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The Geometry of Ribbons
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Abstract. In this study, the representations of the ribbons in the 3-dimensional Euclidean space as the
developable ruled surface are given. By calculating the average curvature of the ribbon surface, the
results regarding the mean curvature according to the character of the centerline are obtained. In addition,
examples supporting these results are given.

1. Introduction

In classical differential geometry, the ruled surfaces with additional property (constant mean curvature,
constant Gauss curvature, minimal, etc.) are probably the simplest surface having the specified properties
see for example [7],[8], [11] and references there in. These surfaces have many applications in surface
modeling [12] and parametric design [13]. The structures formed are in the form of ribbon that increase
in width and length in the [2] self-shaping process. The rulings don’t correspond to the ribbon’s central
lines, but only to geometric lines that are constantly evolving during the deformation [5]. Helical ribbons
are a significant class of 2-dimensional structures that often occurs in engineering and biology [14]. The
predictive model for the mechanics and morphology of the stability of spiral bands is a new and important
tool for research and design in various technologies such as biological sensing, nano-engineering coils for
visual electronics [10].

This agreement aims to develop a common framework for discussing the above mathematical model of
ribbons by classifying according to the centerline curves γ(s). This article is structured as follows: Section
2 contains some notations and basic equations of the differential geometry of spatial curves in E3. Section
3 describes some geometrical properties of ruled surfaces at E3. Section 4 contains original results about
ribbon surfaces in E3. These components also provide some of the key characteristics of ribbon surfaces
and the construction of their curvatures. In section 5, we present some examples of ribbon surfaces. Finally,
in section 6, we discuss our findings and decide details for future work.

2. Preliminaries

We will now analyze some notations of the differential distribution of spatial curves in 3-dimensional
Euclidean space E3. Let γ = γ(s) : I→ E3 be a unit speed curve with γ′(s) , 0, where γ′(s) =

dγ
ds . T(s) = γ′(s)
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is a unit tangent vector and is perpendicular to T′(s) = γ′′(s). If γ′′(s) , 0, these vectors extend on the plane
of oscillation γ in s. Specify the curvature of γ with κ(s) =

∥∥∥γ′′(s)
∥∥∥. If κ(s) , 0, then the principal principal

unit of the unit N(s) of the curve γ in s is given by T′(s) = κ(s)N(s). The unit vector B(s) = T(s) × N(s) is
called the unit binormal vector γ in s. Hence the Serret-Frenet formulas of γ are

T′(s) = κ(s)N(s)
N′(s) = −κ(s)T(s) + τ(s)B(s) (1)
B′(s) = −τ(s)N(s)

where τ(s) is the torsion of the curve γ at s [6].
A curve γ = γ(s) : I → E3 with κ(s) , 0 is called a conical geodesic (resp. cylindrical helix) if the ratio

( τκ )′(s) (resp. τ
κ (s)) is constant function [7]. If κ(s) , 0, τ(s) are both constant, then γ is known as circular helix

(W-curve) [6].
In [4], B.Y. Chen defined a new type of curve in three-dimensional Euclidean space called a rectifying

curve. According to his definition, a unit speed curve γ : I → E3 is called the rectifying curve if γ satisfies
the equation

γ(s) = m1(s)T(s) + m2(s)B(s) (2)

for some real valued functions m1(s) and m2(s) [4]. By differentiating (2) and using the Frenet formulas one
can obtain m1(s) = 1, m′2(s) = 0, m1κ − m2τ = 0. As a result of these conditions, it is easy to show that the
curve is a rectifying curve if and only if τ

κ (s) = as + b holds. Consequently, each rectifying curve is a kind of
conical geodesic.

The Frenet motion formulas can be expounded as ”if with the time variable s the motion point crosses the
curve, the moving frame {T(s),N(s),B(s)} moves based on (1). Consequently, the instantaneous rotational
speed given by the Darboux vector

W(s) = τ(s)T(s) + κ(s)B(s). (3)

The Darboux vector is in its instantaneous axis direction of rotation and its length is

ω(s) = ‖W(s)‖ =
√
κ2(s) + τ2(s).

The modified Darboux vector along the curve γ is defined by (see [7])

W̃(s) =
τ(s)
κ(s)

T(s) + B(s). (4)

3. Material and Method

We now deal with the ruled surfaces in Euclidean space E3.

