A numerical solution of the equal width wave equation using a fully implicit finite difference method

Bilge İNAN and Ahmet Refik BAHADIR

Abstract

. In this paper, a fully implicit finite difference scheme for the numerical solution of the equal width wave (EW) equation is proposed. Since the EW equation is nonlinear the scheme leads to a system of nonlinear equations. At each time-step Newton's method is used to solve this nonlinear system. The results and comparisons with analytical and other numerical values clearly show that results obtained using the fully implicit finite difference scheme are precise and reliable.

2010 AMS Classification: 65M06, 74J35
Keywords: Equal width wave equation; Finite differences; Solitary waves; Undular bore; Nonlinear partial differential equations

1. Introduction

The non-linear equal width wave (EW) equation, derived for long waves propagating with dispersion processes, has the following form,

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}-\mu \frac{\partial}{\partial t}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)=0 \tag{1.1}
\end{equation*}
$$

where u is the wave amplitude, μ is a positive parameter. The equation was introduced by Morrison et al. [12].

The analytical solutions of the EW equation are only possible for certain conditions. Therefore numerical solution techniques are usually needed. Several numerical methods have been used for this purpose. Gardner et al. [8] solved the EW equation using Galerkin method with cubic B-spline finite elements. Archilla [2] developed a numerical method using a spectral Fourier discretization for the spatial derivatives. Gardner et al. [9] investigated Petrov-Galerkin method with quadratic B-spline finite elements for the solution of the equation. Khalifa et al. [11] employed a finite element method using quintic splines as element shape function for the EW equation. Zaki $[18,19]$ solved the equation by a least-squares technique using linear space-time finite elements and Petrov-Galerkin finite element scheme with shape functions taken as quadratic B-spline functions, respectively. An approach based on a collocation method incorporated cubic B-splines was proposed by Dag and Saka [4]. Raslan [14] proposed a collocation method based on quintic B-spline
finite elements to solve the EW equation. Esen [6] applied a lumped Galerkin method based on quadratic B-spline finite elements for solving the equation. Dogan [5] described Galerkin's method using linear finite elements to the equal width wave equation. Using the fourth-order Runge-Kutta method a numerical simulation and explicit solution of the EW equation were obtained by Raslan [15]. A solution based on a quadratic B-spline finite element and splitting technique is investigated by Saka [16]. A linearized implicit finite difference method is applied to this equation by Esen and Kutluay [7]. Ramos [13] described some explicit finite difference methods to obtained numerical solutions to the EW and RLW equations. Recently, Saka et al. [17] solved the equation using a Galerkin method based on quartic B-spline finite elements, a differential quadrature method with cosine expansion basis and collocation method with radial-basis unctions. Ali [1] used the spectral method based on Chebyshev polynomials for solving the equal width wave equation. The reduced differential transform method was applied to find the numerical solution of the equation by Arora et al. [3]. Numerical solutions of the equal width wave equation was obtained by Septic B-Spline collocation method using Rubin and Graves linearization technique[10].

In the present work, a fully implicit finite difference scheme is applied to obtain the solution of the EW equation. Some examples are presented to show the ability of the method. Solutions obtained from this method are compared with the previous results reported in the literature.

2. The Method of Solution

The discretization was done by the finite differences with the implicit approach. Solution domain is discretized into cells described by the nodes set $\left(x_{i}, t_{n}\right)$ in which $x_{i}=i h, \quad(i=$ $0,1,2, \ldots, N)$ and $t_{n}=n k,(n=0,1,2, \ldots), h$ is the spatial mesh size and k is the time step.

A fully implicit discretization for Eq.(1.1) takes the following form

$$
\begin{align*}
& \frac{U_{i}^{n+1}-U_{i}^{n}}{k}+\frac{1}{4}\left[\frac{\left(U_{i+1}^{n+1}\right)^{2}-\left(U_{i-1}^{n+1}\right)^{2}}{2 h}+\frac{\left(U_{i+1}^{n}\right)^{2}-\left(U_{i-1}^{n}\right)^{2}}{2 h}\right] \\
& -\frac{\mu}{k}\left[\frac{U_{i+1}^{n+1}-2 U_{i}^{n+1}+U_{i-1}^{n+1}}{h^{2}}-\frac{U_{i+1}^{n}-2 U_{i}^{n}+U_{i-1}^{n}}{h^{2}}\right]=0 \tag{2.1}
\end{align*}
$$

