http://tjmcs.matder.org.tr/

Matrix Representation on Quaternion Algebra

GÜLAY KORU YÜCEKAYA

ABSTRACT. The quaternions, denoted by \mathbb{H} , were first defined by W.R. Hamilton in 1843 as an extension of the four dimensions complex numbers. Hamilton has included a new multiplication process to vector algebra by defining quaternions for two vectors where the division process is available. In this paper, basic operations on \mathbb{H}/\mathbb{Z}_p quaternion and the matrix form which belong to \mathbb{H}/\mathbb{Z}_p quaternion algebra are given.

2010 AMS Classification: 15A03, 15A33, 15A30, 20H25, 11R52

Keywords: Ring, Field, Quaternions, Quaternion Algebra.

1. INTRODUCTION

In this section, basic definitions and theorems are given for our study.

Definition 1.1. Let \mathbb{N} be the set of natural numbers, and $.(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$. $\overline{(a,b)}$ equivanlence class which includes as (a,b) element is called an integer according \sim to equivanlence relation in $\mathbb{N} \times \mathbb{N}$ which is defined as

$$(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$$

and it is denoted by \mathbb{Z} .

Theorem 1.1. $(\mathbb{Z},+,.)$ is a ring

Theorem 1.2. To be equal relation is an equivalence relation among the elements in \mathbb{Z} module p.

Thus, according to module p, if the equivalence classes set

$$\{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}x \equiv y \pmod{p}\}.$$

Which is separated from equivalence relation by \mathbb{Z} is denoted \mathbb{Z}_p , that is

$$\mathbb{Z}_p = \left\{ \overline{0}, \overline{1}, \overline{2}, ..., \overline{p-1} \right\}.$$

Theorem 1.3. $(\mathbb{Z}_p, +, .)$ is an unit and commutative ring [2].

Theorem 1.4. If p.is a prime, then $(\mathbb{Z}_p, +, .)$ is a field [2].

Definition 1.2. The set of

$$q = a_0 e_0 + a_1 e_1 + a_2 e_2 + a_3 e_3$$

is called real quaternions. Such that ordered a_0, a_1, a_2, a_3 four real numbers accompany to $e_0 = 1, e_1, e_2, e_3$ units which enable

(1.1)
$$e_1^2 = e_2^2 = e_3^2 = -1,$$

$$e_1 \times e_2 = e_3, e_2 \times e_3 = e_1, e_3 \times e_1 = e_2$$

$$e_2 \times e_1 = -e_3, e_3 \times e_2 = -e_1, e_1 \times e_3 = -e_2$$

properties. Here, a_0, a_1, a_2, a_3 real numbers are components of q quaternion and it is written as $\{\mathbb{H}, \oplus, \mathbb{R}, +, ., \odot, \times\}$ an associative algebra where quaternions set is \mathbb{H} .

This algebra is called quaternion algebra and shortly denoted by \mathbb{H} . One basis of this algebra is $\{1, e_1, e_2, e_3\}$ and the dimension is four [4].

2.
$$\mathbb{H}/\mathbb{Z}_p$$
Quaternion Algebra

In this study, let p be a prime $e_0 = 1$, $e_1^2 = p - 1 = -1$ and $a, b \in \mathbb{Z}_p$. The elements of the form $ae_0 + be_1$ will be denoted by the set $\mathbb{Z}_p[e_1]$.

Theorem 2.1. The set

$$\mathbb{H}/\mathbb{Z}_p = \{q = a_0e_0 + a_1e_1 + a_2e_2 + a_3e_3 \mid a_i \in \mathbb{Z}_p, 0 \le i \le 3, p = 4k + 3 \text{ prime}, e_0 = 1, e_1^2 = e_2^2 = e_3^2 = p - 1 = -1\}$$

is a vector space over $(\mathbb{Z}_p, +, .)$ field.

