
Turkish Journal of Mathematics and Computer Science

TJMCS

http://tjmcs.matder.org.tr/

@TJMCS
c⃝ MatDer

http://www.matder.org.tr/

Numerical Investigation of a Steady Flow of an
Incompressible Fluid in a Lid Driven Cavity
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Abstract. In this paper, numerical investigation for 2-D steady-state,
incompressible pseudoplastic viscous flow is presented. Pseudo time deriv-
ative is used to solve the continuity and momentum equations with suitable
boundary conditions. Depending on high Reynolds number, wall motions
of flow are investigated with respect to nonlinear viscosity by using Cross
model. This study has been undertaken as a first step toward under-
standing in heat and mass transport in solvent and polymer processing
equipment. Solution to the vorticity equation for moving top wall is ob-
tained numerically and found to be stable and convergent for high value of
Reynolds numbers. In fact some new results, which are governed by inertia
and variable shear-rate, are obtained and then this has been documented
first time.
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1. INTRODUCTION

Numerical methods are frequently used for two dimensional steady incompress-
ible Newtonian and non-Newtonian flow problems. Due to the simplicity of cavity
geometry, numerical methods can be applied very easily and effectively to this type
of flow problems and the results are very satisfactory. Despite the simplicity of this
geometry, there is a rich flow on the corners of cavity depending on Reynolds number.
There are many available different numerical methods applied to this flow problem
in the literature. Though it has been studied by many researchers extensively, there
are still some points of concern to be clarified. For example;

(1) Many different numerical methods for the solution of cavity flow problem
gives similar results as Re ≤ 1000. But the solutions deviate from each other
as Reynolds number gets higher.

(2) In some studies, steady solutions obtained even for high Reynolds number.
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For such studies, Benjamin and Denny [3] have used a method which is relaxed
by means of ADI methods using a non-uniform iteration parameter. Full converged
solutions at Reynolds number up to 104 with three different grid mesh sizes (max-
imum being 101 × 101 ) are generated in order to resolve basic questions on the
nature of the flow and to explore convergence properties of the method.

Rubin and Khosla [13] have used the strongly implicit numerical method with
2× 2 coupled stream function-vorticity form of the Navier -Stokes equations. They
have obtained solutions at Reynolds number up to 3000 with a grid mesh of 17×17.

Schreiber and Keller [14] have introduced efficient and reliable numerical tech-
niques of high-order accuracy for solving problems of steady viscous incompressible
flow in the plane, and are used to obtain accurate solutions for the driven cavity. The
numerical methods combine an efficient linear system solver, an adaptive Newton-like
method for nonlinear systems. They have obtained solutions at Reynolds number
10000 on a 180× 180.

Gupta [9] has used a fourth
(
∆h4

)
order compact scheme for the numerical so-

lution of the driven cavity flow. Then he has used a 9 point to approximate for
the stream function and vorticity equations up to fourth order accuracy. He has
presented steady cavity flow solutions for Re ≤ 2000 with a maximum of 41 × 41
grid mesh by using SOR iteration method.

Li et. al. [11] have used a fourth
(
∆h4

)
order compact scheme which had a faster

convergence than that of Gupta [9]. They have solved the cavity flow with a grid
size of 129× 129 for Re ≤ 7500.

Hou et. al. [10] have used Lattice Boltzmann Method for simulation of the cavity
flow. They have used 256 × 256 grid point and presented solutions for Reynolds
number Re ≤ 7500.

Liao and Zhu [12] have used a higher order stream function-vorticity boundary
element method (BEM) formulation for the solution of Navier-Stokes equations.
With this they have presented solutions up to Re = 10000 with a grid mesh of
257× 257.

Goyon [8] has solved the stream function-vorticity equations using Incremental
unknowns. He has presented steady solutions for Re ≤ 7500 on a maximum grid
size of 256× 256

Demir [5] has investigated the stability properties of wall motions in a cavity
region. Depending on high Reynolds number, he has studied both steady-state and
time dependent viscous as well as viscoelastic flow with Gauss-Seidel, SOR and ADI
(Peaceman-Rachford) methods, respectively.

Recently, Barragy and Carey [1] have used a p-type finite element scheme on a
257 × 257 strongly graded and refined element mesh. They have obtained highly
accurate

(
∆h8

)
solutions for steady cavity flow solutions for Re ≤ 12500.

On the other hand, Botella and Peyret [4] have used a Chebyshev collocation
method for the solution of wall driven cavity flow. They have obtained a highly
accurate spectral solutions for the cavity flow with a maximum of grid mesh of
N = 160 (polynomial degree) for Reynolds number Re ≤ 9000. They concluded
that their numerical solutions exhibit a periodic behavior beyond this Re.

