n-dimensional Trigonometric Proportions for Rectangular Simplices

B. Karliga, M. Savas

Abstract

. The main aim of this paper is to obtain n-dimensional versions of trigonometric proportions for right triangle in terms of hypotenuse and perpendicular volume faces of a rectangular simplices.

2010 AMS Classification: $51 \mathrm{M} 04,51 \mathrm{M} 05,51 \mathrm{M} 20,51 \mathrm{M} 25,52 \mathrm{~A} 38,52 \mathrm{~A} 37,52 \mathrm{~B} 10$
Keywords: Tetrahedron, proportion, dihedral angle, vertex angle

1. INTRODUCTION

Let T be a right triangle with right vertex A_{i} generated by the points A_{i}, A_{j}, A_{k} and let $\phi_{i}=\frac{\pi}{2}, \phi_{j}, \phi_{k}$ be internal angles of T. Then it follows from the elementary geometry that the trigonometric proportions for T is given by

$$
\begin{align*}
\cos \phi_{\ell} & =\frac{\left\|\overrightarrow{A_{i} A_{\ell}}\right\|}{\left\|\overrightarrow{A_{\ell} A_{m}}\right\|} \\
\sin \phi_{\ell} & =\frac{\left\|\overrightarrow{A_{i} A_{m}}\right\|}{\left\|\overrightarrow{A_{\ell} A_{m}}\right\|} \tag{1.1}
\end{align*}
$$

where (ℓ, m) is a permutation $\{j, k\}$.

In this work, we give two new trigonometric proportions which are analogues of equation (1.1) and extend results of [4] for rectangular n-simplex.
2. Dihedral Angles and Trigonometric Proportions for Rectangular Simplices
Let $A_{0}, A_{1}, A_{2}, \ldots, A_{n}$ be independent points in n-dimensional Euclidean space R^{n}. Let $\left\{\overrightarrow{A_{0} A_{1}}, \overrightarrow{A_{0} A_{2}}, \ldots, \overrightarrow{A_{0} A_{n}}\right\}$ be a orthogonal set and A rectangular simplex is the convex hull of A_{0}. $([1,6,5])$.

Let S_{p} be $(n-1)$-face of rectangular simplex not containing A_{p} vertex and $\operatorname{Vol}\left(S_{p}\right)$ denotes its volume for $p \in\{0,1, \ldots, n\}$. Then, S_{0} is called hypotenuse and
S_{m} is called the perpendicular face of the rectangular simplex for $m \neq 0$ generated by the points $A_{0}, A_{1}, A_{2}, \ldots, A_{n}$, respectively. The edge $\left|A_{0} A_{m}\right|=a_{0 m}$ is called the perpendicular edge of the rectangular simplex for $m \in\{1, \ldots, n\}$.

The dihedral angle is the angle formed at the common edge between S_{m} and S_{n}. The dihedral angle is measured by intersecting it with the ($n-1$)-dimensional hyperplane which is perpendicular to the common edge. $\theta_{m n}$ represents the measure of the interior dihedral angle between S_{m} and S_{n}. Since the edges $a_{0 m}$ and $a_{0 n}$ are perpendicular, we easily see that $\theta_{m n}=\frac{\pi}{2}$ for all $m, n \in\{1, \ldots, n\}, m \neq n$.

Lemma 2.1. Let Ω be n-simplex with vertices $A_{0}, A_{1}, \ldots, A_{n}$, and $e_{0}, e_{1}, \ldots, e_{n}$ be outer unit normal of its $(n-1)$ - faces with volume $\operatorname{Vol}\left(S_{i}\right)$, then

$$
\begin{equation*}
\operatorname{Vol}\left(S_{j}\right)=\sum_{i=0, i \neq j}^{n} \operatorname{Vol}\left(S_{i}\right) \cos \theta_{i j} \tag{2.1}
\end{equation*}
$$

or by matrix notations,

$$
\left(\begin{array}{c}
\operatorname{Vol}\left(S_{0}\right) \\
\operatorname{Vol}\left(S_{1}\right) \\
\cdot \\
\cdot \\
\operatorname{Vol}\left(S_{n}\right)
\end{array}\right)=\left(\begin{array}{cc}
0 & \cos \theta_{i j} \\
\cos \theta_{i j} & 0
\end{array}\right)\left(\begin{array}{c}
\operatorname{Vol}\left(S_{0}\right) \\
\operatorname{Vol}\left(S_{1}\right) \\
\cdot \\
\cdot \\
\operatorname{Vol}\left(S_{n}\right)
\end{array}\right)
$$

where $\theta_{i j}$ is the interior dihedral angle and $0 \leq i, j \leq n$.