Proof. Let $\forall q_1 = a_0 e_0 + a_1 e_1 + a_2 e_2 + a_3 e_3, q_2 = b_0 e_0 + b_1 e_1 + b_2 e_2 + b_3 e_3 \in \mathbb{H}/\mathbb{Z}_p$ and $a_i, b_i \in \mathbb{Z}_p, i = 0, 1, 2, 3$. \mathbb{H}/\mathbb{Z}_p under the addition is defined

$$\oplus : \ \mathbb{H}/\mathbb{Z}_p \times \mathbb{H}/\mathbb{Z}_p \ \rightarrow \ \mathbb{H}/\mathbb{Z}_p \\ (q_1, q_2) \ \rightarrow \ q_1 \oplus q_2$$

That is,

$$q_1 \oplus q_2 = (a_0 + b_0) e_0 + (a_1 + b_1) e_1 + (a_2 + b_2) e_2 + (a_3 + b_3) e_3.$$

So, $(\mathbb{H}/\mathbb{Z}_p, \oplus)$ is an Abelian group.Let be the set \mathbb{H}/\mathbb{Z}_p under the multiplication

$$\bigcirc : \mathbb{Z}_p \times \mathbb{H}/\mathbb{Z}_p \to \mathbb{H}/\mathbb{Z}_p (a,q) \to a \odot q.$$

That is defined by (1.1)

$$a \odot q = a \odot (a_0 e_0 + a_1 e_1 + a_2 e_2 + a_3 e_3)$$

= $(aa_0) e_0 + (aa_1) e_1 + (aa_2) e_2 + (aa_3) e_3$

which has the properties indicated below.

V1) For $\forall a \in \mathbb{Z}_p, \forall q_1, q_2 \in \mathbb{H}/\mathbb{Z}_p$,

$$a\odot (q_1\oplus q_2)=(a\odot q_1)\oplus (a\odot q_2)\,,$$

V2) For $\forall a, b \in \mathbb{Z}_p, \forall q \in \mathbb{H}/\mathbb{Z}_p$,

$$(a+b)\odot q=(a\odot q)\oplus (b\odot q)$$
,

V3) For $\forall a, b \in \mathbb{Z}_p, \forall q \in \mathbb{H}/\mathbb{Z}_p$,

$$(a.b) \odot q = a \odot (b \odot q),$$

V4) For $\forall q \in \mathbb{H}/\mathbb{Z}_p, 1 \in \mathbb{Z}_p$

$$1 \odot q = q$$
.

Therefore, $\{\mathbb{H}/\mathbb{Z}_p, \oplus, \mathbb{Z}_p, +, ., \odot\}$ is a vector space. This vector space will be denoted by \mathbb{H}/\mathbb{Z}_p shortly.

Definition 2.1. Let be \mathbb{H}/\mathbb{Z}_p a vector space. A multiplication on this vector space is defined

$$\times : \mathbb{H}/\mathbb{Z}_p \times \mathbb{H}/\mathbb{Z}_p \to \mathbb{H}/\mathbb{Z}_p$$

$$(q_1, q_2) \to q_1 \times q_2$$

 $That\ is$

$$\begin{array}{lll} q_1 \times q_2 & = & (a_0e_0 + a_1e_1 + a_2e_2 + a_3e_3) \times (b_0e_0 + b_1e_1 + b_2e_2 + b_3e_3) \\ & & + (a_0b_0 + (p-1)\,a_1b_1 + (p-1)\,a_2b_2 + (p-1)\,a_3b_3)\,e_0 \\ & & + (a_0b_1 + a_1b_0 + a_2b_3 + (p-1)\,a_3b_2)\,e_1 \\ & & + (a_0b_2 + (p-1)\,a_1b_3 + a_2b_0 + a_3b_1)\,e_2 \\ & & + (a_0b_3 + a_1b_2 + (p-1)\,a_2b_1 + a_3b_0)\,e_3. \end{array}$$

This multiplication is called quaternion multiplication [3].

Theorem 2.2. The quaternion multiplication have these properties shown below. K1) For $\forall q_1, q_2 \in \mathbb{H}/\mathbb{Z}_p$,

$$q_1 \times q_2 \in \mathbb{H}/\mathbb{Z}_p$$

K2) For $\forall a \in \mathbb{Z}_p$, $\forall q_{1,q_2} \in \mathbb{H}/\mathbb{Z}_p$,

$$a \odot (q_1 \times q_2) = (a \odot q_1) \times q_2 = q_1 \times (a \odot q_2),$$

