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ABSTRACT 

 

Increasing environmental awareness in today's society and stricter environmental regulations have forced manufacturing firms 

to take necessary actions for the recovery of end-of-life (EOL) products through different options (e.g., recycling, 

remanufacturing,). Disassembly is regarded as a critical operation in EOL treatment of used products since all product recovery 

options require the disassembly of EOL products at certain levels. This critical operation is generally carried out by forming 

disassembly lines in product recovery facilities. Miscellaneous methodologies based on heuristics, metaheuristics and 

mathematical programming have been proposed for the balancing of disassembly lines. Majority of those methodologies assume 

that disassembly line parameters are deterministic by ignoring the fact that a disassembly line involves great deal of uncertainty 

mainly due to uncertain conditions of arriving EOL products. Considering this high level of uncertainty, simulation modeling can 

be an effective tool for the modeling of disassembly lines. In this study, a simulation-based disassembly line balancing 

methodology is proposed for the explicit consideration of stochastic parameters. First, simulation model of a disassembly line is 

constructed. Since the disassembly line balancing problem has a combinatorial nature, two commonly used metaheuristics (i.e., 

genetic algorithms (GAs) and simulated annealing (SA)) are integrated with the simulation model in order to balance the 

disassembly line. The disassembly sequence and task assignments proposed by GA are compared with the sequence and task 

assignments proposed by SA. This comparison indicates that GA outperforms SA in four of eight performance measures while 

both algorithms have the same value for line efficiency measure. 
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1. Introduction 

Manufacture of high-quality products with the cheapest and fastest way is the main 
aim of traditional manufacturing systems. However, decrease in natural resources 
and increased environmental awareness of consumers forced manufacturing 
companies to consider the environmental impacts of their manufacturing activities. 
Hence, sustainable manufacturing which tries to minimize the negative impacts of 
manufacturing systems on environment has emerged as a vital manufacturing 
concept.  

Among various sustainable manufacturing issues, product recovery has gained 
popularity among researchers in recent years. It includes the recovery of materials 
and/or components from used products through different options (e.g., recycling, 
remanufacturing). All of these options call for disassembly which is the systematic 
separation of a product into its subassemblies, components or other groupings. 
Disassembly procedures can be fulfilled in a disassembly cell, in a single workstation 
or in a disassembly line. Disassembly line is the most commonly used layout due to 
its high efficiency.  

The maximum possible yield from a disassembly line can only be obtained if the line 
is balanced. In another words, work should be evenly distributed among the stations 
of disassembly lines like assembly lines. However, disassembly lines have many 
differences compared with assembly lines. For example, in disassembly lines, 
disassembly of expensive components as early as possible is an important 
performance measure since the possibility of damage to expensive components is 
minimized by disassembling them earlier. A similar performance measure is also valid 
for hazardous components since the early disassembly of hazardous components 
decreases the risk of dangerous events such as explosions. Considering those 
differences, assembly line balancing methodologies cannot be employed for 
disassembly line balancing.     

Miscellaneous solution methodologies were proposed for disassembly line balancing 
problems (Deniz & Ozcelik, 2019; Gungor & Gupta, 1999; Mehmet Ali Ilgin & Gupta, 
2010; Özceylan, Kalayci, Güngör, & Gupta, 2019). Among these methodologies, 
heuristics received increasing attention of researchers. Starting with the study of 
(Askiner Güngör & Gupta, 2001) and (Aşkiner Güngör & Gupta, 2002), various 
disassembly line balancing heuristics were developed. Majority of those 
methodologies are based on a multi-criteria decision making technique including 
TOPSIS (Avikal, Jain, & Mishra, 2014), PROMETHEE (Avikal, Mishra, & Jain, 2013, 2014; 
Avikal, Mishra, Jain, & Yadav, 2013) and DEMATEL (Mehmet Ali Ilgin, 2019). 

