Some Cases Of Superposable Fluid

Motions

by A. N. Ergun

(Depariment of Mathematics)

PREFACE

An outstanding difficulty in the theory of fluid motions is
the fact that the differential equations of motion are not linear.
Their solutions are difficult and sometimes impossible. Workers
therefore are frequently forced to use approximate methods of
solution, or to make assumptions which are not always sound. For
example, in a number of cases it is assumed that two distinct
solutions of the hydrodynamical equations of motion are linearly
superposable, ie. their sum is also a solution. The same
assumption is used again and again, for instance, in Lamb’s
hydrodynamics.

But have wethe right to do so, since the equations of motion
are not linear? Under what conditions is the sum of two distinct
solutions again a solution.? '

Professor J. A. Strang in Ankara University asked these
questions. He studied the subject fully and published his
results in «Comm. de la Faculté des Sciences de L’Univer-
site. D’Ankara, Tome I. pp. 1-32. 1948.» He says that any two

« This Tesearch is aceepted as a doctorate thesis in the Faculty of
Science of Ankara University.
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solutions of the equations of motion are not, in general, line-
arly superposable. If U, == (uy, v;, w,) and U; = (uy, v, ws) are
two solutions of the equations of motion of a viscous incompres-
sible fluid corresponding to given external forces, initial and
boundary conditions, not necessarily the same in both cases,
they are superposable on each other, if and only if

Uy X (V x Uy) + Uy X (V X Ulij/_,

‘where y is an arbitrary scalar function of x,y,z and t. This is
the superposability condition. If U;=U,=U we obtain the
condition for self-supérposability,

‘where as before y means any scalar.

When U, is given the superposability condition defines an
infinite class of vector functions U; which forms an additive
set with U,. This therefore seems to be a powerful means of
constructing new motions. That is precisely the object of this
memoir. ‘

It is divided into four paragraphs. The first deals with the
‘motions of a given type superposable on a purely rotatory mo-
tion with a constant angular velocity. The solutions of the stea-
dy and non-steady cases have been obtained.

, In the second paragraph a more general type of the motion
U, is used and the corresponding results for the same U, are
-obtained.

In the third, U, is the same again, but U, represents the
type of motion which is constituted by a rotation about the
z-axis plus a parallel flow along the- axis. It is found that mo-
tions of this type, if they are superposable on U, are also
self-superposable. The solution for the steady motion of a fluid
about a circular cylinder, rotating with constant angular velocity,
is obtained. Also the steady motion between two circular cylin-
ders, rotating with different constant angular velocities, is obta- -
ined. : ‘ : :

In the last paragraph U, is a two dimensional radial motion,
and U, represents a radial flow plus an axial motion. The forms
4
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of the arbitrary functions in U, are determined, both in steady
and nonsteady cases. The function h which defines the axial motion
is obtained from a non-linear differential equation of the 4*
order in series form, and the radius of convergence of the series
is obtained by a method found by Prof. ]J. A. Strang.

I am very glad to express my hearty thanks to my respect-
ed Professor J. A. Strang for his constant interest and valuable
.suggeslions in preparing this memoir.

1. Motions superposable on

ul oTm —— yu)
U1 H vy — X0 V ('1)
w1 j— 0’

where © is a constant. This amounts to the motion of a fluid
about a solid of revolution, together with which it rotates as a
solid about the z-axis with the constant angular velocity ». Now
we inquire what motions U, are superposable on U;. We are
assuming that the motion (1) is taking place in a viscous, incom-
_pressible fluid filling infinite space. Since in the planes perpendi-
cular to z-axis there will be a radial velocity outwards from
the axis, as a result of centrifugal’ effect, there will also be an
axial flow towards the rotating body. Hence we may take

uy = xf
Us: vy == yf 2
Wy — h

as the simplest possible form of fluid motion, which is superpo-
sable on U,; where f, g are functions of r = (x*+ g3z, z, and
t only.

The continuity equation is

of + rf, + h,=0. @)

The vorticity components of each motion are respectively
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. . 1 :
4 =0, ==y (fe— —hy),
1
n =0, == x(f: — T.hr)’
§y == 2(’)) ;2 e 0.
The superposability condition requires (%)
Ie= 20 - gyf
Lo =—20 - xf
X =0,
where y is an arbitrary harmonic function of x, g, 7z and &, The
consistency conditions require
f-==0, and 2f + rf, =0,
The first shows that fis a function of r and ¢ only; and
the second gives ’
=af(t) r2 4

where ‘a (¢) is an arbitrary function of # only. Now the equation
of continuity (3) furnishes

h, =0, )
i. e. h is also a function of r and ¢ only.

