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Abstract 
In this paper, we apply the Fourier transform method with the Adomian decomposition method to solve 
Riccati equations . Proposed  method is based on the Fourier transform  and Adomian decomposition 
methods. The solutions obtained using FADMs are compared with the numerical solutions obtained using 
the Rung Kutta2 and Euler method. 

Keywords: . Fourier transform method, Adomian decomposition method, numerical solution of ODE. 

Özet 
Bu makalede, Riccati denklemlerini çözmek için Fourier dönüşüm yöntemini ile Adomian ayrıştırma 
yöntemi uyguluyoruz. Önerilen yöntem, Fourier dönüşümü ve adomian ayrıştırma yöntemlerine 
dayanmaktadır. FADM'ler kullanılarak elde edilen çözümler, Runge Kutta2 ve Euler yöntemi kullanılarak 
elde edilen sayısal çözümlerle karşılaştırılmıştır. Ayrıca çözümlerin hata grafikleri sunulmuştur. 

Anahtar Kelimeler: Fourier dönüşüm yöntemi, Adomian ayrıştırma yöntemi, Diferansiyel deklemin sayısal 
çözümü. 
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1. Introduction 
 
Nonlinear differential equations have had a considerable sum of interest due to its wide 
applications. Nonlinear ordinary differential equations play an important role in many 
branches as applied and pure mathematics and their applications in applied science, 
applied mechanics, quantum physics, analytical chemistry, astronomy and biology. There 
are many analytical and numerical methods developed for the solution of nonlinear 
differential equations. Some of these methods are Runge Kutta Method, Euler Method, 
Adomian Method, Homotopy Perturbation Method, Variational Iteration Method, Tanh 
Method, Kudryashov Method, etc.  
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The Riccati differential equation is a well-known nonlinear differential equation and has 
different applications in engineering and science domains, such as robust stabilization, 
stochastic realization theory, network synthesis, optimal control and in financial 
mathematics[1]. For example, a one-dimensional static Schrödinger equation [2] is 
closely related to the Riccati differential equation. The Riccati differential equation is 
named after the Italian mathematician Francesco Riccati (1676–1754) [3]. The 
applications of this equation may be found not only in random processes, optimal control, 
and diffusion problems, but also in stochastic realization theory, optimal control, network 
synthesis and financial mathematics. Papers associated with Riccati equation has been 
seen in [1-7].   
 
In this study, Riccati equation has been solved by combining  Fourier transform and 
Adomian method (FADM). We compared the solutions obtained using FADM with the 
numerical solutions obtained using the Rung Kutta2 and Euler method. We have 
organized this paper as follows: In Section 2, we have given Fourier transform, Adomian 
decomposition method, FADM, Euler method, Runge Kutta2(RK2) method. In Section 3, 
we have given some examples Riccati differential equations. We solved these samples 
with FADM and compared them with numerical methods. Finally, a conclusion is 
presented. 
 
2. Basic Definitions and Theorems 

 
2.1. Fourier Transform 

 
One of solution methods of linear differential equations is integral transforms. The best 
two known integral transforms are the Laplace transform and Fourier transform. The 
Fourier Transform, one of the gifts of Jean-Baptiste Joseph Fourier to the world of 
science, is an integral transform used in many areas of engineering such as it has been 
very useful for analyzing harmonic signals or signals for which there is known need for 
local information. Then the Fourier transform analysis has also been very useful in many 
other areas such as quantum mechanics, wave motion, turbulence [9,10,11]. 
Furthermore, it has been useful in mathematics. For example, generalized integrals, 
integral equations, linear differential equations can be solved by using the Fourier 
transform. Another example of its applications could be that. Voice of every human can be 
expressed as the sum of sine and cosine. Since the electro-magnetic spectrum of the 
frequency of each voice is different, the frequency of each sine and cosine sum will be 
different. In this way, a voice record can be found belongs to whom using the Fourier 
transform. In fact, our ear automatically runs this process instead of us. But The Fourier 
transforms can not been used for nonlinear equations. Nonlinear equations was solved 
using together with Elzaki transform and Differential transform method, Elzaki transform 
and Homotopy Perturbation , Laplace Transform and Adomian Decomposition Method in 
[12,13,14].   
 

Definition 2.1.Fourier transform of  function 𝑓𝑓(𝑡𝑡) is defined as 

 
ℱ[𝑓𝑓(𝑡𝑡)] = ∫ 𝑓𝑓(𝑡𝑡). 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡∞

−∞   ( 1 ) 

Since integral (2) is a function of 𝑤𝑤, 

ℱ[𝑓𝑓(𝑡𝑡)] = 𝐹𝐹(𝑤𝑤)  
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can be written. 