Erturk, Corke and Gokcol [6] have introduced an effective numerical method for
driven cavity flow by using stream function and vorticity formulation. Using regular
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grid size of 601×601 and they solved the Navier-Stokes equations for high Reynolds
number Re ≤ 21000.

As known many factors effect the accuracy of a numerical solution, such as, the
number of grids, the spatial discretization order of the finite difference equations
and also the boundary conditions used in the solution. Also it is well known that as
the number of grids is increased a numerical solution gets more accurate. Therefore
in this study the effect of number of grid points in a mesh on the accuracy of the
numerical solution wall driven cavity flow is investigated, especially as the Reynolds
number increases. For this, 2-D steady-state, incompressible pseudoplastic viscous
flow equations are solved on progressively increasing number of grid points (from
128× 128 to 401× 401).

2. NUMERICAL METHOD

The following figures schematically represent the flow in a lid driven cavity region.

Figure 1. Physical configuration and description of boundary condition.

We use the stream function (ψ) and vorticity (ω) formulation for the lid-driven
flow of the steady-state incompressible pseudoplastic viscous fluid equations in the
form:

(2.1)
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where, Re is the Reynolds number, q is the shear rate, η(q) is the viscosity, and x
and y are the Cartesian coordinates as shown in Figure 1. Finally, the Cross model
is used in this work for modeling of the viscosity function and this is known as

η (q) = η (∞) +
(η (0)− η (∞))

1 + (λq)
1−n

In this Cross Model, η(∞) represents the infinite shear viscosity for very large
deformation rates and η(0) represents the zero shear rate viscosity for very small
rates of shear. Assuming n = 0.5 , λ = 1 , η(0) = 1 and 0 ≤ η(∞) ≤ 1 , we obtain
shear-thinning or so-called pseudoplastic behavior.

The first order pseudo time derivatives are now introduced into equations (2.1)
and (2.2) follows:

(2.4)
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Using forward difference approximation for the time derivatives in equations (2.4)
and (2.5), we get on rearrangement the following equations:
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Noting that ∆t is quite small, we now spatially factorize equations (2.6) and (2.7)
as follows:

(2.8)

(
1−∆t

∂2

∂x2

)(
1−∆t

∂2

∂y2

)
ψn+1 = ψn +∆tωn

(
1− ∆t

Re
ηn

∂2

∂x2
+∆t

(
∂ψ

∂y

)n
∂

∂x
− 2

∆t

Re

(
∂η

∂x

)n
∂

∂x

)(
1− ∆t

Re
ηn

∂2

∂y2
−∆t

(
∂ψ

∂x

)n
∂

∂y

−2
∆t

Re

(
∂η

∂y

)n
∂

∂y

)
ωn+1 = ωn +

∆t

Re

{
−4

(
∂2ψ

∂x∂y

)n(
∂2η

∂x∂y

)n
−
[(

∂2ψ

∂y2

)n
−
(
∂2ψ

∂x2

)n]
×
[(

∂2η

∂y2

)n
−
(
∂2η

∂x2

)n]}

(2.9)

4



Demir and Sahin /TJMCS (2013), Article ID 20130031, 10 pages

In the event of reaching a steady state, we have

(2.10) ψn+1 = ψn

and

(2.11) ωn+1 = ωn

Using this result in the right hand side of equations (2.10) and (2.11), we may write
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The solution method for the equations (2.12) and (2.13) involves a two-level updat-
ing. First the stream function equation is solved. For equation (2.12) the variable f
is introduced such that

(2.14)
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In equation (2.15), f is the only unknown and this equation is first solved at each
grid point. Following this, the stream function variable (ψ) is advanced into the new
time level using equation (2.14). Next the vorticity equation is solved in a similar
fashion.

3. RESULTS AND DISCUSSION

We use the symmetry for ψ and ω at spurious points outside the boundaries. On
the boundaries the values of vorticity are chosen from the nine-point compact finite
difference.

Left Boundary Right Boundary

ψ−1,j = ψ1,j , ψ0,j = 0 ψN+1,j = ψN−1,j , ψN,j = 0

ω0,j = −
(
∂2ψ

∂x2

)
0,j

ωN,j = −
(
∂2ψ

∂x2

)
N,j
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Bottom Boundary Top Boundary

ψi,−1 = ψi,1 , ψi,0 = 0 ψi,N+1 = ψi,N−1 , ψi,N = 0

ωi,0 = −
(
∂2ψ

∂y2

)
i,0

ωi,N = −
(
∂2ψ

∂y2

)
i,N

During our computations we monitored the residual of the steady streamfunction
and vorticity equations (2.1) and (2.2) as a measure of the convergence to the steady
state solution, where the residual of each equation is given as
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(3.17)

We use to solve the partial differential equation numerically is always consis-
tent and stable. It is consistent because the truncation error tends to zero and
it is stable because of diagonal dominance. In our computations, for all Reynolds
numbers, we have considered that convergence is achieved when for each Equations
(3.16) and (3.17) the maximum of the absolute residual in the computational do-
main (max (|Rψ|) and max (|Rω|)) are less than 10−4 . Such a low value is chosen to
ensure the accuracy of the solution. At these residual levels, the maximum absolute
difference in vorticity function value between two time steps,

(
max

(∣∣ωn+1 − ωn
∣∣)),

is in order of 10−8 and for stream function,
(
max

(∣∣ψn+1 − ψn
∣∣)),is in order of 10−10.