Metaheuristics-based methodologies are also popular in the literature since the 
disassembly line balancing problem has a combinatorial nature. GAs (Kalayci, Polat, & 
Gupta, 2016; S. M. McGovern & Gupta, 2007; Seamus M. McGovern & Gupta, 2007; 
Seidi & Saghari, 2016), evolutionary optimization (Fang, Liu, Li, Laili, & Pham, 2019), 
reinforcement learning (Tuncel, Zeid, & Kamarthi, 2014), SA(Kalayci & Gupta, 2013d; 
K. Wang, Li, & Gao, 2019), tabu search (Kalayci & Gupta, 2014), ant colony 
optimization(Agrawal & Tiwari, 2008; L. P. Ding, Feng, Tan, & Gao, 2010; Kalayci & 
Gupta, 2013b; Seamus M. McGovern & Gupta, 2006), artificial bee colony algorithm 
(Kalayci & Gupta, 2013c; Kalayci, Hancilar, Gungor, & Gupta, 2015; Liu et al., 2018; S. 
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Wang, Guo, & Liu, 2019; Wang, Li, Gao, Li, &  Sutherland, 2021), particle swarm 
optimization (Kalayci & Gupta, 2013a; Xiao, Wang, Yu, & Nie, 2017), firefly algorithm 
(Zhu, et al., 2018)and artificial fish swarm algorithm (Zhang, Wang, Zhu, & Wang, 
2017) are the most commonly used metaheuristic techniques.  

There are many disassembly line balancing methodologies based on mathematical 
programming techniques. Most of those methodologies assume that all disassembly 
line parameters are deterministic. Mixed integer programming (Altekin, 2017; Altekin 
& Akkan, 2012; Altekin, Bayındır, & Gümüşkaya, 2016; Altekin, Kandiller, & Ozdemirel, 
2008; Özceylan & Paksoy, 2013; Paksoy, Güngör, Özceylan, & Hancilar, 2013), branch 
and bound (Li, Cil, Mete & Kucukkoc, 2020), mixed integer linear programming (Edis, 
Ilgin, & Edis, 2019), dynamic programming (Koc, Sabuncuoglu, & Erel, 2009; Zhou, 
Guo, & Li, 2020), linear physical programming (Ilgin, Akçay, & Araz, 2017) are some of 
the techniques used in those methodologies. Some researchers integrate 
mathematical programming techniques and fuzzy logic (Özceylan & Paksoy, 2014b, 
2014a). 

The number of mathematical programming based methodologies considering 
stochastic issues in disassembly line balancing is very limited (Bentaha, Battaïa, & 
Dolgui, 2014; Bentaha, Battaiä, & Dolgui, 2015; Bentaha, Battaïa, Dolgui, & Hu, 2015). 
In these studies, only disassembly times are modeled as stochastic. However, there 
are other stochastic processes. For instance, inter-arrival times of used products 
arriving at a disassembly line are stochastic. Considering those stochastic issues, 
simulation optimization can be an effective tool for balancing disassembly lines. That 
is why we propose a simulation optimization based disassembly line balancing 
methodology in this paper. First, a simulation model of the disassembly line is 
constructed by considering stochastic disassembly times and stochastic inter-arrival 
times. Then, two commonly used meta-heuristics GAs and SA are integrated with this 
simulation model so as to assignment of disassembly tasks to stations and 
determine the disassembly sequence. 

The remainder of the paper is organized as follows. Sections 2 and 3 provide brief 
information on GAs and SA respectively. The proposed disassembly line balancing 
methodology and application results are presented in Section 4. Section 5 presents 
the conclusions and future research directions. 

2. Genetic Algorithms  

The genetic algorithms involve the application of selection, crossover and mutation 
processes to a population of individuals. Following the application of these 
procedures, a new population is created. The old population and the new population 
are exchanged for each other and each individual has its own regulated value. The 
newly formed population is selected according to this regulated value and more 
compatible populations are tried to be formed in each newly created population. 

GAs are particularly used in the areas of optimization, automated, mechanical 
learning, finance, marketing, scheduling, assembly/disassembly line balancing, plant 
layout and system reliability. The basic characteristics of GAs can be listed as follows; 

 Poor solutions tend to disappear while good solutions tend to be used to create better 
solutions as the population evolves from generation to generation.  
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 They scan not the whole solution space only part of it. 

 They reach a possible solution in shorter time by doing an active search. 

 They do not stick to local best solutions by simultaneously examining a population of 
solutions. 

