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Abstract. This paper proposes a class of error locating codes that
locates burst/solid bursts of length s or less as well as corrects burst/solid
bursts of length b(< s) or less. Lower and upper bounds on parity check
digits for such codes are obtained. Examples of such codes are also pro-
vided. Further, comparisons between the bounds of these codes with other
types of codes:
(a) codes that correct all bursts/solid bursts of length s or less, and
(b) codes that detect solid bursts of length s or less as well as correct solid
bursts of length b(< s) or less,
are also provided.
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1. Introduction

Wolf and Elspas [18] introduced the concept of error location coding which
is the midway between error detection and error correction. The codes using such
concept are known as error locating codes and they are found to be efficient in feed-
back communication systems. In such systems, the code length is divided into some
finite number of mutually exclusive sub-blocks and the receiver tests each sub-block
of received digits for the presence of errors. If the code detects an error, the code
has the capacity of locating the corrupted sub-block. Then the system can request
the retransmission of the corrupted sub-block instead of the whole block and this
process may be repeated for each incoming corrupted sub-block. The length of the
sub-blocks can be chosen relatively small which requires less number of parity checks
and this improves the information rate of the system.

During transmission of data from one place to another, data may be encountered
with errors due to noise in the channel. The nature of errors depends upon the be-
haviour of the communication channel. In channels, like radio channels, telephone
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line, errors follow a particular pattern. They occur in a clustered way, not indepen-
dently. This type of errors is known as burst errors. A burst of length b, due to Fire
[9], may be defined as follows:

Definition 1.1. A burst of length b is a vector whose only non-zero components are
among some b consecutive components, the first and the last of which is nonzero.

Further, in some communication channels viz. semiconductor memory data [11],
supercomputer storage system [1], errors are not only in clustered way, but also all
the clustered components are in error. Such errors are known as solid burst and may
be defined as follows:

Definition 1.2. A solid burst of length b is a vector whose all the b consecutive
components are nonzero and rest are zero.

For more study on solid bursts, one may refer to [2, 3, 4, 5, 6, 14, 15, 16, 17].
Fujiwara and Kitakami [10] proposed a class of error locating codes that is suitable

to computer memory systems organized with b-bit byte-organized semiconductors
memory systems. They have further proposed another class of error locating codes
[12] that corrects all single-bit errors and indicate a location of the erroneous byte
which includes e-bit errors. This type of codes is very suitable for an application
to memory systems. This motivates us to study a class of codes that corrects any
burst/solid burst of length b or less and simultaneously locates any burst/solid burst
of length s(> b) or less . In [2, 3, 13, 7], codes that correct and locate bursts/solid
bursts of length s or less separately are studied. For simultaneous correction and
location of burst/solid burst errors, the codes studied in these papers will not be
efficient. In view of this, it is important to study codes that are capable of not only
locating such errors, but also correcting some of them.

The paper is organized as follows. Section 1 i.e., the Introduction gives brief
view of the importance of the study of the paper, basic definition and some related
works to our study. In Section 2, we obtain gives lower and upper bounds on the
number of parity check digits required for a linear code that locates any solid burst
of length s or less and simultaneously corrects any solid burst of length b(< s) or
less. This is followed by an example. In Section 3, similar bounds are obtained
for burst error, followed by an example. Further, Section 4 provides comparisons
between the necessary (lower bound) and sufficient numbers (upper bound) of parity
check digits of these codes with other types of codes mentioned in abstract. Similar
comparisons are given for bounds obtained in Section 3 and codes correcting burst
errors. Section 5 gives the conclusion.

