given in Tables 2 through 4 respectively for different cycle times.
When compared to Kalman filter and the MWE, the fused estimator produces better
estimates in terms of RMS position and velocity errors for all cycle times whereas it
is outperformed by the MWE for the weakest observed state that is the angle. The
improvement in terms of position and velocity is minimum at the optimum cycle
time, 250 s. As for the angle estimation, the fused estimator provides approximately
40% improvement over Kalman filter but is outperformed by the MWE by 25% on
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average. Improvements achieved by the fused estimator over Kalman filter and the
MWE are given in Table 9.

Table 1: Performance improvement by the MWE over Kalman filter

Cyvcle | Position Velocity Angle

Time Improv., Improv. Improv.
50 sn 8.32% 18.58% 10.82%
100sn | 17.44% 27.99% 37.51%
150sn | 0.39% 23.53% 47.65%
200sn | 11.18% 33.59% 47.20%
250 sn | 18.55% 39.44% 48.61%
300sn | 15.18% 31.82% 41.61%
350sn | 387% 24,73% 39.27%
400 sn | 5.06% 25.38% 39.16%

Table 2: RMS position errors (m) for different cycle times

Cycle | Meas. Kalman MWE Fused

Time | Error Filter Estimator
{s) {m)
50 1.9794 | 050875 | 046539 | 0,35888
100 | 1.9794 0,508 0.41942 | 035684
150 | 1.9794 | 0,50714 | 050516 | 035934
200 | 1.9794 [ 051075 | 0.45363 | 0,33669
250 | 19794 | 049977 | 040706 | 0,32269
300 | 19794 | 051103 | 043344 | 034504
350 19794 0.50246 0.48299 | 034129
400 | 19794 | 0,50879 | 048304 | 0.34678
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Table 3: RMS velocity errors (my/s) for different cycle times

Cycle | Meas. | Kalman MWE Fused

Time | Error Filter Estimator
(s)
S0 - 0,021042 1 0017133 1 0011286
100 - 0.020902 © 0.015052 | 001224
150 - 0020814 | 0015916 | 0014138
200 - 0021179 | 0.014064 | 0.012802
230 - 0.020761 | 0012572 | 0.011891
300 - 0.021096 | 0.014383 | 0,012636
350 - 0020712 | 001559 | 0012792
400 - 0,02096 0.01564 | 0012087

Table 4: RMS angle errors (deg) for different cycle times

Cycle | Meas. | Kalman MWL Fused
Time | Error Filter Estimator

(s)

50 - 0.0027322 | 00024367 | 0.002317
100 - 0,0027033 | 0.0016893 | 0.0020426
150 - 0,0027201 | 60014241 | 00017836
2040) - 0,0027658 | 0,0014604 | 00018015
250 - 0.0027244 0.0014 0.001685
300 - 0.0027678 | 0.0010161 | 0.0020066
350 - 0,002686 | 0,0016312 | 00024622
400 - 00027147 | 00016517 | 0,0020219




Tables 5 and 6 present simulation times for the MWE and Kalman filter respectively
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for different cycle times.

Table 5: Simulation times for the MWE

Cycle Times Simulation
Time (s} Function Time (s)
Called
50 1106 6.905
100 1100 13.020
130 1100 19.361
200 1100 26.106
250 1100 33.411
300 1100 39.335
350 1100 45 434
400 1100 52.396

Table 6: Simulation time for Kalman filter

Cycle Times Simulation
Time (s) Function Time (s)
Called
- 1100 0.126

27

The longer the simulation time the bigger the computational load which increases

with the incre

ased

cycle time. Computational load for the fused estimator is only slightly higher than
the MWE, thus, Kalman filter has the best performance in terms of computational
load. In summary, fusing the estimates of two estimators produces considerably
better estimates in position, velocity and angle when compared Kalman filter and in
position and velocity when compared to the MWE. However, the MWE's angle

estimations are better for almost all cycle times. Having revealed that, one could

only fuse the strongly observed states, namely position and velocity, and use the

angle estimations by the MWE for even more improved performance.
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When Table 1 is examined, it will be seen that the MWE provides 15%, 31% and
42% improvement in position, velocity and angle respectively for 300 s over
Kalman filter. When the cycle time is halved the improvement over Kalman filter in
position, velocity and angle becomes 0.4%, 24% and 47% respectively. If the
simulation times given in Table 5 are also examined it will be observed that the
simulation times are 19.361 s and 39.335 s for 150 s and 300 s cycle times
respectively. If a MWE that switches between 150 s and 300 s cycle times
adaptively better performance with less computational load could be achieved. Such
an adaptive MWE has been designed and its performance in terms of RMS errors
and simulation time is investigated. Simulation results have revealed that the
adaptive MWE achieves the performance of the MWE at 300 s cycle time in 9.196 s
less time (i.e., approximately 24% less computational load). RMS errors for
different adaptive MWEs that switch between different cycle times are presented in
Table 7 whereas simulation times for these estimators are given in Table 8.