Definition 2.2.If ℱ[𝑓𝑓(𝑡𝑡)] = 𝐹𝐹(𝑤𝑤), then 𝑓𝑓(𝑡𝑡) is called inverse Fourier transform of 𝐹𝐹(𝑤𝑤) ; 
where 

 
𝑓𝑓(𝑡𝑡) = 1

2𝜋𝜋 ∫ 𝐹𝐹(𝑤𝑤). 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡∞
−∞   ( 2 ) 

and it is showed by 𝑓𝑓(𝑡𝑡) = ℱ−1[𝐹𝐹(𝑤𝑤)] 

Theorem2.1.[ 10] The Fourier Transform is  linear. Let 𝑐𝑐1, 𝑐𝑐2 ∈ 𝑅𝑅. Then 

 

ℱ[𝑐𝑐1. 𝑓𝑓1(𝑡𝑡) + 𝑐𝑐2. 𝑓𝑓2(𝑡𝑡)] = 𝑐𝑐1.ℱ[𝑓𝑓1(𝑡𝑡)] + 𝑐𝑐2ℱ[𝑓𝑓2(𝑡𝑡)]  ( 3 ) 

 

Theorem2.2.[ 9] Let 𝑓𝑓(𝑡𝑡) be continuous or partly continuous in the interval(−∞,∞) 

and 𝑓𝑓(𝑡𝑡),𝑓𝑓′(𝑡𝑡), 𝑓𝑓′′(𝑡𝑡), … ,𝑓𝑓(𝑛𝑛−1)(𝑡𝑡) → 0  for|𝑡𝑡| → ∞ .  If 𝑓𝑓(𝑡𝑡),𝑓𝑓′(𝑡𝑡),𝑓𝑓′′(𝑡𝑡), … ,𝑓𝑓(𝑛𝑛−1)(𝑡𝑡) are 
absolutely integrable in then terval(−∞,∞), then 

 
ℱ�𝑓𝑓(𝑛𝑛)(𝑡𝑡)� = (𝑖𝑖𝑤𝑤)𝑛𝑛ℱ[𝑓𝑓(𝑡𝑡)]    ( 4 ) 

 

Definition 2.3.The Dirac delta function can be rigorously thought of as a function on real 
line which is zero everywhere except at the origin, where it is infinite, 

𝛿𝛿(𝑡𝑡) = � 0,      𝑡𝑡 ≠ 0
    ∞,    𝑡𝑡 = 0        

The Dirac delta function has properties, that 

∫ 𝛿𝛿(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1∞
−∞   

 
∫ 𝑓𝑓(𝑡𝑡). 𝛿𝛿(𝑡𝑡 − 𝑡𝑡0)𝑑𝑑𝑡𝑡 = 𝑓𝑓(𝑡𝑡0)∞
−∞       ( 5 ) 

  

∫ 𝑓𝑓(𝑡𝑡). 𝛿𝛿(𝑛𝑛)(𝑡𝑡 − 𝑡𝑡0)𝑑𝑑𝑡𝑡 = (−1)𝑛𝑛.𝑓𝑓(𝑛𝑛)(𝑡𝑡0)∞
−∞       ( 6 ) 

  

𝑡𝑡. 𝛿𝛿′(𝑡𝑡) = −𝛿𝛿(𝑡𝑡)      ( 7 ) 

  

(𝑤𝑤 − 𝑤𝑤𝑜𝑜)𝑛𝑛. 𝛿𝛿(𝑛𝑛)(𝑤𝑤 − 𝑤𝑤0) = (−1)𝑛𝑛.𝑛𝑛!. 𝛿𝛿(𝑤𝑤 −𝑤𝑤0)      ( 8 ) 
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∫ 𝛿𝛿(𝑖𝑖−𝑖𝑖0)𝑓𝑓(𝑖𝑖)
(𝑖𝑖−𝑖𝑖0)𝑛𝑛

𝑑𝑑𝑤𝑤 = 1
𝑛𝑛!

∞
−∞

𝑑𝑑𝑛𝑛𝑓𝑓(𝑖𝑖)
𝑑𝑑𝑖𝑖𝑛𝑛 (𝑤𝑤 = 𝑤𝑤0)      ( 9 ) 

 

Where 𝛿𝛿(𝑤𝑤 − 𝑤𝑤0) is defined as following 

𝛿𝛿(𝑤𝑤 − 𝑤𝑤0) = � 0,      𝑤𝑤 ≠ 𝑤𝑤0
    ∞,    𝑤𝑤 = 𝑤𝑤0

  

Theorem2.3. [9] The Fourier transform of the Dirac Delta function is 1.  

That is ℱ[𝛿𝛿(𝑡𝑡)] = 1. 