Definition 3.1 With the ruled patch
ϕ = ϕ(γ,β)(s,u) = γ(s) + uβ(s) (5)

the surface is called a ruled surface, where, γ is the base curve and β is the director of the surface. The rulings of the
surface are the lines u 7−→ γ(s) + uβ(s) (see [1], [7],[8], [9] and [11]).

Let S be a ruled surface. In this case, the TpS space is spanned by the following vectors;

ϕs(s,u) =
∂ϕ(γ,β)

∂s
= γ′(s) + uβ′(s),

ϕu(s,u) =
∂ϕ(γ,β)

∂u
= β(s).
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The coefficients of the 1st fundamental form are

111 = < ϕs(s,u), ϕs(s,u) >=
∥∥∥γ′(s) + uβ′(s)

∥∥∥2
,

112 = < ϕs(s,u), ϕu(s,u) >=
〈
γ′(s), β(s)

〉
+ u

〈
β′(s), β(s)

〉
, (6)

122 = < ϕu(s,u), ϕu(s,u) >=
〈
β(s), β(s)

〉
,

where 〈, 〉 is the inner product of E3. If the area element∥∥∥ϕs(s,u) × ϕu(s,u)
∥∥∥ =

√
111122 − 1

2
12, (7)

does not vanish then ϕ(γ,β) is called regular. From now on we assume that ϕ(γ,β) is a regular patch. Then, the
unit normal vector is

U(s,u) =
ϕs(s,u) × ϕu(s,u)∥∥∥ϕs(s,u) × ϕu(s,u)

∥∥∥ . (8)

Also, the partial derivatives of second order are:

ϕss(s,u) = γ′′(s) + uβ′′(s),
ϕsu(s,u) = β′(s), (9)
ϕuu(s,u) = 0.

Using (8) with (9) the coefficients of the 2nd fundamental form become

L11 = < ϕss(s,u),U >=
det(ϕss, ϕs, ϕu)∥∥∥ϕs(s,u) × ϕu(s,u)

∥∥∥ ,
L12 = < ϕsu(s,u),U >=

det(ϕsu, ϕs, ϕu)∥∥∥ϕs(s,u) × ϕu(s,u)
∥∥∥ , (10)

L22 = < ϕuu(s,u),U >= 0.

Summing up these equations, one can write that the Gaussian curvature of S at point (s,u) is

K =
L11L22 − L2

12

111122 − 1
2
12

= −

〈
β′(s), γ′(s) × β(s)

〉2∥∥∥ϕs(s,u) × ϕu(s,u)
∥∥∥2 , (11)

and the mean curvature of S is

H =
L11122 + L22111 − 2112L12

2
(
111122 − 1

2
12

) (12)

=

〈
β, β

〉
det(ϕss, ϕs, ϕu) − 2

(〈
γ′, β

〉
+ u

〈
β′, β

〉)
+ det(γ′, ϕs, ϕu)

2
∥∥∥ϕs(s,u) × ϕu(s,u)

∥∥∥3 .

If K vanishes then the ruled surface is called developable. Further, if β′(s)×β(s) = 0, then S is called cylindrical,
otherwise it is non-cylindrical. The surface of S ⊂ E3 is minimal if and only if its mean curvature vanishes
identically.

In [7], authors studied the rectifying developable surfaces given with the parametrization

ϕ(γ,W̃)(s,u) = γ(s) + uW̃(s) (13)

where W̃(s) is the modified Darboux vector field defined by (4). They have proved that if the rectifying
developable surface given with the parametrization (13) of is a cylindrical surface (resp. conical surface)
then the base curve γ is a cylindrical helix (resp. conical helix).
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4. Results

In [7], S. Izumiya and N. Takeuchi studied with ruled surface using the base curve W̃(s). They called
them rectifying developable surfaces. In this section, we present an application of rectifying developable
surface to ribbons in E3. However, a characterization of the mean curvature of the strip surfaces according
to the character of the central line of the ribbon is given.

Definition 4.1 A ribbon is a rectifying developable surface defined by the ruled patch

ϕ̃ = ϕ̃(γ,W̃)(s,u) = γ(s) + uW̃(s), s ∈ [0,L], u ∈ [−b, b] (14)

where, W̃ is the modified Darboux vector field defined by (4) (see, [3]).