And also at these convergence levels, between two time steps the maximum abso-

lute normalized difference in vorticity function,
(
max

(∣∣∣ωn+1−ωn

ωn

∣∣∣)), and in stream

function,
(
max

(∣∣∣ψn+1−ψn

ψn

∣∣∣)), are in order of 10−5, and 10−10 respectively.
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Reference Grid ψ ω x y
Erturk et al. [6], 2005 401× 401 0.118585 2.062761 0.5300 0.5650

513× 513 0.118722 2.064765 0.5313 0.5645
601× 601 0.118781 2.065530 0.5300 0.5650

Schreiber and 121× 121 0.11492 2.0112 - -
Keller[ [14], 1983 141× 141 0.11603 2.0268 0.52857 0.56429
Ghia et al. [7], 1982 129× 129 0.117929 2.04968 0.5313 0.5625
Hou et al. [10],1995 256× 256 0.1178 2.0760 0.5333 0.5647
Liao et al. [12], 1996 129× 129 0.1160 2.0234 0.5313 0.5625
Benjamin et al. [3],1979 101× 101 0.1175 2.044 - -
Present 128× 128 0.115952 2.02482 0.5313 0.5625

256× 256 0.118182 2.05677 0.5313 0.5664
401× 401 0.118626 2.06322 0.5312 0.5661

Table 1. Comparison of the properties of the primary vortex; the
maximum stream function value, the vorticity value and the location
of the centre, for Newtonian fluid at Re = 1000.

Table 1 tabulates the maximum stream function value, the vorticity value at the
centre of the primary vortex and also the centre location of the primary vortex for
Newtonian fluid at Re = 1000 along with similar results found in the literature
are compared. In Table 1 among the most significant results, Erturk, Corke and
Gokcol [6] have solved the cavity flow on three different grid mesh ( 401×401 , 513×
513 , 601× 601) for Re = 1000.

Looking back to Table 1, for Re = 1000, our results are in very good agreement
with the results of Schreiber and Keller [14], Hou et al. [10], and Erturk et al. [6].
From all these comparisons we can conclude that even for Re = 1000 higher order
approximations together with the use of fine grids are necessary for accuracy.

Re Grid ψ ω x y
128× 128 0.095881 1.563308 0.5313 0.5391

1000 256× 256 0.104641 1.690638 0.5273 0.5391
401× 401 0.106355 1.715892 0.5262 0.5411
128× 128 0.102999 1.621777 0.5234 0.5313

2000 256× 256 0.102640 1.616420 0.5195 0.5313
401× 401 0.106473 1.673982 0.5187 0.5312

Table 2. The maximum stream function value, the vorticity value
and the location of the center, for viscous pseudoplastic fluid at
Re = 1000 and Re = 2000.

Table 2 tabulates the maximum stream function value, the vorticity value at the
center of the primary vortex and also the center location of the primary vortex
for viscous pseudoplastic fluid at Re = 1000 and Re = 2000 are introduced. This
table has been documented first time and our results are seen in Figure 2, 3 and 4
at Re = 1000 and Re = 2000 that display for interest significant change from the
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Newtonian case in this paper which has not given before. These figures exhibit the
formation of the counter-rotating secondary vortices which appear as the Reynolds
number increases.

Figure 2. Streamline contours of lid-driven cavity flow for N =
128 at Re = 1000 and Re = 2000, respectively .

Figure 3. Streamline contours of lid-driven cavity flow for N =
256 at Re = 1000 and Re = 2000, respectively .
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Figure 4. Streamline contours of lid-driven cavity flow for N =
401 at Re = 1000 and Re = 2000, respectively .

4. CONCLUSIONS

Numerical solutions of the 2-D steady-state, incompressible pseudoplastic viscous
flow for Reynolds numbers up to Re = 2000 have been presented and documented
first time. The flow equations in stream function and vorticity formulation are solved
computationally using the numerical method described. The stream function and
vorticity equations are solved separately by using pseudo time derivative. For each
equation, the numerical formulation requires the solution of two tridiagonal systems,
which allows the use of large grid meshes easily and we have used a fine grid mesh
of 401× 401. The numerical solutions converged to maximum absolute residuals of
the governing equations that were less than 10−4 at all Reynolds number.
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