For a (n, k) linear code over GF (q) capable of locating any (solid) burst of length
s or less within a sub-block and simultaneously correcting any (solid) burst of length
b(< s) or less, the following conditions are required to be satisfied [8]:
(i) The syndrome resulting from the occurrence of a (solid) burst error of length b
or less must be non-zero and distinct from the syndromes resulting from any other
(solid) burst errors of length b or less.
(ii) The syndrome resulting from the occurrence of a (solid) burst of length s or less
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within any one sub-block must be distinct from the all zero-syndrome.
(iii) The syndrome resulting from the occurrence of any (solid) burst of length s or
less within a single sub-block must be distinct from the syndrome resulting likewise
from (solid) burst of length s or less within any other sub-block.
(iv) The syndrome resulting from the occurrence of any (solid) burst of length s
or less within any single sub-block must be distinct from the syndrome resulting
likewise from any (solid) burst of length b or less.

Kindly note that for the (solid) burst of length b or less, the conditions (ii) to (iv)
are not required to be considered, the condition (i) is sufficient. In the paper, by a
linear code we mean to be a subspace of n-tuples over GF (q). The length n of the
code that consists of k information digits and n − k parity check digits, is divided

into m mutually exclusive sub-blocks. The length of each sub-block is t =
n

m
.

2. Lower and Upper Bounds for Solid Burst Error

In this section, we study linear codes over GF (q) that are capable of locating all
solid burst of length s or less within a sub-block and simultaneously correcting any
solid burst of length b(< s) or less. First, we provide a lower bound on the number
of parity check digits required for such a code. The proof is based on the technique
used in Theorem 4.16, Peterson and Weldon [13].

Theorem 2.1. The number of parity check digits in an (n, k) linear code over GF (q)
subdivided into m sub-blocks of length t each, that locates any solid burst of length s
or less within a sub-block and simultaneously corrects any solid burst of length b(< s)
or less is bounded from below by

(2.1) n− k ≥ logq

{
1 +

b∑
i=1

(n− i+ 1)(q − 1)i +m
s∑

i=b+1

(q − 1)i
}
.

Proof. The theorem is proved by counting the number of syndromes according to
the conditions (i) − (iv) and then setting this number less than or equal to qn−k ,
the number of maximum possible syndromes.
For correcting solid bursts of length b or less, according to the condition (i), syn-
dromes produced by such errors must be nonzero and distinct. The number of such
syndromes is

b∑
i=1

(n− i+ 1)(q − 1)i. (refer [2])

We know that the conditions (ii) to (iv) are taken care of by condition (i) for solid
burst of length b or less. Therefore for locating solid burst of length s(> b) or less,
we need to count the syndromes produced by solid burst of length i only, where
b+ 1 ≤ i ≤ s. The number of such syndromes is given by

s∑
i=b+1

(q − 1)i. (refer [3])
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Thus, the total number of such syndromes including the vector of all zeros is atleast

1 +

b∑
i=1

(n− i+ 1)(q − 1)i +m

s∑
i=b+1

(q − 1)i.

Therefore, we must have

qn−k ≥ 1 +
b∑

i=1

(n− i+ 1)(q − 1)i +m
s∑

i=b+1

(q − 1)i.

or,

n− k ≥ logq

{
1 +

b∑
i=1

(n− i+ 1)(q − 1)i +m
s∑

i=b+1

(q − 1)i
}
.

�

Now we provide a theorem that gives an upper bound on the number of check
digits required for the construction of a linear code considered in Theorem 2.1. This
bound assures the existence of such a linear code. The proof is based on the technique
used in Varshomov-Gilbert Sacks bound by constructing a parity check matrix for
such a code (refer Sacks [14], also Theorem 4.7 Peterson and Weldon [13]).

Theorem 2.2. There shall always exist an (n, k) linear code over GF(q) subdivided
into m sub-blocks of length t each, that locates any solid burst of length s or less
within a sub-block and simultaneously corrects any solid burst of length b(< s) or
less provided that

qn−k > 1 +
b∑

i=1

b∑
l=1

(n− l − i+ 1)(q − 1)i+l−1 +
s−1∑
i=b

(q − 1)i

+(m− 1)

{ s∑
i=b+1

(t− i+ 1)(q − 1)i +
s∑

i=1

s−1∑
l=1

(t− i+ 1)(q − 1)i+l

−
b∑

i=1

b−1∑
l=1

(t− i+ 1)(q − 1)i+l

}
.