Theorem2.4.[ 10] Fourier transforms of some functions are following 

𝑖𝑖)ℱ[1] = 2𝜋𝜋. 𝛿𝛿(𝑤𝑤) 

𝑖𝑖𝑖𝑖) ℱ[𝑡𝑡𝑛𝑛] = 2𝜋𝜋. 𝑖𝑖𝑛𝑛. 𝛿𝛿(𝑛𝑛)(𝑤𝑤) 

𝑖𝑖𝑖𝑖𝑖𝑖)ℱ[𝑡𝑡𝑛𝑛.𝑓𝑓(𝑡𝑡)] = 𝑖𝑖𝑛𝑛
𝑑𝑑𝑛𝑛ℱ[𝑓𝑓(𝑡𝑡)]
𝑑𝑑𝑤𝑤𝑛𝑛  

𝑖𝑖𝑖𝑖)ℱ[𝑒𝑒𝑖𝑖𝑖𝑖0𝑖𝑖] = 2𝜋𝜋𝛿𝛿(𝑤𝑤 −𝑤𝑤0) 

𝑖𝑖)𝐼𝐼𝑓𝑓 ℱ[𝑓𝑓(𝑡𝑡)] = 𝐹𝐹(𝑤𝑤), 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 ℱ[𝑒𝑒𝑖𝑖𝑖𝑖0𝑖𝑖 .𝑓𝑓(𝑡𝑡)] = 𝐹𝐹(𝑤𝑤 −𝑤𝑤0) 

𝑖𝑖𝑖𝑖)ℱ[𝑒𝑒𝑎𝑎𝑖𝑖] = 2𝜋𝜋𝛿𝛿(𝑤𝑤 + 𝑖𝑖𝑖𝑖) 

𝑖𝑖𝑖𝑖𝑖𝑖)𝐼𝐼𝑓𝑓 ℱ[𝑓𝑓(𝑡𝑡)] = 𝐹𝐹(𝑤𝑤), 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 ℱ[𝑒𝑒𝑎𝑎.𝑖𝑖 .𝑓𝑓(𝑡𝑡)] = 𝐹𝐹(𝑤𝑤 + 𝑖𝑖𝑖𝑖) 

 
2.2. Adomian Decomposion Method 
 
The Adomian Decomposition Method (ADM) is a method which is used in several areas of 
mathematics. Recently a great deal of interest has been focused on the application of 
Adomian's decomposition method to solve a wide variety of linear and nonlinear 
problems. This method has been introduced by Adomian and it can be used in the linear 
and nonlinear differential equations, in the differential equations systems, in the integral 
equations, in the difference equations, in the differential-difference equations, and in the 
algebraic equations. This method generates a solution in the form of a series whose terms 
are determined by a recursive relationship using the Adomian polynomials. 
 
If the nonlinear term is 𝑓𝑓(𝑢𝑢) in the equation, Adomian polynomials are as follows.  

𝐴𝐴0 = 𝑓𝑓(𝑢𝑢0)  

𝐴𝐴1 = 𝑢𝑢1
𝑑𝑑𝑓𝑓(𝑢𝑢0)
𝑑𝑑𝑢𝑢0

  

𝐴𝐴2 = 𝑢𝑢2
𝑑𝑑𝑓𝑓(𝑢𝑢0)
𝑑𝑑𝑢𝑢0

+ 𝑢𝑢12

2!
𝑑𝑑2𝑓𝑓(𝑢𝑢0)
𝑑𝑑𝑢𝑢02

  

𝐴𝐴3 = 𝑢𝑢3
𝑑𝑑𝑓𝑓(𝑢𝑢0)
𝑑𝑑𝑢𝑢0

+ 𝑢𝑢1𝑢𝑢2
𝑑𝑑2𝑓𝑓(𝑢𝑢0)
𝑑𝑑𝑢𝑢02

+ 𝑢𝑢13

3!
𝑑𝑑3𝑓𝑓(𝑢𝑢0)
𝑑𝑑𝑢𝑢03

  

⋮ 
As you can see, 𝐴𝐴0 is only depends on 𝑢𝑢0, 𝐴𝐴1 is depends on 𝑢𝑢0 and 𝑢𝑢1, 𝐴𝐴2 is depends on 𝑢𝑢0, 
𝑢𝑢1 and 𝑢𝑢2, 𝐴𝐴𝑛𝑛 is depends on 𝑢𝑢0, 𝑢𝑢1, 𝑢𝑢2, … 𝑢𝑢𝑛𝑛 . 
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2.3. Application to Riccati Equation  of  Fourier Transform and Adomain 
Method 
 
Let consider following general Riccati equation. 