Therefore &, v, ¢z, and Xa Xg X= become

¥

b= -4, x,=2wa'~,y7’
X X

===k, Xo==—2va- =,

L= 0 Xe=0;

and X=2wa. arc tg ?x_ + & (8),

. (1) See J. A. Strang, Superposable Fluid Motions, Comm. de la Facul.
té des Sciences, Ankara. vol. I, 1948, p. 4.
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netion of #, which may be omitted
f y are used. Hence the motion

52

where k (#) is an arbitrary fu
since only space derivatives o

u,=alft) . xr3
vy = a (t) . y"”»
we=h (r)

h (r) being an arbitrary func-

(6)

is superposable on the motion Uj,

tion of » and ¢ only.
It remains to satisfy the equations of motion. These require

and @ the force potential.

where p is the pressure, o density,
3 yr—? are harmonics these can be written as

But since xr—%

x atx _d [p
e r Dx( p+g)’
Yo 9 > [P
RS Dy( p+9>’

a, __° (L
bz(p_‘_ﬂ)

The consistency conditions xy == Lyx» etc. are satisfied if

heta().rt hr—évzh:b(t),
Bk a) . ho— e A h)=00, 7

where b(¢) is an arbitrary function of ¢ only. -
) reduces to an ordinary dif-

When the motion is steady (7
quation, whose solution is easily seen to be

ferential e
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h= crely c 8

2 (a _ 2\‘) + 1 + 2y ) ( )

the constants of integration being ¢; and ¢, .

When the motion is not steady the equation (7) can still
be solved by separating the variables. This will be done in two
ways.

() Let h=RT, a(f)=24v, b(t)=— BT,

where A , B are independent of ¢. It then becomes -

T _ R"+L§:__\?:41Rr_5_v_
T —'|R r R r R R

The left hand side depends only on ¢, and the right hand side
is a function of r only. Hence each must be a constant, say
— vC? Therefore we have to solve the equations

T,T == — vC? ©)
R, +(1—24)r'R 4+ C*R—=B. (10)

The equation (9) shows that 7 == e—vC and the solution of
(10) is

R=r%1le1 Ja(Cr) 4 ¢, J-a (Cr)] + BC2,

provided 24 is not an integer. Hence

h=Y pRevC,
and (6) becomes
ug = 2Avx. r2

vy = 2Avy. r? (11)

wy = 2 uR . eC%

i

The pressure equation is
ple + @ =—24%2 r~? 4y Bz, ¢~vC% | an arbitrary function of £

N
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(i) In equation (7) the effect of 5 (f) is simply to add an
arbitrary function of ¢ to the value of 4 given by

hy + a(t)yr= A, — v (A + 1A ) =0.
Let o« == r¥fdvt, A= T.g(a),

where T is a function of ¢# only, and g («) is a function of «
only.

Since A, =T'g — it Tg', h = - Tg',

I
2vt
T I ”
b = 5o (g 22g),
(7) can be written in the form

ag 11— 20 gy T,

and the variables are separable if a(f) =aq, tT'|T =c;, i.e.
T—=kFk ti,

where a, c¢; , k are constants; and g must satisfy
va a !
o' +(1—5- 1+ a)g —cg=0 (12)

This equation reduces to Kummer’s confluent hypergeomet-
ric equation on writing f —= — «

d’g a dg _ |
pgi (1 — g — ) er=0, (13)
so that two solutions are in general given by
G1 1F1( [ i%—; ﬁ) == qFl (a, c; B) say,

a(a+1) B

.y B
o cl\!+c(c—}—l) or T
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a

and G, = g1 F, (5;“—'01,‘%;‘1“1;(3) ,

provided that ¢ = 1 — q/2v is not an integer or zero.

Hence g = AG, + BG,, provided that a/2v is not an
integer;

and h = kt°, (AG; + BG,) -+ an arbitrary function of ¢.
~ Also if a is fixed we can sum any set of such solutions, since
(7) is linear in h.