Let R be a ribbon surface given with the ruled patch (14) then the tangent space of R is spanned by

ϕ̃s(s,u) =
(
1 + uρ′(s)

)
T(s)

ϕ̃u(s,u) = ρ(s)T(s) + B(s). (15)

where ρ(s) =
τ(s)
κ(s) is the harmonic curvature function of γ. Then the coefficients of the 1st fundamental form of

R are found as

1̃11 = < ϕ̃s(s,u), ϕ̃s(s,u) >= (1 + uρ′(s))2

1̃12 = < ϕ̃s(s,u), ϕ̃u(s,u) >= ρ(s)
(
1 + uρ′(s)

)
(16)

1̃22 = < ϕ̃u(s,u), ϕ̃u(s,u) >= 1 + (ρ(s))2.

Consequently, the area element of the ribbon becomes√
1̃111̃22 − 1̃

2
12 =

∥∥∥ϕ̃s(s,u) × ϕ̃u(s,u)
∥∥∥ =

∣∣∣1 + uρ′(s)
∣∣∣ (17)

where

ϕ̃s(s,u) × ϕ̃u(s,u) =
(
1 + uρ′(s)

)
T(s) ×

(
ρ(s)T(s) + B(s)

)
(18)

= −
(
1 + uρ′(s)

)
N(s)

is the surface normal. So, the unit normal vector field of R becomes

Ũ(s,u) =
ϕ̃s(s,u) × ϕ̃u(s,u)∥∥∥ϕ̃s(s,u) × ϕ̃u(s,u)

∥∥∥ = −N(s). (19)

The second partial derivatives of ϕ̃(u, v) are expressed as follows

ϕ̃ss(s,u) = uρ′′(s)T(s) + κ(s)
(
1 + uρ′(s)

)
N(s),

ϕ̃su(s,u) = ρ′(s)T(s), (20)
ϕ̃uu(s,u) = 0.

Using (19) with (20) the coefficients of the 2nd fundamental form become

L̃11 = < ϕ̃ss(s,u),U >= −κ(s)
(
1 + uρ′(s)

)
,

L̃12 = < ϕ̃su(s,u),U >= 0, (21)

L̃22 = < ϕ̃uu(s,u),U >= 0.

From the equations (21) and (11) it can be easily seen that the ribbon R is a flat surface. Furthermore,
summing up (16)-(20) and using (12) we obtain the following results;
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Theorem 4.2 Let R be a ribbon surface given by (14), then the mean curvature vector of R becomes

H̃(s,u) = −
κ(s)

(
1 + (ρ(s))2

)
2
∣∣∣1 + uρ′(s)

∣∣∣ (22)

where ρ(s) =
τ(s)
κ(s) is the harmonic curvature (function) of the central line γ.

With the equation (22) we have the following results;

Corollary 4.3 The ribbon surface R given by the parametrization (14) can not be minimal.

Corollary 4.4 Let R be a ribbon surface given by (14). If the center line of R is a circular helix then the mean
curvature of the ribbon is constant i.e., the ribbon is of constant mean curvature.

Corollary 4.5 Let R be a ribbon surface given by (14). If the center line of R is a cylindrical helix then the mean
curvature of the ribbon turns into H̃(s,u) = δκ(s), where δ = −

1+ρ
2 is a constant function.

The following result contains a characterization of the Serret-Frenet curvatures of the spherical (constant
slope) helix curves.

Lemma 4.6 [6] Let γ = γ(s) be a unit-speed curve in E3 that has constant slope cotθ = τ
κ with respect to a unit

vector −→u ∈ E3, where 0 < θ < π
2 . Assume also that γ lies on a sphere of radius r > 0 then the curvature and torsion

of γ are given by

κ2(s) =
1

r2 − s2 tan2 θ
=

1
r2 − s2 cot2 θ

, τ2(s) =
1

r2 tan2 θ − s2
. (23)

Proposition 4.7 Let R be a ribbon surface whose center line is a spherical helix given with the Serret-Frenet curvatures
κ and τ. Then, the mean curvature H of the ribbon R is given by H̃ = λκ(s),where λ is a constant function defined
by λ = − 1+cot2 θ

2

Proof. Assume that the centerline of the strip is a spherical slope curve (helix) then the ratio of curvatures
must be constant. Thus, with the help of equations (23) and (22) we get the result.

Corollary 4.8 Let R be a ribbon surface whose center line is a conical geodesic, i.e. ρ′′(s) = 0. Then, the mean
curvature H̃ of the ribbon R is the multiple of the curvature κ(s),with a smooth function

µ(s,u) =
1 + (as + b)2

2 |1 + au|
, a, b ∈ R. (24)

The geodesic curvature, the normal curvature and the geodesic torsion of the surface associated the curve γ(s)
are defined as follows;

κ1 = 〈U × T,T′〉 , κn =
〈
U, γ′′

〉
, τ1 = 〈U ×U′,T′〉 (25)

where U is the unit normal of the surface. From this consideration, a curve γ(s) is an asymptotic line (resp.
geodesic line or principal line) if and only if normal curvature κn (resp. geodesic curvature κ1 or geodesic
torsion τ1) vanishes identically [6].