Table 7: RMS errors for the adaptive MWE

400s  —~ 1 300s -~ | 200s -

200s 150s 100s
Position (m) 041136 | 043169 | 044558
Velocity (nv/s) 0012738 | 0.014007 | 0,014371
Angle (deg) 0.0014 00013 00016

Table 8: Simulation time for the Adaptive MWE

Cycle Times Simulation

Time (s) Function Time (s)
Called

200-100 1100 23.265

300-150 1100 30.139

400-200 1100 45326
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Table 9: Performance improvement of the fused estimator for position, velocity and
angle

Position Inprovement Velocity Improvement Angle Improversent
Cycle Time Over Over MWE Over Over MWE Over Over MWE
Kalman Kalman Kalman
Filter Filier Filter

50s 29.46% 22.89% 46.36% 34.13% 15.20% 491%
100 s 29.76% 14.92% 41.44% 18.68% 24.44% -2091%
130 s 29.14% 28.87% 32.07% 11.17% 34.43% -25.24%
200s 34.08% 25.78% 39.55% 8§.97% 34.87% -23.36%
230 s 35.43% 20.73% 42.72% 5.42% 38.13% -20.36%
s 32.48% 20.39% 40.10% 12.13% 27.50% -24.16%
350s 32.08% 29.34% 38.24% 17.95% 8.33% -50.94%
400s 31.84% 28.21% 39.47% 18.88% 25.52% -22.41%

The adaptive MWE produces better estimates than Kalman filter, for instance when
the adaptive estimator switches between 200 s and 400 s the improvement is 19%,
39% and 49% in position, velocity and angle respectively over Kalman filter. When
the MWE is allowed to switch between cycle times it achieves, the adaptive
structure helps achieve performance of the longer cycle time (better performance) in
less time. Besides the advantage of achieving the performance of a longer cycle time
with reduced computational load, the adaptive MWE also overcomes the problem of
increased noise for longer cycle times in the system.

CONCLUSIONS

Two novel estimators, namely the fused estimator and adaptive MWE, for
navigation systems are proposed. The fused estimator produces better performance
than both Kalman filter and the MWE in terms of strongly observed state
estimations whereas it is outperformed by the MWE while estimating the weakly
observed state, i.e., angle. However, the fused estimator does not provide any
improvement in terms of computational load. On the other hand the adaptive MWE
is better than both Kalman filter and the MWE in terms of estimation performance
overcomes the problems that MWE faces.
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OZET

Seyrisefer sistemleri hem askeri hem de sivil uygulamalarda &nemli yere sahiptir
ancak sistemde olusan hatalar seyriisefer sistemlerinin etkinligini azaltabilmektedir. Kalman
filtresi olusan bu hatalart azaltmak igin siklikla kullanilan bir ara¢tir. Son zamanlarda
Geligtirilmis Dalga Kestiricisi (GDK) seyriisefer sistemlerinde hata giderici olarak
kullanilmak iizere Kalman filtresine alternatif olarak sunulmustur. Kalman filtresinden farkli
olarak GDK siire¢ giiriiltiisiinii deterministik ortalamalar seklinde tamimlar. Her iki
kestiricinin birbirlerine gore avantaj ve dezavantajlar vardir. Bu makalede her iki kestiricinin
avantajlarindan miimkiin oldugunca yararlanabilmek igin bu kestiricilerin kestirimlerini
birlestiren yeni bir kestirici ile daha iyi performans ve daha diisiik islem yiikiine sahip
uyarlamali bir GDK 6nerilmigtir. Onerilen kestiriciler, Kalman filtresi ve standart GDK’nin
performanslari benzetim yoluyla karsilastirilmis ve elde edilen sonuglarin analizi verilmigtir.
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