which is valid for values of i lying in the interval $1 \leq i \leq N-1$. Where U_{i}^{n} denotes the finite difference approximation to the exact solution $u(x, t)$. Eq.(2.1) is a system of nonlinear difference equation. Let us consider this nonlinear system of equations in the form

$$
\begin{equation*}
F(V)=\mathbf{0} \tag{2.2}
\end{equation*}
$$

where $F=\left[f_{1}, f_{2}, \ldots, f_{N-1}\right]^{T}$ and $V=\left[U_{1}^{n+1}, U_{2}^{n+1}, \ldots, U_{N-1}^{n+1}\right]^{T}$. Newton's method applied to Eq.(2.2) results in the following iteration:

1. Set $V^{(0)}$, an initial guess.
2. For $m=0,1,2, \ldots$ until convergence do:

Solve $J\left(V^{(m)}\right) \delta^{(m)}=-F\left(V^{(m)}\right)$;

Set $V^{(m+1)}=V^{(m)}+\delta^{(m)}$
where $J\left(V^{(m)}\right)$ is the Jacobian matrix which is evaluated analytically. The solution at the previous time-step is taken as the initial estimate. The convergence is generally obtained in two or three iterations.

3. Test Problems and Discussion

In this section, some test problems have been considered to illustrate the performance of the method described in previous section. The accuracy of the method is measured by using the L_{2} and L_{∞} norms defined by

$$
\begin{align*}
L_{2} & =\|u-U\|_{2}=\left(h \sum_{i=0}^{N}\left|u_{i}-U_{i}\right|^{2}\right)^{\frac{1}{2}}, \tag{3.1}\\
L_{\infty} & =\|u-U\|_{\infty}=\max _{0 \leq i \leq N}\left|u_{i}-U_{i}\right|
\end{align*}
$$

where u and U represent the exact and approximate solutions, respectively.
We also examined our results by calculating the following three conserved quantities corresponding to mass, momentum and energy, respectively[9].

$$
\begin{aligned}
& I_{1}=\int_{-\infty}^{+\infty} u d x \\
& I_{2}=\int_{-\infty}^{+\infty}\left(u^{2}+\mu\left(u_{x}\right)^{2}\right) d x \\
& I_{3}=\int_{-\infty}^{+\infty} u^{3} d x
\end{aligned}
$$

Motion of single solitary wave

We first model the motion of a single solitary wave of the EW equation. The solitary wave solution of the EW equation (1.1) is

$$
\begin{equation*}
u(x, t)=3 c \sec h^{2}\left(q\left(x-x^{*}-c t\right)\right) \tag{3.3}
\end{equation*}
$$

with amplitude $3 c$ where c is the wave velocity and $q=(1 / 4 \mu)^{1 / 2}$ measures width of the wave pulse. The initial and boundary conditions are set to: $u(x, 0)=3 c \sec h^{2}\left(q\left(x-x^{*}\right)\right)$ and $u \longrightarrow 0$ as $x \longrightarrow \pm \infty$, respectively.

The analytical values of conservation quantities can be found as

$$
\begin{equation*}
I_{1}=\frac{6 c}{q}, \quad I_{2}=\frac{12 c^{2}}{q}+\frac{48 q c^{2} \mu}{5} \text { and } I_{3}=\frac{144 c^{3}}{5 q} \tag{3.4}
\end{equation*}
$$

To allow comparison with the previous methods parameters are taken as $x^{*}=10$ and $\mu=1$ through the interval $0 \leq x \leq 30$.

The analytical invariants obtained from Eq. (3.4) are $I_{1}=1.20000$, $I_{2}=0.28800$ and $I_{3}=0.05760$ for $c=0.1$. Table 1 displays the invariants and error norms for $c=0.1, h=0.03$ and $k=0.05$ through the interval $0 \leq x \leq 30$. The invariants and error norms of the proposed scheme are given for times up to $t=80$ in Table 1. In Table 1, the L_{2} error norm reaches a maximum of 1.2476×10^{-4} at the end of the run. A comparison of the invariants and error norms obtained by the present method and the result of references $[4,5,6,9,16]$ are given in Table 2 for $c=0.1, h=0.03$ and $k=0.05$ at $t=80$.