If a/2v is zero or an integer, one or other of the series G,
G; ceases to have a meaning because of zero factors in the de-
nominator. We can then apply Frobenius’s method to obtain the
general solution, which will then contain log 8. But log =00
if =0 or B==00, and so is excluded from the solution of the
hydrodynamical problem; so there remains only that one of the

series G, , G, in which no zero factors occur in the denomi-
nator,

If Cy — 0 .
L a ’
o't (ot 1—g) £ =0
o
and g=p ’fa“lﬁv_i e "datg, (14)
where p , g are constants.

This makes:

ow

When ¢ =10, g = p»/‘ac"/zv_'1 . € % du-+ q=pl + g say,

0
it is finite everywhere except on the axis r —0.

When ¢> 0, g = ¢ on the axis,

&%
=p f o™ e~ % duq at all other points.

0
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= pl + ¢ at infinity.
When ¢ = o, g = q everywhere, since « =0.

So the value of g represents an initial steady state, plus a
disturbance which spreads out from the axis to infinity — a
final steady state after the disturbance has died away.

But the initial and final steady states are not the same. It is
assumed above that a > 0, so that i%- —1 > —1,lfa =0
we cannot take zero as the lower limit of the integral, since the
integral is then infinite.

2. It has been shown (J. A. Strang, «Superposable Fluid
Motions> Com. de la Faculté des Sciences, Ankara. I. 1948, p. 31)
that if a solid of revolution rotates about its axis OZ with
constant angular velocity o, fluid motion of type

u-— —yg
v = xg ,
w — 0

is possible only if ¢ = o , i. e. the fluid moves as a solid with
the rotating body, except only when the rotating solid and fluid
boundary are circular cylinders whose axis is the axis of rotation.

This suggests the question what motions are superposable
on U, where

uy =— — ym »
v, = xo , (» = constant)
wi — 0

In particular do there exist U, superposable on U, of the
type
u, = xf — yg ,
Uy == yf + xg ,

wg:_—h;

1
where f, g, 2 depend only r = (x* + g% , z, and £?
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Since fh=—xg, — ylfi——h ),

1
g = — Y4, + x (fz—Th’) )

= 2¢+ rg. ;

the superposability condition (loc. cit, p. 49) furnishes if we re-
“place the function y by oy '

1= x (4 +rg: ) + 2f,

T =y (4g + rg. ) — 2xf

Lo = rg. - ‘
The superposability condition does not involve h.

The consistency conditions 3., = ;. etc. now require

fe=g.=0 and f=ua().r*. M
The equation of continuity for Uj is
f +rf4 h =0,
ie” h, =0, (2)

and it remains only to satisfy the Navier-Stokes equations of
motion. If we denote by Q the force potential of the external
forces these may be written

—5%(9+ %)ZXP—yQ ;

D P\ __ a 1 .
—-"D—z(g—{—?)——/lt —JI— —r-hr —V(}In + —;—/lr) y

where P=ar?*—ar*t—g,

Q“"—"gt_i_al'_2 (2g+rg,)—-—V(g,, + ‘::—‘gr)
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The consistency conditions show that
Q=56 .r* ,

and that since P and Q do not involve z the expression

R
—5—;(9 -+ %) cannot involve x or g, i. e. it is independent

of r, and therefore is a function of ¢ only, say c(¢).
We have therefore to solve the equations

gt tQtrg )=yt g )=b@r* @

Ry + arth, — v (ko + —i h-)=c (1) . )

where a (£) , b (¢) and c (f) are arbitrary functions of &.

When the motion is steady these reduce to ordinary diffe-
rential equations, whose solutions are easily seen to be

g=crt o 4l

—_— afv .
h Ha—2v) + egrlV ¢y

the constants of integration being ¢; , c3 , ¢; and c,.

When the motion is not steady the variables r and ¢ can
“still be separated by suitable choice of a(f) , &(¢) , c (f).

If we write g = RT as usual, and if
a=2Av, b=BT, T,=—vC¥%
where A, B, C are real and independent of ¢, we ;btain
R: +(B3—24)r ' R 4+ (C? —44r )R = — Bt (5)

The solution of the homogeneous equation is given by
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Rpey = r4-1 . Jt(ain)(Cv), (C = 0)

and the solution of (5) follows by variation of parameters, after
which that of (3) takes the form

g=y AReVCRt | (6)
Similarly if A= ST, where .S depends only on r, and if

¢ (t) = — DvT, equation (4) becomes
S+ (1—24)r S+ C2S =D N

so that if C =0
S =4 [eda (Cr) + ealoa (CO) + 5

and h=Y pSe Ct. (8)

These equations, along with
f=2A4v . r ‘ 9

complete the solution apart from cases arising from particular
values of A4, B, and C; and those in which the variables are
not separable.