Proof. By constructing an (n− k)× n parity check matrix H suitably as below for
the desired code, we can prove the existence of such a code.

Suppose that the columns of the first m − 1 sub-blocks of H and the first j − 1
columns h1, h2, . . . , hj−1 of the mth sub-block have been added appropriately. We
lay down the condition to add jth column of the mth sub-block as follows:
According to condition (i), hj should not be a linear sum of immediately preceding
up to b−1 consecutive columns hj−1, hj−2, . . . , hj−b+1, together with any b or fewer
consecutive columns from amongst the first j − b columns h1, h2, . . . , hj−b, i.e.,

hj ̸= (uj−1hj−1 + uj−2hj−2 + · · ·+ uj−αhj−α)

+(vihi + vi+1hi+1 + · · ·+ vi+β−1hi+β−1),
4
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where ui, vi ∈ GF (q) are nonzero coefficients; α ≤ b− 1, β ≤ b and the columns hi’s
in the second bracket are any b or less consecutive columns among the first (j−1−α)
columns.

This condition ensures that there shall not be a code vector which can be expressed
as sum (difference) of two solid bursts of length b or less each. The number of choices
of these coefficients is given by (refer [2])

b∑
i=1

b∑
l=1

(n− l − i+ 1)(q − 1)i+l−1.(2.2)

Now according to condition (ii) and (iii), the syndrome of any solid burst error of
length s(> b) or less within a sub-block must be nonzero and distinct from those
syndromes resulting from such errors within any other sub-block.
In view of this, hj can be added provided that

hj ̸= uj−1hj−1 + uj−2hj−2 + · · ·+ uj−lhj−l,

where l < s and the coefficients ui’s are nonzero.

Also,

hj ̸= (uj−1hj−1 + uj−2hj−2 + · · ·+ uj−α+1hj−α+1)

+(vihl+i + vi+1hl+i+1 + · · ·+ vl+i+β−1hl+i+β−1),

where α, β ≤ s; ui, vi ∈ GF (q) are nonzero and hl+i’s are any s (or less) consecutive
columns corresponding to any lth sub-block among the m− 1 sub-blocks.

The number of such linear combinations is given by (refer [3])

{
1 +

s−1∑
i=1

(q − 1)i
}{

1 + (m− 1)
s∑

i=1

(t− i+ 1)(q − 1)i
}
.(2.3)

Again according to condition (iv), the syndrome resulting from the occurrence of
any solid burst of length s or less within any single sub-block must be distinct from
the syndromes resulting from solid bursts of length b or less. But, the number of
syndromes of solid bursts of length b or less is already computed in expr.(2.2). There-
fore, the number of syndromes computed in expr.(2.3) and distinct from expr.(2.2),
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is given by {
1 +

s−1∑
i=1

(q − 1)i
}{

1 + (m− 1)
s∑

i=1

(t− i+ 1)(q − 1)i
}

−
{
1 +

b−1∑
i=1

(q − 1)i
}{

1 + (m− 1)

b∑
i=1

(t− i+ 1)(q − 1)i
}

=

s−1∑
i=b

(q − 1)i + (m− 1)

{ s∑
i=b+1

(t− i+ 1)(q − 1)i

+
s∑

i=1

s−1∑
l=1

(t− i+ 1)(q − 1)i+l −
b∑

i=1

b−1∑
l=1

(t− i+ 1)(q − 1)i+l

}
.(2.4)

Thus, the total number of linear combinations to which hj can not be equal is given
by expr.(2.2) + expr.(2.4).
At worst all these combinations might yield distinct sum. Therefore, hj can be
added to H provided that

qn−k > 1 + expr.(2.2) + expr.(2.4)

or

qn−k > 1 +
b∑

i=1

b∑
l=1

(j − l − i+ 1)(q − 1)i+l−1 +
s−1∑
i=b

(q − 1)i

+(m− 1)

{ s∑
i=b+1

(t− i+ 1)(q − 1)i +

s∑
i=1

s−1∑
l=1

(t− i+ 1)(q − 1)i+l

−
b∑

i=1

b−1∑
l=1

(t− i+ 1)(q − 1)i+l

}
.