Table 1
Invariants and error norms for the single solitary wave.

t	I_{1}	I_{2}	I_{3}	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^{3}$
0	1.19994	0.28800	0.05760		
10	1.20001	0.28800	0.05760	0.03296	0.03342
20	1.20004	0.28800	0.05760	0.05474	0.04571
30	1.20005	0.28800	0.05760	0.07214	0.05023
40	1.20005	0.28800	0.05760	0.08651	0.05255
50	1.20005	0.28800	0.05760	0.09835	0.05871
60	1.20005	0.28800	0.05760	0.10824	0.06376
70	1.20005	0.28800	0.05760	0.11685	0.06827
80	1.20004	0.28800	0.05760	0.12476	0.07254

Table 2
Comparison of invariants for the single solitary wave.

	I_{1}	I_{2}	I_{3}
Present Method	1.20004	0.28800	0.05760
$[4]$	1.19998	0.28798	0.05759
$[5]$	1.23387	0.29915	0.06097
$[6]$	1.19995	0.28798	0.05759
$[9]$	1.1910	0.2855	0.05582
$[16]$	1.19999	0.28801	0.05760

The analytical value of invariants are $I_{1}=0.36000, I_{2}=0.02592$ and $I_{3}=0.00156$ for $c=0.03$. The invariants and error norms are displayed in Table 3 for $c=$ $0.03, h=0.05$ and $k=0.05$ through a region $0 \leq x \leq 30$. In Table 3, the L_{2} error norm reaches a maximum of 4.360×10^{-5} at $t=80$. Comparison of the invariants and error norms are found by the present method and by the other methods $[5,6,16]$ are given in Table 4 for $c=0.03, h=0.05$ and $k=0.05$ at $t=80$.

Table 3
Invariants and error norms for the single solitary wave.

t	I_{1}	I_{2}	I_{3}	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^{3}$
0	0.35998	0.02592	0.00156		
10	0.35999	0.02592	0.00156	0.00634	0.00403
20	0.36000	0.02592	0.00156	0.01233	0.00810
30	0.36000	0.02592	0.00156	0.01806	0.01231
40	0.36001	0.02592	0.00156	0.02356	0.01648
50	0.36001	0.02592	0.00156	0.02888	0.02051
60	0.36001	0.02592	0.00156	0.03399	0.02430
70	0.36001	0.02592	0.00156	0.03890	0.02778
80	0.36001	0.02592	0.00156	0.04360	0.03095

Table 4

Comparison of the invariants for the single solitary wave.

	I_{1}	I_{2}	I_{3}
Present Method	0.36001	0.02592	0.00156
[5]	0.36665	0.02658	0.00162
[6]	0.36000	0.02592	0.00156
$[16]$	0.36000	0.02592	0.00156

The analytical values of invariants are in good agreements the numerical values of invariants are given in both Table 1 and Table 3. The numerical solution for $c=0.1$ and $c=0.03$ is shown in Fig. 1 and Fig. 2, respectively. It can be seen from Fig. 1a and Fig. 2a, the single solitary wave moves to the right at constant speed with unchanged amplitude both $c=0.1$ and $c=0.03$. The figures present the wave velocity increases when the value of the amplitude increases.

Figure 1. Numerical solutions of the single solitary wave with $c=0.1$.
We displayed the countours of the tests for $c=0.1$ and $c=0.03$ in Fig. 1 b and Fig. 2 b , respectively. The agreement between numerical and analytical solution is good for this
problem. Furthermore, It is observed that the values of I_{1}, I_{2} and I_{3} remain almost constant during the computer run.

Figure 2. Numerical solutions of the single solitary wave with $c=0.03$.

Interaction of two solitary waves

Secondly, the interaction process of two solitary waves traveling in the same direction is studied by using the initial condition

$$
\begin{equation*}
u(x, 0)=3 c_{1} \sec h^{2}\left(q_{1}\left(x-x_{1}^{*}-c_{1}\right)\right)+3 c_{2} \sec h^{2}\left(q_{2}\left(x-x_{2}^{*}-c_{2}\right)\right) \tag{3.5}
\end{equation*}
$$

and the boundary condition $u \longrightarrow 0$ as $x \longrightarrow \pm \infty$.
In this case, to make comparison with other works we take the following parameters: $c_{1}=1.5, c_{2}=0.75, q_{1}=0.5, q_{2}=0.5, h=0.1, k=0.1, x_{1}^{*}=10, x_{2}^{*}=25$ and $\mu=1$ over the region $0 \leq x \leq 80$.