Let us try to solve the equations (3) and (4) in a different
way.
Take the equation (3) first. It can be written as

—rigy +(@—3)rg. +20g Fr2 . g, =b(?). (10)
The solution of the homogeneous equation, i. e.

—vrig, 4+ (a— 3v) rg, + 2ag + r¥g, =0 (11)

can be obtained by the substitution
— 2
4vt

g=T.G(x), where a«=
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After the substitution dividing both sides by 27, rearran-
ging terms, we obtain

—v[2:2Gyy +2 (2 — @) 2G, ]+ axG, —}—aG——QvocG.t—; =0.
Now if a=24v t;—:cl L T=ket
the equation becomes

G,y + (2 — A — «) «G, — (A — @) G =0, 12)

where A4, ¢;, k are constants.

Change the dependent variable from G to F by the substi-
tution

G=aom . F(a),

where m is a constant, and F («) is a function of « only. The
equation (12) becomes

2F' +H[(@2m +2— A) — &) 2F +[(m + 1) (m — A) +- (ey— m) «] F=0,
which reduces to a confluent hypergeometric equation if
(m+1) m—A)=0,
1. e. if m=—1, orm=4.

If A is not zero or an integer we obtain two independent series
solutions, which can be expressed as :

Fi(—eg—1, —4; 2, and Fi(A—c,A+2;0a).
Hence the general solution of (12) is

C=Ca!. Fi(—e;—1, —A4; «)

+ Cot . F3(A—c; , A+ 2 %),

and the general solution of (11) is
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g =kt . 2 G, since (11) is linear.

Now the solution of the homogeneous equation is complete.
It can easily be seen that a particular integral of (10) is

g=r2.[b@adt;

hence the general solution of (10) is

g=ktn .Y G+r2. [b() dt

For the solution of (4) see page 54.

3. Determination of motions U; of the kind

uy = — yf U =—Yyo
Us: wv,=  xf which are superposable on U;: vy xw
 wy == h w, = 0,

1
where f and A are arbitrary functions of r = (x*+ y%?, zand &.

U, represents a rotatary motion about the z-axis, plus a pa-
rallel flow along the axis. U, is a purely rotary motion with
constant angular velocity o.

The continuity equation for U, is
h,=0. . (1)

If we calculate the vorticity components we obtain

Elzo ) E.z: g'r_h’—_ xfz ]
x

n=0 |, v;2=——’-_-lz,—yf, )

L =20 ; Ga=2f +1f

Superposability condition requires
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Ao =o0x . (4f 4-rf)
Xy =wy - @f +f) .
fe=wr?. f,

The consistency conditions y., = y,. , etc. are all satisfied if

f:=0; (2)

and so

1=w . / —12— di (r*/) dr + an arbitrary function of t.
r r

Hence if f. = A, =0, the motion U, is always superposable
on U;; and it is also selfsuperposable (See, ]. A Strang, loc.
cit. p. 51). For if we put

U X (VX U) =,

where ¢ is an arbitrary scalar function of x, y, z and t; this
requires

be = 2xf2 4 xrff, + xr—t hh, ,
Yo == 29f*+ grffe + grthh,
Ye= 0

The consistency conditions are satisfied identically, and
d 1 1
= [ L (= — A
b ﬁ dr(zrf’)dr+2h+c, 3)

where C may be an arbitrary function of ¢ or a constant.

Now let us satisfy the equation of motion. :
Since the motion is self-superposable the equation of motion
may be written

(_;7 — vv’) U,=v(¢—i’) @

where { is given iﬁ (3), and
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te+ o U

bad
I
i) I‘c

.. P ,_1_22-__1_2
=3 -+ Q -+ 2r]"—[—Q/z

v = [ (rrmd — (2 e~ frp

The three components of (4) can now be written

_ 2 (r e xfs —yx [ 3 T

Dy(p +-Q) fe (for +3r7 f)—yf?,
0 —{—Q)—b—v(}z +rth) .
Dz( "

These are consistent if

e+ rfee =V (tfore + 5fer +3r71 1)), )
and he=v(he—+rth)+c(®). 6)

When the motion U, is steady the solution of (5) and (6)
are respectlvely

f=Alog r+ Art A,
h=B,r*+ B, log r + B, ,
where A; , B; are arbitrary constants.
Hence the required solution for steady motion is
uy=—y (A; log r + A3 r3 -} A,)
oy=x(A log r + Ay r2} 4,), o
wy=Byr*+ B, log r 4 By .
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If we regard U, as the velocity of a fluid rotating as a so-
lid about a circular cylinder of cross section a which rotates
uniformly with a constant angular velocity o about its axis
(z-axis) , and if the fluid extends to infinity and is at rest there
we must have :
U,=0 when r—> o
U,= U, when r=a.