The pseudo code of GAs is as follows (H. Ding, Benyoucef, & Xie, 2003): 

Procedure: Genetic algorithms 

begin 

t←0; 

initialize P(t); 

evaluate P(t); 

while (not termination condition) do 

select P(t+1) from P(t); 

crossover (recombine P(t+1)); 

mutation (recombine P(t+1)); 

evaluate P(t+1) ; 

t←t+1; 

end 

end 

GAs first creates an initial population of individuals coded in accordance with the 
notation specified in the solution steps. Each chromosome in the initial population 
represents a possible solution to the problem. Each chromosome has a conformity 
value indicating the quality of the solution it encodes. The basic working logic of GAs 
is based on the proliferation of chromosomes with better conformity values, just like 
in the evolutionary process. 

Selection is the process of selecting individuals of a new generation from the existing 
population according to the selection method chosen. The crossover operator is one 
of the substantial parameters that affect the performance of the GAs. Crossover 
creates new offspring by manipulating selected genes in the parent. Following the 
crossover operation, some of the chromosomes are mutated to increase the diversity 
of the chromosomes in the generation. The purpose of this process is to identify 
changes within the population. During the mutation process, the number of genes on 
the chromosome remains constant. 

There are many studies where GAs and simulation optimization are used 
simultaneously. Spare part inventory policy determination (M. Ali Ilgin & Tunali, 2007), 
supplier selection (L. P. Ding et al., 2010), facility layout planning (Azadivar & Wang, 
2000), production process planning (Amiri & Mohtashami, 2012), scheduling (Lin & 
Lin, 2015; Zeng, Diabat, & Zhang, 2015), disassembly sequencing (Mehmet Ali Ilgin & 
Taşoǧlu, 2016) and risk assessment(Yin, Wu, & Hsu, 2017) are some of the areas at 
which GA-based simulation optimization have been successfully implemented. 

3. Simulated Annealing  

Simulated annealing is a general search algorithm introduced to solve combinatorial 
optimization problems. The main aim of the annealing process is to increase the 
temperature of system and then slowly cool the system to achieve the intended 
structure. Therefore, the annealing process consists of two steps: heating and 
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cooling. First, heating is performed to increase the energy of the physical system, so 
that the atoms are freely dispersed in the system to obtain an unbalanced structure. 
The system is then cooled slowly to obtain the desired structure of the 
system(Dowsland & Thompson, 2012). 

SA can be used to solve bound-constrained and unconstrained optimization 
problems. It uses the same basic steps of the local search methods with one 
exception. The cooling process of SA is an exponential statement that allows new 
neighboring solutions to be produced for better results. 

The pseudo code of SA is as follows (Eglese, 1990): 

s ← s0; e ← E(s)      

sbest ← s; ebest ← e      

k ← 0      

while k <kmax and e >emax    

T ← temperature(k/kmax)   

snew ← neighbor(s)    

enew ← E(snew)    

if P(e, enew, T) > random() then  

s ← snew; e ← enew    

if e <ebest then    

sbest ← snew; ebest ← enew   

k ← k + 1     

returnsbest  

As seen in the pseudo code, the presence of an iteration number requires the 
completion of the current step so as to pass to the next step. The serial algorithm has 
a single solution at each step and is compared with the existing one. It is possible to 
produce more than one solution and choose the most suitable one by distributing 
each step to the appropriate works. 

The correct determination of the parameters used for the SA algorithm plays a 
substantial role in the solution of the problem. The SA algorithm has 5 main 
parameters: initial temperature, target temperature, number of iterations, cooling 
rate and stopping criteria. It is very important to determine the starting temperature 
in SA. The cooling rate is represented by α which takes values between 0 and 1. As 
the cooling rate approaches 0, the system cools faster and the cooling of the system 
slows down as it approaches 1. 

The target temperature value is used as the stopping rule. The algorithm starts the 
solution steps with the initial temperature and decreases the temperature with the 
cooling coefficient determined in each step. The SA algorithm continues its 
operations until a specified target temperature is reached. The number of iterations 
refers to multiple operations of the SA algorithm. At each of iteration, SA starts its 
steps again with the specified parameters. In this way, it is aimed to reach the best 
solution. The stopping criterion means that the loop is stopped when it meets a 
certain condition. In physical annealing, the process is automatically ended when it 
reaches a certain temperature. 

SA and simulation models can be integrated for the optimization purposes. Some of 
the areas in which SA-based simulation optimization have been applied include 
scheduling (Mattila & Virtanen, 2015; Tasoglu & Yildiz, 2019), production planning 
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and control (Güçdemir & Selim, 2017), decision support systems (Ozcan, Tànfani, & 
Testi, 2017) and design alternative selection (Ameli, Mansour, & Ahmadi-Javid, 2019). 

