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On Morgan-Voyce Polynomials Approximation For
Linear Differential Equations
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Abstract. In this paper, a matrix method for approximately solving
certain linear differential equations is presented. This method is called
Morgan-Voyce matrix method and converts a linear differential equation
into a matrix equation. Then, the equation reduces to a matrix equa-
tion corresponding to a system of linear algebraic equations with unknown
Morgan-Voyce coefficients. The examples are included to demonstrate the
applicability of the technique.
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1. INTRODUCTION

In this study, we consider the high order linear differential equations with variable
coefficients in the form

(1.1)
m∑

k=0

fk(x)y
(k) = g(x), a ≤ x ≤ b

under the conditions

(1.2)
m−1∑
k=0

[ajky
(k)(a) + bjky

(k)(b)] = λj , j = 0, 1, 2, ...,m− 1.

Our aim is to find an approximate solution of (1.1) expressed in the truncated

Morgan-Voyce series form

(1.3) y(x) =

N∑
n=0

anBn(x)

where an, n = 0, 1, ..., N are the unknown Morgan-Voyce coefficients and Bn(x),
n = 0, 1, ..., N are the Morgan-Voyce polynomials formed
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(1.4) Bn(x) =

n∑
k=0

(
n+ k + 1
n− k

), n ∈ N

2. Fundamental Matrix Relations

We first write (1.4)

(2.1) BT(x) = RXT(x) ⇔ B(x) = X(x)RT

where

B(x) = [ B0(x) B1(x) B2(x) . . . Bn(x) ], X(x) = [ x0 x1 x2 . . . xn ]

and

R =



(
1
0
) 0 0 . . . 0

(
2
1
) (

3
0
) 0 . . . 0

(
3
2
)

4
1
) (

5
0
) . . . 0

...
...

... . . .
...

(
n+ 1
n

) (
n+ 2
n− 1

) (
n+ 3
n− 2

) . . . (
2n+ 1

0
)


Then, we write the solution expressed by (1.3)

[y(x)] = B(x)A, A = [ a0 a1 a2 . . . aN ]T

or using (2.1) we can write

(2.2) y(x) = X(x)RTA

and the relation between the matrix X(x) and its derivative X(1)(x) is

(2.3) X(1)(x) = X(x)TT, X(0)(x) = X(x)

where

TT =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N
0 0 0 . . . 0
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So, using (2.3) the relation between the matrix X(x) and its derivatives is

X(1)(x) = X(x)TT

X(2)(x) = X(1)(x)TT = X(x)TTTT = X(x)(TT)2

(2.4)
...

X(k)(x) = X(k−1)(x)TT = X(x)(TT)k−1TT = X(x)(TT)k

We have from (2.1) and (2.4)

(2.5) y(k)(x) = X(x)(TT)kRTA, k = 0, 1, 2, ...m

3. Method of Solution

To construct the fundamental matrix equation defined in (1.1), we substitute the
matrix formula (2.5) into (1.1). Thus, we obtain the matrix equation

(3.1)
m∑

k=0

fk(x)X(x)((T)T )kRTA = g(x)

We define the collocation points as

(3.2) xi = a+
b− a

N
i, i = 0, 1, ..., N.

Substituting (3.2) into (3.1) we get

(3.3)
m∑

k=0

fk(xi)X(xi)(T
T )kRTA = g(xi), i = 0, 1, 2, ..., N.

So we have the system of the matrix equations

(3.4)

m∑
k=0

MkY
k = G

In this equations, we can write

Mk =


fk(x0) 0 . . . 0

0 fk(x1) . . . 0

0 0
. . . 0

0 0 . . . fk(xN )



Yk =


yk(x0)
yk(x1)

...
yk(xN )

 =


X(x0)
X(x1)

...
X(xN )

 ((TT )kRTA), G =


g(x0)
g(x1)

...
g(xN )
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where

X =


X(x0)
X(x1)

...
X(xN )

 =


1 x0 . . . xN

0

1 x1 . . . xN
1

...
...

...