The analytical values of the invariants quantities are

$$
\begin{equation*}
I_{1}=12\left(c_{1}+c_{2}\right), I_{2}=28.8\left(c_{1}^{2}+c_{2}^{2}\right) \text { and } I_{3}=57.6\left(c_{1}^{3}+c_{2}^{3}\right) \tag{3.6}
\end{equation*}
$$

Thus $I_{1}=27, I_{2}=81$ and $I_{3}=218.7$ are found from Eq. (3.6).
In Table 5, the numerical values of the invariants are displayed for interaction of the two solitary waves. The numerical values of the invariants are given in Table 5 are in good agreements the analytical values of them.

Table 5
Invariants for the interaction of two solitary waves.

t	I_{1}	I_{2}	I_{3}
1	27.00009	81.00024	218.70236
5	27.00018	80.99985	218.69987
10	27.00018	80.99500	218.65881
15	27.00018	80.95157	218.32090
20	27.00018	80.99355	218.64833
25	27.00018	80.99903	218.69551
30	27.00018	80.99883	218.69574

Table 6
Comparison of invariants for the interaction of two solitary
waves at $t=30$.

	Present Method	[6]	$[7]$	$[17]$
I_{1}	27.00018	27.00003	27.00017	27.00017
I_{2}	80.99883	81.01719	80.96848	81.00044
I_{3}	218.69574	218.70650	218.70210	218.70304

We displayed the interaction of two solitary waves from $t=0$ to $t=30$ in Fig. 3. The larger wave catches up with the smaller wave while time increases. It can also clearly be seen from the countours of the results in Fig. 4. A comparison of the numerical values of the invariants obtained by the present method and by other methods [6, 7, 17] are displayed in Table 6.

Figure 3. The interaction of two solitary waves.

Figure 4. The countours of interaction of two solitary waves.

The undular bore

To model the development of an undular bore we use the initial condition given by

$$
\begin{equation*}
u(x, 0)=\frac{u_{0}}{2}\left(1-\tanh \left(\frac{x-x^{*}}{d}\right)\right) \tag{3.7}
\end{equation*}
$$

with the boundary condition $u(a, t)=u_{0}$ and $u(b, t)=0$. In that case, variations in three invariants are as follows

$$
\begin{align*}
M_{1} & =\frac{d I_{1}}{d t}=\frac{1}{2} u_{0}^{2} \\
M_{2} & =\frac{d I_{2}}{d t}=\frac{2}{3} u_{0}^{3} \tag{3.8}\\
M_{3} & =\frac{d I_{3}}{d t}=\frac{3}{4} u_{0}^{4}
\end{align*}
$$

As seen from the values they are increased linearly at a rate of $M_{j},(j=1,2,3)$ [9]. Thus theorical variations in the invariants $M_{1}=5 \times 10^{-3}, M_{2}=$ 6.66667×10^{-4} and $M_{3}=7.5 \times 10^{-5}$ obtained from Eq. (3.8).

In this problem, following parameters are taken: $\mu=0.1666667, u_{0}=0.1$ and $x^{*}=0$ through the interval $-20 \leq x \leq 50$. Numerically variations in invariants can be computed from following equation [17].

$$
\begin{equation*}
M_{j}=\frac{I_{j}(\text { at } t=800)-I_{j}(\text { at } t=0)}{\text { time }}, j=1,2,3 \tag{3.9}
\end{equation*}
$$

Table 7 presents I_{1}, I_{2} and I_{3}, the position and amplitude for the gentle slope $d=5$. The variations of the invariants obtained from the present method compared with the variations of invariants are given in $[4,6,16]$ are shown in Table 8.

Table 7
Invariants for the undular bore with $h=0.07, k=0.5$ and $d=5$.

t	I_{1}	I_{2}	I_{3}	x	U
0	1.996585	0.174778	0.016218		
200	2.996424	0.308051	0.031215	8.77	0.160497
400	3.996422	0.441289	0.046224	20.39	0.179242
600	4.996422	0.574524	0.061233	32.50	0.182617
800	5.996420	0.707759	0.076242	44.75	0.183677
$800[4](h=k=0.05)$	6.003096	0.708689	0.076281	44.75	0.18397
$800[6](h=0.07, k=0.05)$	6.003578	0.708498	0.076192	44.75	0.183822
$800[16](h=k=0.05)$	6.00259	0.70885	0.07628	44.75	0.184050

Table 8

Comparison of the variations in invariants for the undular bore
with $h=0.07, k=0.5$ and $d=5$.