Replacing j by n gives the theorem. �

Example 2.1. For a (10, 4) linear code over GF (2), we construct the following
6 × 10 parity check matrix H, according to the synthesis procedure given in the
proof of Theorem 2.2 by taking t = 5, m = 2, b = 2 and s = 3.

H =


1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 1 1
0 0 0 1 0 0 1 1 0 1
0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 0 1 1


It can be seen from Table 3.1 that the syndromes of any solid burst of length 2
or less are all nonzero and distinct. Further, the syndromes of any solid burst of
length 3 are all nonzero and distinct in different sub-blocks and also distinct from
those resulting from solid burst of length 2 or less. This shows that the code that is
the null space of this matrix can locate any solid burst of length 3 or less within a
sub-block and simultaneously correcting solid bursts of length 2 or less.

6
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Table 3.1
Error pattern - syndromes Table

Error-patterns Syndromes Error-patterns Syndromes

For correction 0001100000 000110

Solid burst of length 1 0000110000 000011

1000000000 100000 0000011000 101101

0100000000 010000 0000001100 111010

0010000000 001000 0000000110 011101

0001000000 000100 0000000011 110100

0000100000 000010 For location

0000010000 000001 Solid burst of length 3

0000001000 101100 1st sub-block

0000000100 010110 1110000000 111000

0000000010 001011 0111000000 011100

0000000001 111111 0011100000 001110

1100000000 110000 0000011100 111011

0110000000 011000 0000001110 110001

0011000000 001100 0000000111 100010

Remark 2.1. It can also be verified that syndromes of the solid bursts of length 3
are all nonzero and distinct among selves as well as distinct from syndromes of solid
bursts of length 2 or less. Therefore, the code discussed above not only corrects all
solid bursts of length 2 or less, but also corrects all solid bursts of length 3.

3. Lower and Upper Bounds for Burst Error

This section extends the study of Section 2 to burst error, defined by Fire [9]. We
obtain the lower and upper bounds on the number of parity-check digits required
linear codes over GF (q) that are capable of locating all bursts of length s or less
within a sub-block and simultaneously correcting any burst of length b(< s) or less.

Theorem 3.1. The number of parity check digits in an (n, k) linear code over GF (q)
subdivided into m sub-blocks of length t each, that locates any burst of length s or
less within a sub-block and simultaneously corrects any burst of length b(< s) or less
is bounded from below by

n− k ≥ b− 1 + logq

{
(n− b+ 1)(q − 1) +m(qs−b+1 − q) + 1

}
.

Proof. The theorem is also proved by the same method used in Theorem 2.1, i.e., by
counting the number of syndromes according to the conditions (i) − (iv) and then
setting this number less than or equal to qn−k.
For correcting bursts of length b or less, according to the condition (i), syndromes
produced by such errors must be nonzero and distinct. The number of such syn-
dromes, including the zero syndrome, is

qb−1[(n− b+ 1)(q − 1) + 1]. (refer Theorem 4.16, [13])
7
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We know that the conditions (ii) to (iv) are taken care of by condition (i) for burst
of length b or less. Therefore for locating burst of length s(> b) or less, we need to
count the syndromes produced by burst of length i only, where b + 1 ≤ i ≤ s. The
number of such syndromes is given by

qs − qb. (refer [7])

Thus, the total number of such syndromes including the vector of all zeros is atleast

qb−1[(n− b+ 1)(q − 1) + 1] +m(qs − qb).

Therefore, we must have

qn−k ≥ qb−1[(n− b+ 1)(q − 1) +m(qs−b+1 − q) + 1]

or

n− k ≥ b− 1 + logq

{
(n− b+ 1)(q − 1) +m(qs−b+1 − q) + 1

}
.