𝑦𝑦′ + 𝑃𝑃(𝑥𝑥)𝑦𝑦 + 𝑄𝑄(𝑥𝑥)𝑦𝑦2 = 𝑅𝑅(𝑥𝑥), 𝑦𝑦(0) = 𝑐𝑐  

We let use Fourier transform for above Riccati equation. Thus we get that: 

ℱ(𝑦𝑦′) + ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦) + ℱ(𝑄𝑄(𝑥𝑥)𝑦𝑦2) = ℱ�𝑅𝑅(𝑥𝑥)�  

𝑖𝑖𝑤𝑤𝑖𝑖 = ℱ�𝑅𝑅(𝑥𝑥)� − ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦) − ℱ(𝑄𝑄(𝑥𝑥)𝑦𝑦2)  

𝑖𝑖 = ℱ�𝑅𝑅(𝑥𝑥)�−ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦)−ℱ�𝑄𝑄(𝑥𝑥)𝑦𝑦2�
𝑖𝑖𝑖𝑖

  

Now, we let use inverse Fourier transform. 

 ℱ−1(𝑖𝑖) = ℱ−1 �ℱ�𝑅𝑅(𝑥𝑥)�−ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦)−ℱ�𝑄𝑄(𝑥𝑥)𝑦𝑦2�
𝑖𝑖𝑖𝑖

�  

𝑦𝑦𝑛𝑛+1 = −ℱ−1 �ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦𝑛𝑛)+ℱ(𝑄𝑄(𝑥𝑥)𝐴𝐴𝑛𝑛)
𝑖𝑖𝑖𝑖

�  

𝑦𝑦0 = 𝑐𝑐 + ℱ−1 �ℱ�𝑅𝑅(𝑥𝑥)�
𝑖𝑖𝑖𝑖

� ,𝐴𝐴0 = 𝑦𝑦02  

𝑦𝑦1 = −ℱ−1 �ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦0)+ℱ(𝑄𝑄(𝑥𝑥)𝐴𝐴0)
𝑖𝑖𝑖𝑖

�  

𝐴𝐴1 = 2𝑦𝑦0.𝑦𝑦1  

𝑦𝑦2 = −ℱ−1 �ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦1)+ℱ(𝑄𝑄(𝑥𝑥)𝐴𝐴1)
𝑖𝑖𝑖𝑖

�  

𝐴𝐴2 = 2𝑦𝑦0. 𝑦𝑦2 + 𝑦𝑦12  

𝑦𝑦3 = −ℱ−1 �ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦2)+ℱ(𝑄𝑄(𝑥𝑥)𝐴𝐴2)
𝑖𝑖𝑖𝑖

�  

𝐴𝐴3 = 2𝑦𝑦3. 𝑦𝑦0 + 2𝑦𝑦1. 𝑦𝑦2  

𝑦𝑦4 = −ℱ−1 �ℱ(𝑃𝑃(𝑥𝑥)𝑦𝑦3)+ℱ(𝑄𝑄(𝑥𝑥)𝐴𝐴3)
𝑖𝑖𝑖𝑖

�  

𝐴𝐴4 = 2𝑦𝑦4. 𝑦𝑦0 + 𝑦𝑦22 + 2𝑦𝑦1𝑦𝑦3  

⋮  

𝑦𝑦 ≅ ∑ 𝑦𝑦𝑘𝑘  .𝑛𝑛
𝑘𝑘=0   
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2.4. Euler Method 
 
In sometimes, Euler method is numerical methods which is used to solving differential 
equations.  The  differential equations from first order with initial value problem is 
defined  as following; 
 
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑓𝑓(𝑥𝑥,𝑦𝑦), 𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0  ( 10 ) 

 

The Euler method which is the first order Runge Kutta mehod is given as follow. To find 
the desired solution we chop the interval into small subdivisions of length ℎ. Using initial 
condition sultion is generated by using following the iterative relation. 
  
  𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + ℎ  

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑓𝑓(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)  
 ( 11 ) 

 
The iterative process  is terminated that is reached the end of the interval  
 
2.5. Runge Kutta-2 Method 
 
Runge Kutta methods are a numerical method used in approximate solution of nonlinear 
differential equations. In this study, Runge Kutta 2 method has been used to compare 
with the FADM. Runge-Kutta method of order second  is given the following 
formulas[16]. 
 
𝑘𝑘1 = 𝑓𝑓(𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)  
𝑘𝑘2 = 𝑓𝑓(𝑥𝑥𝑛𝑛 + ℎ, 𝑦𝑦𝑛𝑛 + 𝑘𝑘1)  

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 +
ℎ
2

(𝑘𝑘1 + 𝑘𝑘2) 
( 12 ) 
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3. Related Examples 

 
In this subsection, some examples which are examined in the [1,2,4,7,8]  are solved by 
proposed method in section 3. 
 

Example 3.1. [4]. Consider the following Riccati equation:  
𝑦𝑦′ + 𝑦𝑦2 = 1 + 𝑥𝑥2 subject to initial condition 𝑦𝑦(0) = 1. 
 