1 xN . . . xN
N


Therefore, the fundamental matrix relation corresponding to equation (1.1) can be
written in the matrix form

(3.5) WA = G or [W;G]

(3.5) can be written

(3.6) W = [wij ] =

m∑
k=0

MkX(TT )kRT , i, j = 0, 1, 2, ..., N

So, (3.4) corresponds to a linear system of (N + 1) algebric equation with (N + 1)
unknown Morgan-Voyce coefficients.
For the condition (1.2), the condition matrix can be obtained

Uj =
m∑

k=0

(ajkX(a)+bjkX(b))(TT )kRT =
(
uj0 uj1 uj2 . . . ujN

)
, j = 0, 1, 2, ...,m−1.

The matrix form of the condition is then,

UjA = [λj ], j = 0, 1, 2, ...,m− 1

or the augmented matrix for the conditions is

(3.7) Ũj = [Uj ;λj ], j = 0, 1, 2, ...,m− 1.

Under the conditions (1.2) to obtain the solution of equation (1.1), we replace the
last m rows of the matrix (3.5) by the rows matrices (3.7) and we get the new aug-
mented matrix,

(3.8)

[W̃; G̃] =



w00 w01 . . . w0N ; g(x0)
w10 w11 . . . w1N ; g(x1)
...

...
...

... ;
...

w(N−1−m)0 w(N−1−m)1 . . . w(N−1−m)N ; g(xN−1−m)
w(N−m)0 w(N−m)1 . . . w(N−m)N ; g(xN−m)

u00 u01 . . . u0N ; λ0

u10 u11 . . . u1N ; λ1

...
...

...
... ;

...
u(m−1)1 u(m−1)2 . . . u(m−1)N ; λm−1
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This augmented matrix system can be written

W̃A = G̃

If rankW̃ = rank[W̃; G̃] = N + 1, we can write

A = (W̃)−1G̃ Thereby, we uniquely determine the coefficients an(n = 0, 1, ..., N)
by means of the equation (3.8) and the coefficients matrix A is

A =
(
a0 a1 . . . aN

)T
So Eq. (1.1) with the conditions (1.2) has a unique solution and this solution is
given by Morgan-Voyce series solution

y(x) =
N∑

n=0

anBn(x)

4. Numerical Examples

In this section, we give several numerical examples to show the applicability of
the method. We performed all calculations on a Intel PC using MATLAB.
Example 1: Let us consider nonhomogeneous fourth order linear differential equa-
tion given by

(4.1) 2y(4)(x)− (x2 + 1)y
′′
(x) + 12y(x) = 30x3 − 12x2 + 54x+ 168, 0 ≤ x ≤ 2

under the conditions

(4.2) y(0) = 10, y
′
(1) = 26.

The exact solution is yexact(x) = x4 +5x3 +7x+10. The approximate solution y(x)
by the truncated Morgan-Vyce series is

y(x) =
N∑

n=0

anBn(x).

We will consider for N = 4 and N = 6.
For N = 4 the Morgan-Voyce collocation points are

{x0 = 0, x1 =
1

2
, x2 = 1, x3 =

3

2
, x2 = 2}

The functions for this example are

f0(x) = 12, f1(x) = 0, f2(x) = −(x2+1), f3(x) = 0, f4(x) = 2, g(x) = 30x3−12x2+54x+168

The matrix form of the differential equation is

(4.3)

m∑
k=0

MkX(TT )kRTA
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Since the equation (4.1) is a 4th order, the formula (4.3) turns out to be

{M0X+M1XTT +M2X(TT )2 +M3X(TT )3 +M4X(TT )4}RTA = G

where

M0 =


12 0 0 0 0
0 12 0 0 0
0 0 12 0 0
0 0 0 12 0
0 0 0 0 12

 , M1 = M3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



M2 =


−1 0 0 0 0
0 −5

4 0 0 0
0 0 −2 0 0
0 0 0 −13

4 0
0 0 0 0 −5

 ,M4 =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 ,

RT =


1 0 0 0 0
2 1 0 0 0
3 4 1 0 0
4 10 6 1 0
5 20 21 8 1

 ,TT =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

 , G =


168
783
4

240
1293
4

468


Substituting these matrix into (3.6) we have

[W;G] =


12 24 34 36 18 ; 168
12 30 121

2
435
4

339
2 ; 783

4
12 36 92 216 456 ; 240
12 42 257

2
1449
4

1827
2 ; 1293

4
12 48 170 552 1578 ; 468


From section 3, the condition matrix is(

U0 ; h0

U1 ; h1

)
=

(
1 2 3 4 5 ; 10
0 1 6 25 90 ; 26

)
So, with the conditions, the new augmented matrix can be written

(4.4) [W̃; G̃] =


12 24 34 36 18 ; 168
12 30 121

2
435
4

339
2 ; 783

4
12 36 92 216 456 ; 240
1 2 3 4 5 ; 10
0 1 6 25 90 ; 26


Because detW̃ ̸= 0 we have A = (W̃)−1G̃.
So, we can obtain the coefficient matrix A as