�

In the following, we obtain an upper bound on the number of check digits required
for the construction of a linear code considered in Theorem 3.1. This bound makes
sure about the existence of such a linear code. The proof follows the technique of
Theorem 2.2.

Theorem 3.2. There shall always exist an (n, k) linear code over GF(q) subdivided
into m sub-blocks of length t each, that locates any solid burst of length s or less
within a sub-block and simultaneously corrects any solid burst of length b(< s) or
less provided that

qn−k >(q − 1)2(b−1)[(q − 1)(n− 2b+ 1) + 1] + (2−m)(qs−1 − qb−1)

+ (m− 1)

{
q2(s−1)[(q − 1)(t− s+ 1) + 1]− q2(b−1)[(q − 1)(t− b+ 1) + 1]

}
.

Proof. The existence of such a code is also proved by constructing an (n − k) × n
parity check matrix H for the desired code as follows:
Select any nonzero (n − k)-tuple as the first column h1 of the matrix H. After
having selected the first n− 1 columns h1, h2, . . . , hn−1 appropriately, we lay down
the condition to add nth column as follows:
According to the condition (i), hn should not be a linear combination of immediately
preceding b− 1 consecutive columns hn−1, hn−2, . . . , hn−b+1, together with any b or
fewer consecutive columns from amongst the first n−b columns h1, h2, . . . , hn−b i.e.,

hn ̸=(u1hn−1 + u2hn−2 + · · ·+ ub−1hn−b+1) + (vihi + vi+1hi+1 · · ·+ vb−1hb−1),

where ui, vi ∈ GF (q) and hi’s are any b consecutive columns

amongst the first n− b columns.

This condition ensures that the code vector can correct all bursts of length b or less.
The number of choices of the coefficients ui and vi, including the zero vector, is given
by (refer Theorem 4.17, [13])

(q − 1)2(b−1)[(q − 1)(n− 2b+ 1) + 1].(3.1)
8
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Now for locating the corrupted sub-block, according to condition (ii) and (iii), the
syndrome of any solid burst error of length s(> b) or less within a sub-block must
be nonzero and distinct from those syndromes resulting from such errors within any
other sub-block. In view of this, hn can be added to H such that hn should not be
a linear combination of the immediately preceding s− 1 or less consecutive columns
from the mth sub-block, together with a linear combination of s or less consecutive
columns from amongst the remaining m− 1 sub-blocks. The number of such linear
combinations is given by (refer [7])

qs−1 + qs−1(m− 1)

{
qs−1[(q − 1)(t− s+ 1) + 1]− 1

}
.(3.2)

Again according to condition (iv), the syndrome resulting from the occurrence of
any burst of length s or less within any single sub-block must be distinct from
the syndromes resulting from bursts of length b or less. Therefore, the number of
syndromes of any burst of length more than b but less than or equal to s within any
single sub-block is given by

qs−1 + (m− 1)

{
q2(s−1)[(q − 1)(t− s+ 1) + 1]− qs−1

}
− qb−1 − (m− 1)

{
q2(b−1)[(q − 1)(t− b+ 1) + 1]− qb−1

}
=(2−m)(qs−1 − qb−1) + (m− 1)

{
q2(s−1)[(q − 1)(t− s+ 1) + 1]

− q2(b−1)[(q − 1)(t− b+ 1) + 1]

}
.(3.3)

Thus, the total number of linear combinations to which hn can not be equal is given
by expr.(3.1)+expr.(3.3). At worst all these combinations might yield distinct sum.
Therefore, hn can be added to H provided that

qn−k > expr.(3.1) + expr.(3.3)

or

qn−k >(q − 1)2(b−1)[(q − 1)(n− 2b+ 1) + 1] + (2−m)(qs−1 − qb−1)

+ (m− 1)

{
q2(s−1)[(q − 1)(t− s+ 1) + 1]− q2(b−1)[(q − 1)(t− b+ 1) + 1]

}
.