4. Disassembly Line Balancing by Using Simulation 
Optimization 

This study proposes a four-phase simulation optimization approximation for the 
balancing of disassembly lines. At first phase, a discrete event system simulation 
algorithm of the disassembly line under analysis is constructed. Second, a 
metaheuristic is constructed so as to determination of disassembly sequence. Third, 
the metaheuristic and the simulation model are integrated for the fitness evaluation 
of alternative disassembly sequences. Fourth, disassembly tasks are assigned to 
stations considering the disassembly sequence and the average cycle time. The 
following sections represent the details about the disassembly system, the 
simulation model, the design and parameter estimation of GA and SA metaheuristics 
and the results of the study.  

4.1. Disassembly Line 

The disassembly line considered in this study is used for the disassembly of wall hung 
boilers. Table 1 presents the characteristics of 17 components included in a boiler. 
Among all components, demand exists for component 2 (Heat exchanger) and 
component 9 (mother board). The only hazardous component is component 11(Plate 
heat exchanger).  

Component  
Number 

Component Name 
Price 
($) 

Demand 
(per year) 

Hazardous 
Component 

1 Cover - - No 
2 Heat exchanger 145 250 No 
3 Fan - - No 
4 Venturi - - No 
5 Ignition and ionization spark plugs - - No 
6 Flue gas temperature sensor - - No 
7 APS - - No 
8 Expansion tank - - No 
9 Motherboard 50 400 No 
10 Water Group - - No 
11 Plate heat exchanger - - Yes 
12 Cable group - - No 
13 Condensate drain siphon - - No 
14 Copper Tube Group - - No 
15 Gas valve - - No 
16 Input / Output temperature water sensors - - No 
17 Sheet iron component - - No 

Table 1. Component characteristics 

Table 2 presents the disassembly-related characteristics of the components (viz., 
disassembly direction, disassembly time, disassembly precedence relationships). 
Disassembly times of the components follow normal distribution with the mean and 
standard deviation values given in Table 2. A pictorial view of the precedence relations 
among the components is represented in Figure 1. 
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Component 
Number 

Disassembly  
Time (min.) 

Disassembly 
Direction 

Precedence Relationships 

1 Norm(0.5, 0.05) +x - 
2 Norm(4.5, 0.5) +x 5,6 
3 Norm(2.25, 0.25) -y 1 
4 Norm(0.6, 0.05) +z 3 
5 Norm(1.25, 0.25) -x 1 
6 Norm(0.3, 0.03) +z 1 
7 Norm(1.25, 0.25) -y 1 
8 Norm(1.25, 0.25) +y 1 
9 Norm(0.5, 0.05) -z 12 
10 Norm(0.6, 0.05) -z 14 
11 Norm(0.3, 0.03) -x 10 
12 Norm(1.25, 0.25) -y 1 
13 Norm(1.75, 0.25) +z 9 
14 Norm(2.75, 0.25) +x 16 
15 Norm(0.5, 0.05) -z 9 
16 Norm(0.4, 0.05) -y 13,15 
17 Norm(7.5, 0.5) +x 7 

Table 2. Disassembly characteristics 
 

 
Figure 1. Precedence relations diagram 

4.2. Design of Simulation Model 

The simulation model of the disassembly line was constructed in ARENA 14.0 
simulation software. It was run for one year with one 8-hour shift per day (115,200 
minutes). Five replications were carried out for each SA or GA solution. The flow chart 
of the simulation model is provided in Figure 2. 
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START

Record the enterance time of the Boiler

Disassemble cover component at the first 
station 

Calculate the time spend 
in first station 

Send Boiler to the next station in the 
sequence

FINISH

No

   Is there another disassembly 
station in sequence?