K3) For $\forall q_1, q_2, q_3 \in \mathbb{H}/\mathbb{Z}_p$,

$$(q_1 \oplus q_2) \times q_3 = (q_1 \times q_2) \oplus (q_2 \times q_3)$$

$$q_1 \times (q_2 \oplus q_3) = (q_1 \times q_2) \oplus (q_1 \times q_3)$$
,

K4) For $\forall q_1, q_2, q_3 \in \mathbb{H}/\mathbb{Z}_p$,

$$(q_1 \times q_2) \times q_3 = q_1 \times (q_2 \times q_3).$$

Thus, $\{\mathbb{H}/\mathbb{Z}_p, \oplus, \mathbb{Z}_p, +, ., \odot, \times\}$ is an algebra [5]. This algebra over \mathbb{Z}_p field is called quaternion algebra and it is denoted by \mathbb{H}/\mathbb{Z}_p

Conclusion 2.1. Quaternion multiplication has no commutative property. That is, for $\forall q_1, q_2 \in \mathbb{H}/\mathbb{Z}_p$,

$$q_1 \times q_2 \neq q_2 \times q_1$$
.

Specially, for $\forall q_1 = a_0 e_0, q_2 = b_0 e_0 \in \mathbb{H}/\mathbb{Z}_p$, there exists commutative property.

3. Matris Representation of \mathbb{H}/\mathbb{Z}_p Quaternion Algebra

Theorem 3.1. For $\forall q_1 = a_0 e_0 + a_1 e_1 + a_2 e_2 + a_3 e_3$, $q_2 = b_0 e_0 + b_1 e_1 + b_2 e_2 + b_3 e_3 \in \mathbb{H}/\mathbb{Z}_p$,

this multiplication can be expressed with the help of a linear operatör.

Proof.

$$\begin{array}{cccc} L_{q_1} & : & \mathbb{H}/\mathbb{Z}_p & \stackrel{linear}{\rightarrow} & \mathbb{H}/\mathbb{Z}_p \\ & q_2 & \rightarrow & L_{q_1}(q_2) & = & q_1 \times q_2 \end{array}$$

so we obtain

$$L_{q_1}(e_0) = q_1 \times e_0$$

$$= a_0 e_0 + a_1 e_1 + a_2 e_2 + a_3 e_3.$$

$$L_{q_1}(e_1) = q_1 \times e_1$$

$$= (p-1) a_1 e_0 + a_0 e_1 + a_3 e_2 + (p-1) a_2 e_3,$$

$$L_{q_1}(e_2) = q_1 \times e_2$$

$$= (p-1) a_2 e_0 + (p-1) a_3 e_1 + a_0 e_2 + a_1 e_3,$$

$$L_{q_1}(e_3) = q_1 \times e_3$$

$$= (p-1) a_3 e_0 + a_2 e_1 + (p-1) a_1 e_2 + a_0 e_3.$$

 L_{q_1} corresponds to the lineer operator represented by the matrix $H^+(q_1)$

$$H^{+}(q_{1}) = \begin{bmatrix} a_{0} & (p-1) a_{1} & (p-1) a_{2} & (p-1) a_{3} \\ a_{1} & a_{0} & a_{3} & a_{2} \\ a_{2} & a_{3} & a_{0} & (p-1) a_{1} \\ a_{3} & (p-1) a_{2} & a_{1} & a_{0} \end{bmatrix}.$$

So that $q_1 \times q_2$ quaternion multiplication, $H^+(q_1) q_2$ can be expressed in the form of matrix multiplication. Actually

$$H^{+}(q_{1}) q_{2} = \begin{bmatrix} a_{0} & (p-1) a_{1} & (p-1) a_{1} & (p-1) a_{3} \\ a_{1} & a_{0} & a_{3} & a_{2} \\ a_{2} & a_{3} & a_{0} & (p-1) a_{1} \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

$$= \begin{bmatrix} a_{0}b_{0} + (p-1) a_{1}b_{1} + (p-1) a_{1}b_{2} + (p-1) a_{3}b_{3} \\ a_{1}b_{0} + a_{0}b_{1} + (p-1) a_{3}b_{2} + a_{2}b_{3} \\ a_{2}b_{0} + a_{3}b_{1} + a_{0}b_{2} + (p-1) a_{1}b_{3} \\ a_{3}b_{0} + (p-1) a_{2}b_{1} + a_{1}b_{2} + a_{0}b_{3} \end{bmatrix}$$