	$M_{1} \times 10^{3}$	$M_{2} \times 10^{4}$	$M_{3} \times 10^{5}$
Present Method	4.99979	6.66226	7.50300
$[4](h=k=0.05)$	5.00065	6.66639	7.5005
$[6](h=0.07, k=0.05)$	5	6.66275	7.4875
$[16](h=k=0.05)$	5	6.668375	7.5

The values of I_{1}, I_{2} and I_{3}, the position and amplitude are shown in Table 9 for $d=2$. Table 10 displays comparison of the variations in the invariants obtained by the present method together with the other methods [4, 6, 16].

Figure 5. Undular bore for $d=5$ at different times.

Table 9
Invariants for the undular bore with $h=0.07, k=0.5$ and $d=2$.

t	I_{1}	I_{2}	I_{3}	x	U
0	1.996500	0.189928	0.018465		
200	2.996500	0.323191	0.033471	9.40	0.175870
400	3.996500	0.456426	0.048480	21.37	0.181976
600	4.996500	0.589660	0.063489	33.55	0.183831
800	5.996477	0.722894	0.078498	45.87	0.184426
$800[4](h=k=0.05)$	6.003194	0.723867	0.078534	45.85	0.18460
$800[6](h=0.07, k=0.05)$	6.003478	0.723605	0.078426	45.87	0.184518
$800[16](h=k=0.05)$	6.00248	0.72402	0.07853	45.85	0.184713

Table 10
Comparison of the variations in invariants for the undular bore
with $h=0.07, k=0.5$ and $d=2$.

	$M_{1} \times 10^{3}$	$M_{2} \times 10^{4}$	$M_{3} \times 10^{5}$
Present Method	4.99997	6.66208	7.50413
$[4](h=k=0.05)$	5.00087	6.66674	7.5011
$[6](h=0.07, k=0.05)$	5	6.662	7.4862
$[16](h=k=0.05)$	5	6.668625	7.5

Fig. 5 displays the undular bore profiles for the gentle slope $d=5$ from $t=200$ to $t=800$ for each 200 time steps. It is seen from Fig. 5, the number of waves increases with increase of t. As can be seen from Fig. 6, value of d decreased with the number of waves increase, as expected.

Figure 6. Undular bore for different values of d at $t=200$.

The Maxwellian initial condition

Finally, we use the initial condition

$$
\begin{equation*}
u(x, 0)=\exp \left(-(x-7)^{2}\right) \tag{3.10}
\end{equation*}
$$

and the boundary condition $u \longrightarrow 0$ as $x \longrightarrow \pm \infty$ to analyse the evolution of an Maxwellian pulse into solitary waves.

In this test, we study for values of $\mu=0.2, \mu=0.04$ and $\mu=0.001$ through the interval $0 \leq x \leq 12$.

Table 11 gives a comparison of the invariants obtained from the present method for $h=$ $k=0.01$ and the invariants are obtained in [1, 15].
i) The variations of I_{1}, I_{2}, I_{3} are obtained from Table 11 for $\mu=0.2$ as 1.690214×10^{-4}, $2.6572 \times 10^{-6}, 2.375 \times 10^{-7}$ whereas they obtained as $2.2 \times 10^{-3}, 6.3 \times 10^{-2}, 3 \times 10^{-6}$ in [1] and $2.387 \times 10^{-2}, 8 \times 10^{-2}, 1.8 \times 10^{-5}$ in [15], respectively.
ii) The variations of I_{1}, I_{2}, I_{3} for $\mu=0.04$ are found as $1.63 \times 10^{-8}, 3.14405 \times 10^{-5}$, 7.0149×10^{-6} also they obtained as $2.2 \times 10^{-3}, 7.5 \times 10^{-2}, 3 \times 10^{-6}$ in [1] and 7×10^{-3}, $2.248 \times 10^{-3}, 9.6 \times 10^{-5}$ in [15], respectively.
iii) For $\mu=0.001$, the change of I_{1}, I_{2}, I_{3} are obtained from Table 11 as 6×10^{-15}, $1.5655707 \times 10^{-3}, 6.842706 \times 10^{-4}$ whereas they obtained as $1.2 \times 10^{-2}, 7.8 \times 10^{-2}, 3 \times 10^{-6}$ in [1] and $1.16 \times 10^{-2}, 6.42 \times 10^{-4}, 1.9 \times 10^{-5}$ in [15], respectively.