Yes

Calculate total disassembly time for the 
Boiler and write in an excel file

Assign disassembly sequence

Carry out disassembly operation at the 
station

Record the enterance time of the Boiler at 
the station

Calculate the time spend 
at the station 

 
Figure 2. Flow chart of the simulation model  

4.3. Design of GA 

The flow chart of the GA is provided in Figure 3. Various GA design details including 
the encoding scheme, fitness evaluation and genetic operators are presented in the 
following paragraphs.  
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START

Tasks assignments to the stations

Creation of initial population

Fitness evaluation of each individual

Selection

Crossover

Mutation

Maximum
number of

generations
reached

Simulation
Model

Generation of final sequence

Initialization of GA

Yes

No

Disassembly sequence and 
assignments

Total fitness value

STOP
 

Figure 3. Flowchart of GA-based simulation optimization for disassembly line balancing 
Encoding Scheme: The solutions in GAs are encoded as chromosomes based on the 
features of the problem. Chromosomes are usually constructed by using alphabets, 
integers, binary digits or other characters. The structure of a chromosome for this 
study is given in Figure 4. This chromosome involves the permutation of task numbers 
and represents a possible disassembly sequence. 

1 8 2 9 13 15 16 14 10 11 6 5 2 3 4 7 17 
Figure 4. Structure of a chromosome 

Initial Population: The initial population is constructed by randomly forming 
chromosomes. The number of chromosomes is equal to population size and the 
precedence relations among the tasks are considered while constructing the initial 
population.  
Fitness Evaluation:  The following performance measures are evaluated in a 
lexicographic manner for each GA chromosome using the simulation model: 

Demand:  The components which have high demand disassembled earlier as possible 
so as to reduce the damage risk during the disassembly operation. This measure is 
represented as 



Akpınar, Ilgın, Aktaş Disassembly Line Balancing by Using Simulation Optimization 72 

 

 
 

Alphanumeric Journal 
Volume 9, Issue 1, 2021 

 

 

𝐷 = ∑(𝑧. 𝑑𝑆𝑆𝑧)

𝑘

𝑧=1

                                                                         (1) 

 

where k is the number of components and dSSz illustrate the demand value of the zth 

component in a sequence (SSz). This performance measure should be minimized. 

Direction: Every reorientation of product increases disassembly time as well as risk of 
damage. Therefore the number of disassembly direction changes should be 
minimized. This measure is as follows: 

 

𝐷𝑀 =  ∑ 𝐷𝑀𝑧

𝑘

𝑧=1

    𝐷𝑀𝑧 = {
1, 𝑑𝑚𝑆𝑆𝑧

≠ 𝑑𝑚𝑆𝑆𝑧+1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
               (2) 

 

where k is the number of components and dmSSz illustrates the disassembly direction 
of the zth component in a sequence (SSz). Disassembly directions are as follows: rSSz = 
{+1, -1, +2, -2, +3, -3} = {+x, -x, +y, -y, +z, -z}. This performance measure should be 
minimized.  

Revenue: The expensive components should be disassembled at the earliest possible 
station for minimum component damage (Ilgın 2019). Revenue measure can be 
represented as follows:  

𝑅 = ∑(𝑧. 𝑟𝑆𝑆𝑧)

𝑘

𝑧=1

                                                                        (3) 

 

where k is the number of components and rSSz illustrates the revenue value of the zth 

component in a sequence (SSz). This performance measure should be minimized. 

Hazardousness: Hazardous components should be disassembled at the earliest 
instance since the spill of hazardous substances may adversely affect one or more 
workstations (Ilgın 2019). Hazardousness measure can be represented as follows: 

𝐻 = ∑(𝑧. ℎ𝑆𝑆𝑧)

𝑘

𝑧=1

     𝐻𝑧 = {
1, ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

                               (4)  

 

where k represents the number of components and hSSz represents whether the zth 
component in a sequence (SSz) is hazardous. This performance measure should be 
minimized. 
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Idle Time: This measure ensures that the workload among different stations is leveled 
(Kalaycı and Gupta 2013c). It is presented as follows: 

𝐶 = ∑(𝑐 − 𝑡𝑧)2

𝑚

𝑧=1

                                                                       (5) 

where m is the number of workstations, c is cycle time (maximum time available at 
each workstation) and tz is component removal time of component z. Smaller values 
of C are preferred. 

Genetic Operators: The mating population is formed by using roulette wheel 
selection. One-cut-point crossover is applied after selection. Later, mutation and 
elitism operators are used and finally chromosomes are repaired with respect to 
precedence relations in order to attain child chromosomes.  

4.4. Design of SA 

 

The flow chart of the SA is provided in Figure 5. Determination of SA parameters has 
critical importance on the solution quality. Hence, the values of two SA parameters 
(i.e., initial temperature and cooling rate) are determined by carrying out a design of 
experiments study (see section 4.5). The performance measures (see equations 1-5) 
used for the fitness evaluation of GA solutions are also employed for the fitness 
evaluation of SA solutions.  
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START
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Update Stored Values

Adjust Temperature

Stopping Criterion Satisfied?