Solution: The exact solution of the above equation with initial condition is  

𝑦𝑦 = 𝑥𝑥 + 𝑒𝑒−𝑥𝑥
2

1+∫ 𝑒𝑒−𝑡𝑡2𝑥𝑥
0 𝑑𝑑𝑖𝑖

  ( 13 ) 

 
When we solve this differential equation by FADM method, the equation x is given below. 

𝑃𝑃(𝑥𝑥) = 0,𝑄𝑄(𝑥𝑥) = 1,𝑅𝑅(𝑥𝑥) = 1 + 𝑥𝑥2 

𝑦𝑦0 = 1 + ℱ−1 �ℱ�1+𝑥𝑥
2�

𝑖𝑖𝑖𝑖
� = 1 + ℱ−1 �2𝜋𝜋𝛿𝛿−2𝜋𝜋𝛿𝛿′′

𝑖𝑖𝑖𝑖
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2�
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3 �

𝑖𝑖𝑖𝑖
�  
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�  
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ℱ�𝑥𝑥+2𝑥𝑥2+4𝑥𝑥

3

3 +5𝑥𝑥
4

6 +19𝑥𝑥
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Table 1. The results of the exact solution and the aproximation solutions (obtained by 
FADMs and the numerical methods) 
 

xi yi exact yEuler yRK2 g2apr g3apr 

0 1.0000 1 1 1 1 

0.1 1.0003 1 1.0005 0.99 1.0014 

0.2 1.0024 1.001 1.002 0.9597 1.0116 

0.3 1.0078 1.0098 1.0051 0.9083 1.0408 

0.4 1.0177 1.0438 1.0053 0.8343 1.1016 

0.5 1.0330 1.1349 9.66E-05 0.7353 1.2095 

0.6 1.0545 1.3311 7.21E-05 0.6076 1.3845 

0.7 1.0827 1.6949 -3.2E-05 0.4463 1.6522 

0.8 1.1181 2.2916 -2.9567 0.2447 2.0462 

0.9 1.1607 3.1625 -2.217 -0.0057 2.6101 

1 1.446 4.2874 -10.2583 -0.3159 3.4005 

 

 
Figure 1. The graphics of exact solution and the aproximation solutions 
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Table 2. The errors of the aproximation solutions 
 

xi Er_Euler Er_RK2 Er_g2apr Er_g3apr 

0.0000 0.0000 0.0000 0.0000 0.0000 
0.1000 0.0003 0.0002 0.0103 0.0011 
0.2000 0.0014 0.0004 0.0427 0.0091 
0.3000 0.0020 0.0027 0.0995 0.0330 
0.4000 0.0262 0.0123 0.1833 0.0839 
0.5000 0.1019 0.0666 0.2977 0.1765 
0.6000 0.2766 0.3331 0.4469 0.3300 
0.7000 0.6122 1.3990 0.6365 0.5695 
0.8000 1.1735 4.0748 0.8734 0.9281 
0.9000 2.0018 3.3777 1.1664 1.4493 
1.0000 3.0768 1.1469 1.5265 2.1899 

 

 
Figure 2. The graphics of errors of  the aproximation solutions 

 
Example 3.2.. [1,4,7 ] Consider the following example  
𝑦𝑦′ = 1 − 𝑦𝑦2,  𝑦𝑦(0) = 0. 
 
Solution: Coefficients of the equation are 𝑃𝑃(𝑥𝑥) = 0,𝑄𝑄(𝑥𝑥) = 1,𝑅𝑅(𝑥𝑥) = 1. 
We let’s study to find terms of solution series. 
 
𝑦𝑦0 = ℱ−1 �ℱ(1)

𝑖𝑖𝑖𝑖
� = 𝑥𝑥  

𝑦𝑦1 = −ℱ−1 �ℱ�𝑥𝑥
2�

𝑖𝑖𝑖𝑖
� = −𝑥𝑥3

3
  

𝑦𝑦2 = −ℱ−1 �
ℱ�−2𝑥𝑥

4

3 �

𝑖𝑖𝑖𝑖
� = 2𝑥𝑥5

15
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𝑦𝑦3 = −ℱ−1 �
ℱ�17𝑥𝑥

6

45 �

𝑖𝑖𝑖𝑖
� = − 17𝑥𝑥7

315
  

𝑦𝑦4 = −ℱ−1 �
ℱ�−22𝑥𝑥

8

105 �

𝑖𝑖𝑖𝑖
� = 62𝑥𝑥9

2835
  

𝑦𝑦5 = −ℱ−1 �
ℱ� 138214175𝑥𝑥

10�

𝑖𝑖𝑖𝑖
� = − 1382𝑥𝑥11

155925
  

⋮  

𝑦𝑦 ≅ 𝑔𝑔𝑘𝑘 = ∑ 𝑦𝑦𝑖𝑖𝑘𝑘−1
𝑖𝑖=0   

These components give the first four components of exact solution of the equation.  
 