Fig. 7 shows wave profiles for the Maxwellian initial condition at $t=25$ and for $0 \leq x \leq$ 60. This figure contains figures for $\mu=0.2, \mu=0.04$ and $\mu=0.001$, respectively. As can be seen from Fig. 7, μ is reduced, more and more solitary waves are formed, as expected.

Figure 7. Maxwellian initial condition for different values of μ at $t=25$.

4. Conclusion

In this paper a fully implicit finite difference method was applied to the EW equation. Numerical tests for single solitary wave and interaction of two solitary waves are given. We also have examined two development of an undular bore and evolution of the Maxwellian initial pulse into solitary waves. The numerical results show that the fully implicit finite difference method offers a high accuracy in the numerical solution of the EW equation.

References

[1] Ali A. H. A., Spectral method for solving the equal width equation based on Chebyshev polynomials, Nonlinear Dyn., 51, 59-70 (2008).
[2] Archilla B. G., A spectral method for the equal width equation, J. Comput. Phys., 125, 395-402 (1996).
[3] Arora R., Siddiqui Md. J., Singh V. P., Solutions of Inviscid Burgers' and Equal Width Wave Equations by RDTM, Int. J. Appl. Phys. Math., 2, 212-214 (2012).
[4] Dag I., Saka B., A cubic B-spline collocation method for the EW equation, Math. Comput. Appl., 9, 381-392 (2004).
[5] Dogan A., Application of Galerkin's method to equal width wave equation, Appl. Math. Comput., 160, 65-76 (2005).
[6] Esen A., A numerical solution of the equal width wave equation by a lumped Galerkin method, Appl. Math. Comput., 168, 270-282 (2005).
[7] Esen A., Kutluay S., A linerized implicit finite-difference method for solving the equal width wave equation, Int. J. Comput. Math., 83, 319-330 (2006).
[8] Gardner L. R. T., Gardner G. A., Solitary waves of the equal width wave equation, J. Comput. Phys., 101, 218-223 (1992).
[9] Gardner L. R. T., Gardner G. A., Ayoub F. A., Amein N. K., Simulations of the EW undular bore, Commun. Num. Meth. Eng., 13, 583-592 (1997).
[10] Haq F., Shah I. A., Ahmad S., Septic B-Spline Collocation method for numerical solution of the Equal Width Wave (EW) equation, Life Sci. J., 10, 253-260 (2013).
[11] Khalifa A. K., Ali A. H., Raslan K. R., Numerical study for the equal width wave (EWE) equation, Mem. Fac. Sci. Kochi Uni., 20, 47-55 (1999).
[12] Morrison P. J., Meiss J. D., Carey J. R., Scattering of regularized-long-wave solitary waves, Physica D, 11, 324-336 (1984).
[13] Ramos J. I., Explicit finite difference methods for the EW and RLW equations, Appl. Math. Comput., 179, 622-638 (2006).
[14] Raslan K. R., A computational method for the equal width equation, Int. J. Comput. Math., 81, 63-72 (2004).
[15] Raslan K. R., Collocation method using quartic B-spline for the equal width (EW) equation, Appl. Math. Comput., 168, 795-805 (2005).
[16] Saka B., A finite element method for equal width equation, Appl. Math. and Comput., 175, 730-747 (2006).
[17] Saka B., Dag I., Dereli Y., Korkmaz A., Three different methods for numerical solution of the EW equation, Eng. Anal. Bound. Elem., 32, 556-566 (2008).
[18] Zaki S. I., A least-squares finite element scheme for the EW equation, Comput. Meth. Appl. Mech. Engrg., 189, 587-594 (2000).
[19] Zaki S. I., Solitary waves induced by the boundary forced EW equation, Comput. Meth. Appl. Mech. Engrg., 190, 4881-4887 (2001).

Bilge İnan (bilgeinan@hotmail.com) -Department of Mathematics,Muallim Rifat Faculty of Education, Kilis 7 Aralik University, Kilis, Turkey

Ahmet Refik Bahadir - Department of Mathematics, Faculty of Arts and Science,İnönü University Malatyya, Turkey