Proof. By proof of Theorem 3 in [5] (or [1]), it is obvious for any polyhedron.

$$
\begin{equation*}
\sum_{i=0}^{n} \operatorname{Vol}\left(S_{i}\right) e_{i}=0 \tag{2.2}
\end{equation*}
$$

By taking the inner product of both sides with e_{j} and simplifying it, we have

$$
\operatorname{Vol}\left(S_{j}\right)=\sum_{i=0, i \neq j}^{n} \operatorname{Vol}\left(S_{i}\right) \cos \theta_{i j}, 0 \leq j \leq n
$$

Theorem 2.2. Let T be a rectangular simplex with right vertex A_{0} generated by points $A_{0}, A_{1}, \ldots, A_{n}$. Then, the trigonometric proportions of T at S_{p} face is given by

$$
\cos \theta_{0 p}=\frac{\operatorname{Vol}\left(S_{p}\right)}{\operatorname{Vol}\left(S_{0}\right)}
$$

$$
\sin \theta_{0 p}=\frac{\sqrt{\sum_{k=1, k \neq p}^{n} \operatorname{Vol}\left(S_{k}\right)^{2}}}{\operatorname{Vol}\left(S_{0}\right)}
$$

Proof. By using $\theta_{p q}=\frac{\pi}{2}, p, q \in\{1,2, \ldots, n\}$ in Lemma 2.1, we see that

$$
\begin{equation*}
\operatorname{Vol}\left(S_{p}\right)=\operatorname{Vol}\left(S_{0}\right) \cos \theta_{0 p} \tag{2.3}
\end{equation*}
$$

By substituting equation (2.3) in Theorem A of [1],
$\operatorname{Vol}\left(S_{0}\right)^{2}=\sum_{k=1}^{n} \operatorname{Vol}\left(S_{k}\right)^{2}$, we obtain that

$$
\sin \theta_{0 p}=\frac{\sqrt{\sum_{k=1 k \neq p}^{n} \operatorname{Vol}\left(S_{k}\right)^{2}}}{\operatorname{Vol}\left(S_{0}\right)}
$$

Now we can give a new analogue of equation (1.1) for dihedral angles of a rectangular simplex in terms of the hypotenuse and perpendicular face volumes as a following corollary.

Corollary 2.3. Let T be a rectangular simplex with right vertex A_{0} generated by points $A_{0}, A_{1}, \ldots, A_{n}$. Then the trigonometric proportions of T at S_{p} face is given by

$$
\begin{aligned}
& \cos \theta_{0 p}=\frac{V o l(A P F)}{\operatorname{Vol}(H F)} \\
& \sin \theta_{0 p}=\frac{\sqrt{B}}{\operatorname{Vol}(H F)}
\end{aligned}
$$

where APF is Adjacent Perpendicular Face, HF is Hypotenuse Faces, and B is the sum of square of volume of the Opposite Perpendicular Faces.

Proof. It is clear from Theorem 2.2.

3. Vertex Angles and Trigonometric Proportions for Rectangular Simplices

E^{n} is a n-dimensional Euclidean space with an orientation. Let $\Omega=<A_{0}, A_{1}, \ldots, A_{n}>$ be an n-simplex with vertices $A_{0}, A_{1}, \ldots, A_{n}$, and let $\Omega_{i}=<A_{0}, A_{1}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{n}>$ be its facet which lies in a hyperplane Π_{i}, e_{i} the unit outer normal vector of $\Pi_{i}, i=0, \ldots, n$. We set

$$
D_{i}=\operatorname{det}\left(e_{0}, e_{1}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right)
$$

Then, $\theta_{i}=\arcsin \left|D_{i}\right|$ is called the vertex angle at vertex A_{i} of $\Omega[8]$ (or [7]).

Now we are ready to give the following theorem which is another new version of equation (1.1) for vertex angles of a rectangular simplex in terms of hypotenuse and perpendicular facet volumes.

Theorem 3.1. Let T be a rectangular tetrahedron with right vertex A_{0} generated by points $A_{0}, A_{1}, A_{2}, \ldots, A_{n}$. Then the trigonometric proportions of T in terms of hypotenuse and perpendicular face volumes for the vertex angle θ_{p} are given by

$$
\begin{array}{r}
\cos \theta_{p}=\frac{\operatorname{Vol}\left(S_{p}\right)}{\operatorname{Vol}\left(S_{0}\right)} \\
\sin \theta_{p}=\frac{\sqrt{\sum_{k=1, k \neq p}^{n} \operatorname{Vol}\left(S_{k}\right)^{2}}}{\operatorname{Vol}\left(S_{0}\right)}
\end{array}
$$

Proof. By using definition of vertex angle and Theorem 2.2, we obtain the conclusion of the theorem.

References

[1] Cho E., The generalized cross product and volumes of a simplex, Appl. Math. Lett., 4(6), 51-53, (1991).
[2] Cho E., Dihedral angles of n-simplices, Appl. Math. Lett., 5(4), 55-57, (1992).
[3] Grunbaum B., Convex polytopes, John Wiley and Sons Ltd., New York, (1967).
[4] Karliga B., Hedronometric Proportions on Rectangular Tetrahedra, Preprint, (2015).
[5] Leng G.S. and Zhang Y., Vertex angles for simplices, Appl. Math. Lett. 12(1), 1-5, (1999).
[6] Quadret J.P., Lasserre J.B., and Hiriart-Urruty J.B., Pythagoras' theorem for areas, Amer. Math. Monthly, 108(6), 549-552, (2001).
[7] Veljan D., The sine theorem and inequalities for volumes simplices and determinants, Linear Algebra and Its Applications, 219, 79-91, (1995).
[8] Veljan D. The 2500 years old pythagorean theorem, Mathematics Magazine, 73(4), 259272, (2000).
B. Karliga -Department of Mathematics, Faculty of Sciences, Gazi University, 06500 Ankara, Turkey
M. SAVAS - Department of Mathematics, Faculty of Sciences, Gazi University, 06500 Ankara, Turkey