𝑔𝑔2 = 𝑥𝑥 − 𝑥𝑥3

3
+ 2

15
𝑥𝑥5  

𝑔𝑔3 = 𝑥𝑥 − 𝑥𝑥3

3
+ 2

15
𝑥𝑥5 − 17

315
𝑥𝑥7  

𝑔𝑔4 = 𝑥𝑥 − 𝑥𝑥3

3
+ 2

15
𝑥𝑥5 − 17

315
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𝑥𝑥9  

𝑔𝑔5 = 𝑥𝑥 − 𝑥𝑥3

3
+ 2

15
𝑥𝑥5 − 17

315
𝑥𝑥7 + 62
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155925
𝑥𝑥11  

 

 

Figure 3. The graphics of exact solution and the aproximation solutions 
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Table 3 The results of the exact solution and the aproximation solutions ( obtained by 

FADMs and the numerical methods) 

xi f(xi) yEuler yRK2 g2(xi) g3(xi) g4(xi) g5(xi) 

0.0000 0 0 0 0 0 0 0 

0.1000 0.0997 0.1 0.05 0.0997 0.0997 0.0997 0.0997 

0.2000 0.1974 0.199 0.095 0.1974 0.1974 0.1974 0.1974 

0.3000 0.2913 0.295 0.1356 0.2913 0.2913 0.2913 0.2913 

0.4000 0.3799 0.3863 0.1723 0.38 0.3799 0.3799 0.3799 

0.5000 0.4621 0.4714 0.2055 0.4625 0.4621 0.4621 0.4621 

0.6000 0.537 0.5492 0.2357 0.5384 0.5369 0.5371 0.537 

0.7000 0.6044 0.619 0.2633 0.6081 0.6036 0.6045 0.6043 

0.8000 0.664 0.6807 0.2886 1 0.6617 0.6646 0.6639 

0.9000 0.7163 0.7344 0.3118 0.7357 0.7099 0.7184 0.7156 

1.0000 0.7616 0.7804 0.3332 0.8 0.746 0.7679 0.759 

 

 
Figure 4. The graphics of errors of  the aproximation solutions 
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Table 4. The errors of the aproximation solutions 

xi Er_Euler Er_RK2 Er_g2(xi) g3(xi) g4(xi) Er_g5(xi) 

0.0000 0 0 0 0 0 0 

0.1000 0.0003 0.0497 0 0 0 0 

0.2000 0.0016 0.1024 0 0 0 0 

0.3000 0.0037 0.1557 0 0 0 0 

0.4000 0.0064 0.2077 0.0001 0 0 0 

0.5000 0.0093 0.2566 0.0004 0 0 0 

0.6000 0.0121 0.3013 0.0013 0.0002 0 0 

0.7000 0.0147 0.3411 0.0037 0.0007 0.0001 0 

0.8000 0.0167 0.3755 0.009 0.0023 0.0006 0.0002 

0.9000 0.0181 0.4045 0.0194 0.0064 0.0021 0.0007 

1.0000 0.0188 0.4284 0.0384 0.0156 0.0063 0.0026 

 

Example 3.3: [2,7] Consider the following example  
𝑦𝑦′ = 1 + 2𝑦𝑦 − 𝑦𝑦2,  𝑦𝑦(0) = 0.     
 
Solution: Coefficients of the equation are 𝑃𝑃(𝑥𝑥) = −2,𝑄𝑄(𝑥𝑥) = 1,𝑅𝑅(𝑥𝑥) = 1. 
We let’s study to find terms of solution series. 
 
𝑦𝑦0 = ℱ−1 �ℱ(1)

𝑖𝑖𝑖𝑖
� = 𝑥𝑥  

𝑦𝑦1 = −ℱ−1 �ℱ(−2𝑥𝑥)+ℱ�𝑥𝑥2�
𝑖𝑖𝑖𝑖

� = −ℱ−1 �−4𝜋𝜋𝑖𝑖𝛿𝛿
′−2𝜋𝜋𝛿𝛿′′

𝑖𝑖𝑖𝑖
�   

= ∫ 2.𝛿𝛿′𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥

𝑖𝑖
𝑑𝑑𝑤𝑤 + ∫ 𝛿𝛿′′𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥

𝑖𝑖𝑖𝑖
𝑑𝑑𝑤𝑤∞

−∞
∞
−∞ = 2∫ − 𝛿𝛿 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥

𝑖𝑖2 𝑑𝑑𝑤𝑤 + 2∫ 𝛿𝛿 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥

𝑖𝑖𝑖𝑖3 𝑑𝑑𝑤𝑤∞
−∞

∞
−∞   

= 𝑥𝑥2 − 𝑥𝑥3

3
  

𝑦𝑦2 = −ℱ−1 �
ℱ�−2𝑥𝑥2+2𝑥𝑥

3

3 �+ℱ�2𝑥𝑥3−2𝑥𝑥
4

3 �

𝑖𝑖𝑖𝑖
�  

= −ℱ−1 �
4𝜋𝜋𝛿𝛿′′−163 𝜋𝜋𝑖𝑖𝛿𝛿

′′′−4𝜋𝜋3 𝛿𝛿
(𝚤𝚤𝚤𝚤)