A =
(
−32 29 −3 −3 1

)T
6
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Figure 1. Comparing the exact solution and the approximate solutions

Therefore, for N = 4 the approximate solution y(x) by the truncated Morgan-Voyce
series is

y(x) = 10 + 7x+ 5x3 + x4.

For N = 6 the similar calculations show that A is

A =
(
−32 29 −3 −3 1 −3.4e− 014 5e− 015

)T
and hence the approximate solution y(x) is

y(x) = 10−7x+6.017915496.10(−13)x2+5x3+x4+2.307511219.10(−14)x5+4.772254196.10(−15)x6

In figure 1, we compare the exact solution and the approximate solutions.
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Example 2: Let us now consider a second order differential equation,

(4.5) y
′′
(x) + y(x) = cos2(x), 0 ≤ x ≤ 1

under the conditions

(4.6) y(0) = 1, y
′
(0) = −1.

The exact solution is yexact(x) = sin2(x) − sin(x) + 1. The approximate solution
y(x) by the truncated Morgan-Voyce series is

y(x) =
N∑

n=0

anBn(x).

We will solve this problem with Morgan-Voyce collocation method for N = 3, N =
5, N = 8. As in the previous example, by the Morgan-Voyce polynomials, we obtain
the approximate solutions of the problem for N = 3, N = 5, N = 8, respectively,

(4.7) y3(x) = 1− x+ x2 − 0.04857392616x3

(4.8) y5(x) = 1− x+ x2 + 0.1760202929x3 − 0.377080708x4 + 0.06587478908x5

y8(x) =1− x+ x2 + 0.16665279x3 − 0.3331996609x4 − 0.008906179133x5 + 0.0457548307x6

− 0.001405858856x7 − 0.002295849228x8

(4.9)

In figure 2, we compare the exact solution and the approximate solutions.In Table
4.1, we illustrate the exact solutions of the differential equation (4.5) and its numeri-
cal results of the approximate solutions for N = 3, 5 and 8 using the present method.

Table 4. 1: Numerical solutions of Example 2
Exact Solution Present Method

N = 3 N = 3 N = 5 N = 5 N = 8 N = 8
ti yexact(xi) y3(ti) E3(ti) y5(ti) E5(ti) y8(ti) E8(ti)
0.0 1 1 0 1 0 1 0
0.1 0.910133294 0.90995142 0.000181869 0.91013897 5.676537e-006 0.910133289 5.079156e-009
0.2 0.840800172 0.83961141 0.001188764 0.84082591 2.574094e-005 0.840800157 1.488156e-008
0.3 0.791811986 0.78868850 0.003123482 0.79185827 4.628403e-005 0.791811963 2.264282e-008
0.4 0.762228303 0.75689127 0.005337034 0.76228659 5.828744e-005 0.762228272 3.123148e-008
0.5 0.750423308 0.74392826 0.006495049 0.75049358 7.027106e-005 0.750423270 3.881956e-008
0.6 0.754178649 0.74950803 0.004670617 0.75427315 9.449774e-005 0.754178603 4.638895e-008
0.7 0.770798741 0.77333914 0.002540402 0.77090946 1.107170e-004 0.770798687 5.403538e-008
0.8 0.797243670 0.81513015 0.017886480 0.79725599 1.231260e-005 0.797243615 5.487016e-008
0.9 0.830274138 0.87458961 0.044315470 0.82981455 4.595925e-004 0.830273864 27.38042e-008
1.0 0.866602433 0.95142607 0.084823640 0.86481438 1.788059e-003 0.866600073 236.0883e-008
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Figure 2. Comparing the exact solution and the approximate solutions
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