Proposition 4.9 The center line γ of the ribbon R is geodesically principal and the normal curvature of R corresponds
to the curvature κ of γ.
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Proof. By the use of Serret-Frenet frame (1) with (25) the geodesic curvature, the normal curvature and the
geodesic torsion of R become

κ1 = 〈U × T,T′〉 = κ 〈B,N〉 = 0,
τ1 = 〈U ×U′,T′〉 = κ 〈D,N〉 = 0, (26)
κn =

〈
U, γ′′

〉
= −κ 〈N,N〉 = −κ,

respectively.

Definition 4.10 A unit speed planar curve γ : I −→ E2 whose curvature is a given piecewise-continuous function
κ : I −→ R+ is parametrized by

γ(s) =

(∫
cosθ(s)ds + a,

∫
sinθ(s)ds + b

)
; θ(s) =

∫
κ(s)ds + c (27)

where, a, b, c are constant of integration [6].

If the center line of the ribbon is a regular curve γ(s) =
(
x(s), y(s

)
, 0) then the the resultant ribbon R becomes

a cylindrical ruled surface with the parametrization

ϕ̃(γ,W̃)(s,u) =

(∫
cosθ(s)ds + a,

∫
sinθ(s)ds + b,u

)
, s ∈ [0,L],u ∈ [−b, b]. (28)

Thus, we have the following result;

Corollary 4.11 Let R be a ribbon surface given by the parametrization (28). Then the mean curvature of R is a
multiple of the curvature κ of the form H̃ = −

κ(s)
2 .

5. Visualization

Geometric models of curves and surfaces have an important place in computer-aided geometric design.
Therefore, in the present section, geometric visualization of some ribbon models is given with the help of
maple.

Example 5.1 In this example we construct three kind of ribbon using the plane curve given with the parametrization
(21);

(a) For κ(s) = as + b the center line is a Cornu spiral and the graph of resultant ribbon is cylindrical (Figure 1-(a)).
(b) For κ(s) = as2 + bs + c the center line is a generalized Cornu spiral and the graph of resultant ribbon is

cylindrical (Figure 1-(b)).
(c) For κ(s) = a

s+b the center line is a logarithmic spiral and the graph of resultant ribbon is cylindrical (Figure
1-(c)).
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(a) Cornu spiral (b) Generalized cornu spiral

(c) Logarithmic spiral

Figure 1: Ribbon Surfaces in E3

Example 5.2 We take the center line curve γ as a right circular helix

γ(s) =

(
a cos

( s
c

)
, a sin(

s
c

),
bs
c

)
, a2 + b2 = c2.

The Serret-Frenet curvatures of γ are constant functions κ(s) = a
c2 , τ(s) = b

c2 and cotθ(s) = b
a . A simple calculation

shows that the ribbon R has constant mean curvature H = − 1
2a . In Figure 2-(a) we pictured the ribbon taking the

values a = 3, b = 4 and c = 5.

Example 5.3 Consider the planar curve γ(s) = (s cos (s) , s sin s, 0) with curvature κ(s) = − 2+s2

(1+s2)3/2 . The resultant
surface becomes a braid ribbon which has self intersection (Figure 2-(b)). Further, the mean curvature of the ribbon
becomes

H̃(s,u) = −
2 + s2

2 (1 + s2)3/2
.
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(a) Cylindrical ribbon (b) The braid ribbon

Figure 2: Ribbon Surfaces in E3

6. Conclusions

In conclusion, the paper presents a simple method for constructing developable surface patches bounded
by space curves. These surfaces have many applications in surface modeling and parametric design. The
most relevant feature of this construction is that the parametrization of the resultant ruled surface gives a
ribbon in 3-dimensional Euclidean space. The method is founded on finding a special type of ruled surface
taking the director curve as Darboux vector of the base curve. It has been shown that the mean curvature
of the helical ribbon surfaces are related with the Serret-Frenet curvature of the center line of the ribbon.
Nowadays, helical ribbons getting popular in nanoengineering. The detailed exploration of this analogy is
the subject of future work. Especially, We would also like to extend our calculations to a parallel transport
frame of ribbon configurations.
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