When these boundary conditions are satisfied we obtain

U, = — o a’yr*
vg= waixr? | 8)
Wy — 0.

This is the steady motion which is both self-superposable
and superposable on U,. It satisfies the Navier-Stokes equations
and boundary conditions. It is an irrotational motion about the
cylinder.

If the fluid is bounded externally by a coaxal circular cylin-
drical surface of radius &> a which rotates also with a cons-
tant angular velocity o, then we can retain all the coefficients
in the solution (7).

The boundary conditions are

Uy, = U when r=a ,
fO) = o when r==%
h(r) =0 :

There are six coefficients to be determined, but there are
only four boundary conditions. Hence two of the coefficients
will remain arbitrary. The solution between the two cylinders is

_ 0 — 6+ Ay (-2 — a~2) r 11,
e e el ).

oy w—-wi—i-Az(b;‘?——ai’)l T4 1 1 w] 9
g 0 o8y TAG Y] O

wy,—Bs .[l_cz%:(i@ (P —a?) + log—;—] .
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When the motion is not steady the equation (5) and (6) can
still be solved by separating the variables. Thus if we put

o =2f + rf.

the equation (5) raduces to

= (p +rte ).

Let ¢ = RT , then this becomes

T — . Rrr 1 Rr . 9

7 ( - -+ - ,—P_) = —w3 say,

where ) is a constant. Hence 7 ~ e VA%t and

Rrr’{_r_er_F‘lzR:O
R == FCI jo ()\r) .

Therefore
2f +rf.= Cle_")‘zf Sl O,

f@,t)= Cie "Mt | r—2 f rJo (O0r) dr + Cgf‘z s

where C; , C, are constants of integration

(10)

Similarly if we put A= ST, where S is a function of r
only, the equation (6) may be written as

s. 0

= S+ s+ 2.
But we may choose c (f) and T,|T suitably. Let

¢c(t) =— BT and T, = — T

as before, where B is an arbitrary constant. Hence
See + 58S, 12285 =8,

< S=d; Jo (ar) 4+ By 2.
Then

h=1[d, Jo (ir) + B2 .e "%, (1)
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‘4nd' théfinal 'solution for variable motion is

Fricw mane i
Ry AW Z

wp=—ygr? . [Ce™ . [r], Or) dr + Cil ,
v, =xr%. [Cle—\';‘z'f . _/f“.lo (r) dr + G4}, 12)

wy =[dyJ, Or) + BA%] . e .

If we choose C; = wa? , solution (12) reduces to (8) after
an infinite time, for the term containing the integral vanishes
when £ = o .

Solution of (5) in an other way.

" If we assume that 2f + rf, = ¢ , the equation (5) reduces to

o, =v (9. + % o) (13)

= rif = [ rodr + ()

f=r3.fredr+r*.5() - (14)
< e grariemn :
where ¢ is the general solution of (13), and &(¢) is an arbitrary
function of t.

In order to solve (13) let a«=—rt¢t,and ¢9=T.F (),
where T is a function of ¢ only, and F(2) is a function of «
only. Then

aF’ F tT’
Frtl=a F=—"7"

The variables are separated. Each side must be a constant.
If  tTT==—c,ie T=kt™

where ¢ , k are constants, then
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aF" + (1 —a) F' = cF , | %)

which is Kummer’s confluent hypergeometric equation. One par-
ticular solution is ’

oo c clc+1) «
File . 1 »'“)——14“‘1'!" T!__I_T Bf T ety

the other is not independent from the first, since y=1. But
Frobenius’s method of solution furnishes the other, which then
contains log « . It is

File, 15 a) log | a| + Y Ayam,

L 1 1 1
WhereAm__s—c—+c+1+_”+c_+~';{;1 ,

cle+1).. . (c+m—1) »
. (ml)? , (m>1).