This proves the theorem. �
9



Das /TJMCS (2014), Article ID 20140040, 14 pages

Example 3.1. Consider a (10, 3) binary code whose parity check matrix H given
below, constructed according to the synthesis procedure given in the proof of The-
orem 3.2 by taking q = 2, t = 5, m = 2, b = 2 and s = 3.

H =



1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0


It can be verified from Table 3.1 that the syndromes of any burst of length 2 or less
are all nonzero and distinct. Further, the syndromes of any burst of length 3 are all
nonzero and distinct in different sub-blocks and also distinct from those resulting
from burst of length 2 or less. Therefore, the code can locate any burst of length 3
or less within a sub-block and simultaneously correcting bursts of length 2 or less.

Table 3.1
Error pattern - syndromes Table

Error-patterns Syndromes Error-patterns Syndromes

For correction 0000001100 1001001

Burst of length 1 0000000110 1101100

1000000000 1000000 0000000011 0110110

0100000000 0100000 For location

0010000000 0010000 Burst of length 3

0001000000 0001000 1st sub-block

0000100000 0000100 1110000000 1110000

0000010000 0000010 1010000000 1010000

0000001000 0000001 0111000000 0111000

0000000100 1001000 0101000000 0101000

0000000010 0100100 0011100000 0011100

0000000001 0010010 0010100000 0010100

Burst of length 2 2nd sub-block

1100000000 1100000 0000011100 1001011

0110000000 0110000 0000010100 1001010

0011000000 0011000 0000001110 1101101

0001100000 0001100 0000001010 0100101

0000110000 0000110 0000000111 1111110

0000011000 0000011 0000000101 1011010

Remark 3.1. It can also be verified that syndromes of the bursts of length 3 are all
nonzero and distinct among selves as well as distinct from syndromes of bursts of
length 2 or less. Therefore, the above code corrects all bursts of length 3 or less.

10
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4. Comparisons Between Numbers of Parity Check Digits

Detection of error, location of error and correction of error are all important
with respect to the requirement of a system or situation. Accordingly codes are
constructed to deal with. The numbers of parity check digits required for the three
types of codes are different. The less is the number of parity check digits, the more
is the rate of information.

4.1. Comparison of bounds for solid bursts. In this subsection, we make com-
parisons between the necessary (lower bound) and sufficient number (upper bound)
of parity check digits required for a code discussed in Section 2, with the following
types of codes:
(a) codes that correct all solid bursts of length s or less, and
(b) codes that locate any solid burst of length s or less within a sub-block and
simultaneously correct solid burst of length b(< s) or less.

The necessary and sufficient number of parity check digits required for a code of
type (a) are given as follows.

Theorem 4.1. [2] The necessary number of parity check digits for a code which is
able to corrects all solid bursts of length s or less is given by

qn−k ≥ 1 +

s∑
i=1

(n− i+ 1)(q − 1)i.

Theorem 4.2. [2] There shall always exist an (n, k) linear code over GF (q) that
corrects all solid bursts of length s or less (n > 2s) provided that

qn−k > 1 +

s∑
i=1

s∑
l=1

(n− l − i+ 1)(q − 1)i+l−1.

Further, the necessary and sufficient number of parity check digits required for a
code of type (b) are given below.

Theorem 4.3. [5] The necessary number of parity check digits for a (n, k) linear
code over GF (q) that corrects any solid burst of length b or less and simultaneously
detects any solid burst of length s(> b) or less is given by

qn−k ≥ 2 +

b∑
i=1

(n− i+ 1)(q − 1)i.

Theorem 4.4. [5] There shall always exist an (n, k) linear code over GF (q) that
corrects solid burst of length b or less and simultaneously detects any solid burst of
length s(> b) or less provided that

qn−k > 1 +
b∑

i=1

b∑
l=1

(n− l − i+ 1)(q − 1)i+l−1 +
s−1∑
i=b

(q − 1)i.