Simulation
Model

Input function & Inıtial solution

Yes

Disassembly sequence and 
assignments

Total fitness value

Fitness Calculation

Accept New Solution?

Yes

No

No

STOP
 

Figure 5. Flowchart of SA-based simulation optimization for disassembly line balancing 
4.5. Design of SA and GA Parameter Values Using Full Factor Analysis 

The appropriate parameter values for the GAs (e.g., mutation rate, elitism rate) must 
be decided so as to get better performance of GAs. That is why a full factorial design 
of experiments study was fulfilled so as to decide the values of five GAs parameters: 
mutation rate, elitism rate, population size, iteration number and crossover rate. 
Table 3 represents the parameter levels of GAs. With respect to Table 3, 10 
replications for each of experiment require 2,430 experiments (35x10). 12,150 
simulation replications are needed since 5 replications of the simulation model are 
carried out for each of experiment. The results of the full factorial design are given in 
Figure 6. 

Parameters Level 1 Level 2 Level 3 
Mutation rate 0.05 0.1 0.2 
Elitism rate 0.1 0.2 0.3 
Iteration number 250 500 1000 
Population size 10 20 30 
Crossover rate 0.5 0.7 0.9 

Table 3. Factor levels of GA parameters 
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Figure 6. GA Main effects plot for cycle time 

The changes in cycle time with respect to changes in various parameters (mutation 
rate, elitism rate, population size, iteration number and crossover rate) are given in 
Figure 6. The level at which the cycle time is minimum is preferred for each parameter 
as given in Table 4. 

Parameters Value 

Mutation rate 0.1 

Elitism rate 0.3 

Iteration number 1000 

Population size 20 

Crossover rate 0.5 

Table 4. GA parameter values 

The appropriate values for SA parameters must be decided so as to get better the 
performance of SA. That is why a full factorial design of experiments study was 
carried out to decide the values of two SA parameters: initial temperature and cooling 
rate. Table 5 represents the levels of SA parameters. With respect to Table 5, 10 
replications for each of experiment require 250 experiments (52x10). 1,250 simulation 
replications are needed since 5 replications of the simulation model are carried out 
for each of experiment. The results of the full factorial design are presented in Figure 
7. 

Parameters Level 1 Level 2 Level 3 Level 4 Level 5 
Initial temperature 100 250 500 750 1000 
Cooling rate 0.01 0.025 0.05 0.075 0.1 

Table 5. Factor Levels of SA parameters 
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Figure 7. SA Main effects plot for cycle time 

The changes in cycle time with respect to changes in various parameters (initial 
temperature and cooling rate) are given in Figure 7. The level at which the cycle time 
is minimum is preferred for each parameter as given in Table 6. 

Parameters Value 

Initial temperature 750 

Cooling rate 0.05 

Table 6. SA parameter values 

4.6. Results 

GAs was operated by considering the parameter values represented in Table 4. The 
GAs optimization procedure was fulfilled in 604,800s by using a desktop computer 
with 8 GB RAM and 3.2 GHz Intel Core i5 processor. Regarding the extent of the 
solution space, converged solution of GAs is gathered in almost a week. This 
convergence graph is given in Figure 8. With respect to the figure, at first fitness 
function value is 136 but after 1,000 iterations, the GAs converges to a fitness 
function value of 122. With iteration number increasing, the GAs converges to a 
fitness function value of 120. This difference means a %13 positive progress in 
fitness function compared with the initial solution. Figure 9 represents the 
chromosome of the converged solution. With respect to the converged solution, the 
sequence of disassembly tasks is gathered as 1-7-12-9-8-6-17-3-4-13-5-2-15-16-14-
10-11.  
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Figure 8. Cycle time convergence graph of GA 

1 12 9 13 5 15 16 14 10 11 6 2 3 4 8 7 17 
Figure 9. The converged GA solution 

Following the determination of the disassembly sequence, the disassembly tasks are 
assigned to stations. Since the disassembly times are stochastic, an average cycle 
time is used during the assignment process. Starting with the first task in the 
sequence, tasks are assigned to stations considering the mean task times and the 
average cycle time. Whenever it is not possible to assign a task to the current station, 
a new station is opened. A total of two stations are opened at the end of the 
assignment process. Table 7 presents the disassembly tasks at each station. 