𝑖𝑖𝑖𝑖
� = 2𝑥𝑥3

3
− 2𝑥𝑥4

3
+ 2𝑥𝑥5

15
  

𝑦𝑦3 = −ℱ−1 �
ℱ�−4𝑥𝑥

3

3 +4𝑥𝑥
4

3 −4𝑥𝑥
5

15 �+ℱ�
7𝑥𝑥4

3 −2𝑥𝑥5+17𝑥𝑥
6

45 �

𝑖𝑖𝑖𝑖
�  

= −ℱ−1 �
ℱ�−4𝑥𝑥

3

3 +11𝑥𝑥
4

3 −34𝑥𝑥
5

15 +17𝑥𝑥
6

45 �

𝑖𝑖𝑖𝑖
�  

= −𝑥𝑥4

3
+ 11𝑥𝑥5

15
− 17𝑥𝑥6

45
+ 17𝑥𝑥7

270
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⋮  

𝑦𝑦 ≅ 𝑦𝑦0 + 𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3  

≅  𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3

3
− 𝑥𝑥4 + 13𝑥𝑥5

15
− 17𝑥𝑥6

45
+ 17𝑥𝑥7

270
 .  

 

Figure 5. The graphics of exact solution and the aproximation solutions 
 

Table 5. The results of the exact solution and the aproximation solutions which is  
obtained by FADMs and the numerical methods 
 

xi Exact Soln yEuler yRK2 g3(xi) g4(xi) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1000 0.1103 0.1000 0.1500 0.1102 0.1102 
0.2000 0.2420 0.2190 0.3047 0.2413 0.2413 
0.3000 0.3951 0.3580 0.4468 0.3927 0.3927 
0.4000 0.5678 0.5168 0.5665 0.5632 0.5627 
0.5000 0.7560 0.6934 0.6620 0.7508 0.7487 
0.6000 0.9536 0.8840 0.7365 0.9539 0.9464 
0.7000 1.1529 1.0827 0.7941 1.1706 1.1485 
0.8000 1.3464 1.2820 0.8386 1.3992 1.3420 
0.9000 1.5269 1.4741 0.8730 1.6380 1.5050 
1.0000 1.6895 1.6516 0.8998 1.8852 1.6013 
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Table 6. The errors of the aproximation solutions 
 

xi Er_Euler Er_RK2 Er_g3 Er_g4 
0.0000 0.0000 0.0000 0.0000 0.0000 
0.1000 0.0103 0.0397 0.0001 0.0001 
0.2000 0.0230 0.0628 0.0007 0.0007 
0.3000 0.0371 0.0517 0.0024 0.0025 
0.4000 0.0510 0.0014 0.0046 0.0052 
0.5000 0.0626 0.0940 0.0052 0.0073 
0.6000 0.0695 0.2170 0.0004 0.0071 
0.7000 0.0703 0.3588 0.0177 0.0044 
0.8000 0.0644 0.5078 0.0529 0.0043 
0.9000 0.0529 0.6539 0.1111 0.0219 
1.0000 0.0379 0.7897 0.1957 0.0882 

 

 

Figure 6. The graphics of errors of  the aproximation solutions 

 

Example 3.4. [8] We let find solution of following Riccati equation which has variable 
coefficients  

𝑦𝑦′ = 3 + 3𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑦𝑦2  

with intial condition  

 𝑦𝑦(0) = 1. 

Solution: The exact solution of the above equation with initial condition is  
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𝑦𝑦 = 3𝑥𝑥 + 𝑒𝑒−𝑥𝑥
3

1+∫ 𝑖𝑖𝑒𝑒−𝑡𝑡3𝑥𝑥
0 𝑑𝑑𝑖𝑖

  (14) 

 
Coefficients of the equation are 𝑃𝑃(𝑥𝑥) = −3𝑥𝑥2,𝑄𝑄(𝑥𝑥) = 𝑥𝑥,𝑅𝑅(𝑥𝑥) = 3. 

We let’s study to find terms of solution series. 