$$= q_{1} \times q_{2}.$$

Therefore,

$$H^{+}\left(q_{1}\right) = a_{0}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + a_{1}\begin{bmatrix} 0 & p-1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & p-1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \\ + a_{2}\begin{bmatrix} 0 & 0 & p-1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & p-1 & 0 & 0 \end{bmatrix} + a_{3}\begin{bmatrix} 0 & 0 & 0 & p-1 \\ 0 & 0 & p-1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Matrix can be written by

$$E_{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_{1} = \begin{bmatrix} 0 & p-1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & p-1 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

$$E_{2} = \begin{bmatrix} 0 & 0 & p-1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, E_{3} = \begin{bmatrix} 0 & 0 & p-1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & p-1 & 0 & 0 \end{bmatrix}.$$

$$H^{+}(q_1) = a_0 E_0 + a_1 E_1 + a_2 E_2 + a_3 E_3.$$

Here, $E_0 = I_4, E_1, E_2, E_3$ in order corresponds to $e_0 = 1, e_1, e_2, e_3$ units. There exists the properties shown below:

$$E_1^2 = E_2^2 = E_3^2 = (p-1) E_0 = (p-1) I_4,$$

$$E_1 E_2 = E_3, \ E_2 E_3 = E_1, \ E_3 E_1 = E_2$$

$$E_2 E_1 = (p-1) E_3, \ E_3 E_2 = (p-1) E_1, \ E_1 E_2 = (p-1) E_2.$$

By processes similar

$$\begin{array}{cccc} R_{q_1} & : & \mathbb{H}/\mathbb{Z}_p & \stackrel{linear}{\rightarrow} & \mathbb{H}/\mathbb{Z}_p \\ & q_2 & \rightarrow & L_{q_1}(q_2) & = & q_2 \times q_1 \end{array}$$

linear operator where

$$q_1 = a_0e_0 + a_1e_1 + a_2e_2 + a_3e_3,$$

 $q_2 = b_0e_0 + b_1e_1 + b_2e_2 + b_3e_3.$

Matrix corresponds to R_{q_1} linear operation.

$$\begin{array}{rcl} R_{q_1}\left(e_0\right) & = & e_0 \times q_1 \\ & = & a_0e_0 + a_1e_1 + a_2e_2 + a_3e_3. \\ R_{q_1}\left(e_1\right) & = & e_1 \times q_1 \\ & = & \left(p-1\right)a_1e_0 + a_0e_1 + \left(p-1\right)a_3e_2 + a_2e_3, \\ R_{q_1}\left(e_2\right) & = & e_2 \times q_1 \\ & = & \left(p-1\right)a_2e_0 + a_3e_1 + a_0e_1 + \left(p-1\right)a_1e_3, \\ \end{array}$$

$$R_{q_1}(e_3) = e_3 \times q_1$$

= $(p-1) a_3 e_0 + (p-1) a_2 e_1 + a_1 e_2 + a_0 e_3$.

Thus we obtain

$$H^{-}(q_{1}) = \begin{bmatrix} a_{0} & (p-1) a_{1} & (p-1) a_{2} & (p-1) a_{3} \\ a_{1} & a_{0} & a_{3} & (p-1) a_{2} \\ a_{2} & (p-1) a_{3} & a_{0} & a_{1} \\ a_{3} & a_{2} & (p-1) a_{1} & a_{0} \end{bmatrix}$$

So that $q_2 \times q_1$ quaternion multiplication, $H^-(q_1) q_2$ can be expressed in the form of matrix multiplication. Actually

$$H^{-}\left(q_{1}\right)q_{2} \ = \ \begin{bmatrix} a_{0} & (p-1)\,a_{1} & (p-1)\,a_{1} & (p-1)\,a_{3} \\ a_{1} & a_{0} & a_{3} & a_{2} \\ a_{2} & a_{3} & a_{0} & (p-1)\,a_{1} \\ a_{3} & (p-1)\,a_{2} & a_{1} & a_{0} \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

$$= \ \begin{bmatrix} a_{0}b_{0} + (p-1)\,a_{1}b_{1} + (p-1)\,a_{1}b_{2} + (p-1)\,a_{3}b_{3} \\ a_{1}b_{0} + a_{0}b_{1} + (p-1)\,a_{3}b_{2} + a_{2}b_{3} \\ a_{2}b_{0} + a_{3}b_{1} + a_{0}b_{2} + (p-1)\,a_{1}b_{3} \\ a_{3}b_{0} + (p-1)\,a_{2}b_{1} + a_{1}b_{2} + a_{0}b_{3} \end{bmatrix}$$