Stations Opened Tasks 
Station 1 1, 7, 12, 9, 8, 6, 17, 3, 4, 13, 5, 2 
Station 2 16, 14, 10, 15, 11 

Table 7. Assignment of tasks using GA-based simulation optimization 

SA was also operated by considering the parameter values represented in Table 6. SA 
optimization procedure was fulfilled in 64,400s with the same computer used as in 
GA optimization process. Regarding the extent of the solution space, the SA obtained 
a converged solution in a very small computational time. SA convergence graph is 
given in Figure 10. With respect to this figure, at first fitness function value is 140 but 
after 120 iterations, the algorithm converges to a fitness function value of 127. This 
difference means a %10 positive progress in fitness function gathered compared with 
the initial solution. Figure 11 represents the converged solution of SA with respect to 
the converged solution, the sequence of disassembly tasks is gathered as 1-3-12-9-
15-6-13-16-14-10-11-5-2-8-7-17-4. 
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Figure 10. Cycle time convergence graph of SA 

1 3 12 9 15 6 13 16 14 10 11 5 2 8 7 17 4 
Figure 11. The converged SA solution 

Assignment of disassembly tasks to stations is fulfilled using the same procedure 
with GAs. A total of two stations are opened at the end of the assignment process. 
Table 8 presents the disassembly tasks at each station. 

Stations Opened Tasks 
Station 1 1, 5, 12, 6, 2, 9, 13 
Station 2 16, 14, 8, 3, 4, 7, 17, 10, 11 

Table 8. Assignment of tasks using SA-based simulation optimization 

The most frequently used measures used for the performance evaluation of 
disassembly line balancing approaches are smoothness index (SI), line efficiency (LE), 
balance measure (BM), demand measure (D), hazard measure (H), revenue measure 
(R), disassembly direction measure (DM) and cycle time measure (C) (McGovern and 
Gupta 2010; Ilgin 2019). Table 9 presents the comparison of GA and SA-based 
simulation optimization approaches based on those measures. According to Table 9, 
both approaches have the same performance considering LE.  SA outperforms GA in 
terms of SI, BM and C while GA presents a superior performance on H, D, DM and R. 

 LE (%) SI BM H D DM R C 
GA 88.1 15.6 4887 10 4200 9 1890 21.2 
SA 88.1 10.2 4746 11 4850 16 2085 17,1 

Table 9. Comparison of GA and SA-based simulation optimization 
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5. Conclusions 

Disassembly is an indispensable operation for all product recovery options. The most 
commonly used layout for disassembly operations is disassembly line mainly due to 
its efficiency. However, the highest possible efficiency can only be achieved if the 
disassembly line is balanced. Although there are many disassembly line balancing 
methodologies, majority of them ignores stochastic issues in disassembly lines. In 
this study, we developed a metaheuristics-based simulation optimization 
methodology for the balancing of disassembly lines by considering stochastic 
disassembly times and product inter-arrival times. The sequence of disassembly 
tasks together with the task assignments to stations were determined according to 
the solutions proposed by GA and SA metaheuristics. The disassembly sequence and 
task assignments proposed by GA were compared with the sequence and task 
assignments proposed by SA.   

The following managerial insights can be obtained from the proposed approach: 

In practice, disassembly environment involves many stochastic issues such as 
stochastic disassembly times and stochastic inter-arrival times of used products. The 
proposed approach allows decision makers to consider those issues while balancing 
disassembly lines. 

There are some other practical issues in real disassembly lines such as hazardousness, 
demand and direction change of components. The proposed approach provides 
decision makers with the opportunity of considering these real life issues. 

Limitations of this study can be listed as follows: 

If a product with huge number of components were considered, the construction of 
the simulation model would be very time consuming. In addition, the run-time of the 
simulation model would be very high.  

The metaheuristic algorithms employed in the proposed approach do not guarantee 
global optimal solutions. 

Although GA and SA are powerful metaheuristics to be used in simulation 
optimization, other metaheuristics such as Tabu search can be used for the 
development of a simulation optimization-based disassembly line balancing 
methodology. Various other stochastic issues such line stoppages can also be 
considered in future studies. 
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