𝑦𝑦0 = 1 + ℱ−1 �ℱ(3)
𝑖𝑖𝑖𝑖
� = 1 + 3𝑥𝑥  

𝑦𝑦1 = −ℱ−1 �ℱ�3𝑥𝑥
2+𝑥𝑥�

𝑖𝑖𝑖𝑖
� = −ℱ−1 �−6𝜋𝜋𝛿𝛿′′+2𝜋𝜋𝑖𝑖𝛿𝛿

′

𝑖𝑖𝑖𝑖
�  

= ∫ 6.𝛿𝛿𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥

𝑖𝑖𝑖𝑖3 𝑑𝑑𝑤𝑤 + ∫ 𝛿𝛿𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥

𝑖𝑖2 𝑑𝑑𝑤𝑤∞
−∞

∞
−∞ = 6

𝑖𝑖
(𝑖𝑖𝑥𝑥)3

6
+ (𝑖𝑖𝑥𝑥)2

2
= −𝑥𝑥3 − 𝑥𝑥2

2
  

𝑦𝑦2 = −ℱ−1 �
ℱ�−3𝑥𝑥5−7𝑥𝑥

4

2 −𝑥𝑥3�

𝑖𝑖𝑖𝑖
�  

∫ �−3.5!𝛿𝛿
𝑖𝑖6 − 7𝑖𝑖.4!𝛿𝛿

2𝑖𝑖5 + 6.𝛿𝛿
𝑖𝑖4� 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝑤𝑤

∞
−∞   

= 𝑥𝑥6

2
+ 7

10
𝑥𝑥5 + 𝑥𝑥4

4
  

𝑦𝑦3 = −ℱ−1 �
ℱ�3𝑥𝑥

5

4 +63𝑥𝑥
6

20 +4110𝑥𝑥
7+3𝑥𝑥

8 

2 �

𝑖𝑖𝑖𝑖
�  

= −𝑥𝑥6

8
− 63

140
𝑥𝑥7 − 41

80
𝑥𝑥8 − 𝑥𝑥9

6
  

⋮  

𝑦𝑦 = 𝑦𝑦0 + 𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3 + ⋯  

= 1 + 3𝑥𝑥 − 𝑥𝑥2

2
− 𝑥𝑥3 + 𝑥𝑥4

4
+ 7

10
𝑥𝑥5 + 3𝑥𝑥6

8
− 63

140
𝑥𝑥7 − 41

80
𝑥𝑥8 − 𝑥𝑥9

6
+ ⋯  

Solution which are obtained are compatible with in [8].  
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Figure 7. The graphics of exact solution and the aproximation solutions 

 
Table 7.  The results of the exact solution and the aproximation solutions (obtained by 
FADMs and the numerical methods) 

xi Exact Soln g2 apr g3 apr yEuler yRK2 
0.0 1.0000 1.0000 1.0000 1.0000 0 
0.1 1.2940 1.2940 1.2940 1.3000 0.2595 
0.2 1.5726 1.5727 1.5726 1.5870 0.4728 
0.3 1.8319 1.8321 1.8319 1.8543 0.6109 
0.4 2.0701 2.0716 2.0700 2.1483 0.6570 
0.5 2.2887 2.2953 2.2875 2.6312 0.4920 
0.6 2.4914 2.5142 2.4854 3.6688 0.0886 
0.7 2.6842 2.7485 2.6605 5.9960 1.5462 
0.8 2.8742 3.0308 2.7954 10.3320 -123.36 
0.9 3.0683 3.4091 2.8422 12.3727 -658056597.6 
1.0 3.2725 3.9500 2.6958 18.9493  
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Figure 8. The graphics of errors of  the aproximation solutions 

Table 8. The errors of the aproximation solutions 

xi Er_Euler Er-g2 apr Er-g3 apr 
0.0000 0.0000 0.0000 0.0000 

0.1000 0.0060 0.0000 0.0000 
0.2000 0.0144 0.0000 0.0000 
0.3000 0.0224 0.0002 0.0000 

0.4000 0.0781 0.0015 0.0002 

0.5000 0.3426 0.0067 0.0011 
0.6000 1.1774 0.0228 0.0059 
0.7000 3.3118 0.0643 0.0237 
0.8000 7.4578 0.1566 0.0789 

0.9000 9.3043 0.3408 0.2261 

1.0000 15.6768 0.6775 0.5767 

 
4. Conclusion 

 
In this study, the Riccati differential equation is solved by FADM, this solution is 
compared with Euler and Runge Kutta2 numerical methods and it is shown that the 
FADM solution is better. Approximate solutions obtained with the exact solution for a 
given range are compared and graphically illustrated. In order to better illustrate the 
performance of the methods, the absolute errors of the results are shown numerically 
and graphically.  
 
The term number of the solution obtained  by FADM approximates the exact solution 
either from below or from above, depending on whether it is odd or even. For example, in 
the second example we examine, while odd terms approach from above, even terms 
approach the real solution from below. 
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In the special Riccati equations solved, while RK2 method is expected to give better 
results than Euler method,  Euler method gives better results in examples 1 and 4. In 
these two examples, it was seen that RK2 diverges from the exact solution in the selected 
solution range. Therefore, since the divergence in 4th sample is very large, RK2 is not 
given in the graph and table. 
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