$$= \ q_{2} \times q_{1}$$

Therefore,

$$H^{-}\left(q_{1}\right) = a_{0} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + a_{1} \begin{bmatrix} 0 & p-1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & p-1 \\ 0 & 0 & 1 & 0 \end{bmatrix} + a_{2} \begin{bmatrix} 0 & 0 & p-1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & p-1 & 0 & 0 \end{bmatrix} + a_{3} \begin{bmatrix} 0 & 0 & 0 & p-1 \\ 0 & 0 & p-1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Matrix can be written by

$$E_{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_{1} = \begin{bmatrix} 0 & p-1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & p-1 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

$$E_{2} = \begin{bmatrix} 0 & 0 & p-1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, E_{3} = \begin{bmatrix} 0 & 0 & p-1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & p-1 & 0 & 0 \end{bmatrix}.$$

 $H^{-}(q_1) = a_0 E_0 + a_1 E_1 + a_2 E_2 + a_3 E_3.$

Here, $E_0 = I_4, E_1, E_2, E_3$ in order corresponds to $e_0 = 1, e_1, e_2, e_3$ units. There exists the properties shown below:

$$E_1^2 = E_2^2 = E_3^2 = (p-1) E_0 = (p-1) I_4,$$

$$E_1E_2 = E_3, \ E_2E_3 = E_1, \ E_3E_1 = E_2$$

 $E_2E_1 = (p-1)\,E_3, \ E_3E_2 = (p-1)\,E_1, \ E_1E_2 = (p-1)\,E_2.$

Homomorphism where H^+ was not a homomorphism H^- . Thus,

- i) $H^+(q_1+q_2) = H^+(q_1) + H^+(q_2)$ ii) $H^+(q_1xq_2) = H^+(q_1) H^+(q_2)$
- iii) $H^{-}(q_1+q_2)=H^{-}(q_2)+H^{-}(q_1)$
- iv) $H^{-}(q_1xq_2) = H^{-}(q_2)$ $H^{-}(q_1) \neq H^{-}(q_1)$ $H^{-}(q_2)$.

 H^+ and H^- operators similar to Hamilton operators[2]. Thus $\forall q_1, q_2, q_3, q_4 \in$ \mathbb{H}/\mathbb{Z}_p following properties are provided.

- $q_1 x q_2 = H^+ (q_1) q_2 = H^- (q_2) q_1$ $H^+ (q_1 x q_2) = H^+ (H^+ (q_1) q_2) = H^+ (q_1) H^+ (q_2)$ ii
- $H^{-}(q_1xq_2) = H^{-}(H^{-}(q_2)q_1) = H^{-}(q_2)H^{-}(q_1)$
- $H^{+}(q_{1}xq_{2}+q_{3}xq_{4})=H^{+}(q_{1})H^{+}(q_{2})+H^{+}(q_{3})H^{+}(q_{4})$
- $H^{-}(q_1xq_2+q_3xq_4)=H^{-}(q_2)\ H^{-}(q_1)+H^{-}(q_4)\ H^{-}(q_3)$
- $H^{+}(H^{-}(q_{1}) q_{2}) = H^{+}(q_{2}) H^{+}(q_{1})$ $H^{-}(H^{+}(q_{1}) q_{2}) = H^{-}(q_{2}) H^{-}(q_{1})$
- viii) $H^+(q_1)$ $H^-(q_2) = H^-(q_2)$ $H^+(q_1)$

References

- [1] A. Adler, I.E. Coury. The Theory of Number, Jones and Barlett Puplishers, Boston, (1995).
- [2] O. P. Agrawal. Mechanizm and Machine Theory, Vol.22, Issue 6, p.569-675, (1987).
- [3] M Aristidou. A Note on Quaternion Rings, International Journal of Algebra, Vol.3, No.15, p.725-728, (2009).
- [4] H.H. Hacısalihoğlu. Motion Geometry and Quaternions Theory, Gazi University Faculty of Arts and Science Publications, Math. No.2, Ankara, (1983).
- [5] I.N. Herstein. Topics in Algebra, 2nd Ed., Wiley, (1975).

GÜLAY KORU YÜCEKAYA(gkoru@gazi.edu.tr) -Gazi University, Gazi Education Faculty, Mathematics Education Department, Teknikokullar, 06500, Ankara, Turkey