It is evident from Table 4.1 that the necessary number of parity check digits
required for a code correcting any solid burst of length b or less and simultaneously

11
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detecting any solid burst of length s(> b) or less (Theorem 4.3) is less than or equal
to the necessary number of parity check digits required for a code locating any solid
burst of length s or less within a sub-block and simultaneously correcting any solid
burst of length b(< s) or less (Theorem 2.1) which in turn is again less than or
equal to the necessary number of parity check digits required for a code correcting
all solid bursts of length s or less (Theorem 4.1). In other words, the numbers of
parity checks are in increasing order.

Table 4.1
Comparison of necessary number of check digits for codes correcting & detecting,

correcting & locating, and only correcting solid burst errors.

m t s b(< s) n n− k n− k n− k
correction and location and only correction

detection correction
2 5 5 2 10 5 5 6
3 5 5 2 15 5 6 7
4 5 5 2 20 6 6 7
5 5 5 2 25 6 7 7
6 5 5 2 30 6 7 8

A similar comparison between the sufficient number of parity check digits required
for the existence of codes that correcting & detecting (as mentioned in Theorem 4.4),
correcting & locating (Theorem 2.2), only correcting solid burst errors (Theorem
4.2) is also done. From Table 4.2, it is clear that the sufficient numbers of parity
check digits required for codes correcting & detecting, correcting & locating, only
correcting solid burst errors are in increasing order.

Table 4.2
Comparison of sufficient number of check digits for codes correcting & detecting,

correcting & locating, and only correcting solid burst errors.

m t s b(< s) n n− k n− k n− k
correction and location and only correction

detection correction
5 5 5 2 25 7 9 9
10 5 5 2 50 8 10 11
15 5 5 2 75 9 11 11
20 5 5 2 100 9 11 12
25 5 5 2 125 9 12 12

4.2. Comparison of bounds for bursts. In this subsection, we make comparisons
between the necessary (lower bound) and sufficient number (upper bound) of parity
check digits required for a code discussed in Section 3, with the linear codes that
correct all bursts of length s or less.

Theorem 4.5. [13] The necessary number of parity check digits for a code which is
able to corrects all bursts of length s or less is given by

qn−k ≥ qs−1[(q − 1)(n− s+ 1) + 1].
12
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Theorem 4.6. [13] There shall always exist an (n, k) linear code over GF (q) that
corrects all bursts of length s or less (n > 2s) provided that

qn−k > q2(s−1)[(q − 1)(n− 2s+ 1) + 1].

It is clear from the following Table 4.3, the necessary number of parity check
digits required for a code considered in Theorem 3.1 is less than or equal to the
necessary number of parity check digits required for a code mentioned in Theorem
4.5. The numbers of parity checks are in increasing order.

Table 4.3
Comparison of necessary number of check digits for codes correcting & locating,

and only correcting burst errors.

m t s b(< s) n n− k n− k
location and only
correction correction

2 5 5 2 10 7 7
3 5 5 2 15 7 8
4 5 5 2 20 8 9
5 5 5 2 25 8 9
6 5 5 2 30 8 9

A similar comparison between the sufficient number of parity check digits required
for the existence of codes that correcting & locating (Theorem 3.2), only correcting
burst errors (Theorem 4.6) is also done. From Table 4.4, it is also found that the
sufficient numbers of parity check digits required for codes correcting & locating,
only correcting burst errors are in increasing order.

Table 4.4
Comparison of sufficient number of check digits for codes correcting & locating,

and only correcting burst errors.

m t s b(< s) n n− k n− k
location and only
correction correction

5 5 5 2 25 11 13
10 5 5 2 50 13 14
15 5 5 2 75 13 15
20 5 5 2 100 14 15
25 5 5 2 125 14 15

5. Conclusion

The bounds on the parity checks required for the existence of the codes discussed
in this paper are obtained. Construction of such codes has also been dealt with.
The author feels that there may be a systematic way of constructing such codes.
Further, the study may be extended to other types of errors.

13
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