If ¢ is zero or a negative integer the first solution termi-
nates, otherwise it is an infinite series which is convergent for
all values of « .

Hence

?zkrc{ Fi(e,15a) (A+Blog |« |)+'2A,,,¢m} ,

provided ¢ is not zero or a negative integer, and f is given by
(14).

The equation (6) is just the same as (13) plus an arbitrary
function of t. The second part will add only an arbitrary func-
tion of # to the solution of '

hy =y (hee + rth),

and this can be solved as exactly the same as in page 65.Hence

h=kt=. P (e, 15 @) (A+ Blog | ¢1)+2Amam€

-+ an arbitrary function, of t.
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4. To determine the motions of type

u, = xf uy = xr?
v, = yf which are superposable on U : v, = yr*
w, = h ‘ w, =0,

1
where f and h are functions of r = (x* +- y)? , z, and ¢ only.

The superposability condition requires

Y, =%,=0, and y,=f—r"'h , 1)

so that y can depend only on z and t.

Since :
Le=—y(f.—r"h),
nw= x(fs—r'h),
L = 0 ’

it is clear that U, is irrotational or rotational according as y, is
or is not zero.

The continuity equation is
2f + rfe + A, ==0. 2
Eliminating A from (1) and (2) we find
fro 3 o A o = Yaz s
which is reduced by the substitution f=F + x to
Fo43r1F +F, =0, (3)

which is equivalent to V* (xF) = V2 (yF) =0, since F is a func-
tion of r, z and ¢ only.

The same substitution reduces (1) to

Fz—r_ihr:() 2 (4)
so that A uy = xF ,
vy = yF ,

wi’:h )
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‘is an irrotational motion satisfying the required conditions. Since
U, is itself irrotational the existence of such solutions is to be
expected, for any two irrotational motions are superposable.

, In general therefore when the motion is rotational we must
look for solutions of the form

u=x(F+y),
v=g((F+x,
w=h ,

where y, == 0 , and F is a solution of (3) ; 2 is a solution of
(4) , x satisfies (1), and the Navier-Stokes equations are also to
be satisfied.

The continuity equation (2) may now be written
2F + rF. 4 2¢ + h. =0. o

Eliminating 7 by means of (4) we have
=L g ®
z 2 ’ »
so that 2k is a function of z and ¢ only. Let
p 1 1
A= +o+ 5 PE+D+ 5 B

The Navier - Stokes equations can be expressed in the form

4
“BT:’(VXzthZz—Ft—Xt)»

24 ' ;
—%’;:szb+r27uz(F+X)_~ht )

_and the consistency condition is reduced on using (5) and (6)
to

Y zez — hx.zz = Let :0 s (7)

which shows that £ is a function of z, t only; so (6) becomes
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Xz:—_i—hzz s

and (7) becomes
vh,,,,— hh,, —h,_,—=0 . (8)
If the motion is steady we have to solve

VIIzzzz = hhzzz * (9)

Since % depends only on z, (4) becomes
F.=0,
so that F depends only on r, and hence from (5)
2F 4 rF,=2a=—2y —h, , (10)
where a is a constant, and so
F=a+4+br?, (11)
where a , b are constants.

The solution of the steady motion problem is now complete,
A being the solution of (9) , F is given by (11), and 3 by (10).

The equation (9) is of cansiderable interest. Its. form shows
that if 2 and its first three derivatives are finite and definite
when z =0, A can be expressed in the form of a Taylor series
whose coefficients can be calculated from the equation itseli.
But the region of convergence of the series is not at all evident,
nor indeed is it clear whether the series converges for any va-
lues of z other than zero. This requires investigation.

There is obviously a solution
h=a bz} c2?,

where a , b, ¢ are arbitrary constants. This makes 4,,, = 0 for
all values of z. It may be shown that this derivative is a factor
in every later derivative, for if we denote by 4. the n** deriva-
~ tive, and if
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hn = h . f h ’ h ’ b «
3 ( t s ha) =¥ noiluios

ithen hn+1 == Ilaf "l" }lg df s L ;,3 il

s ad? ol

- (— hf + f) ) a&szén:mst'

Hence if h; is a factor of An , it is also a factor of Anyy .
But the differential equation itself shows it to be a factor of
h; , so it is a factor of A, for n > 4.

This explains the significance of the presence of the quad-
ratic solution. It is the most general solution for which A; =0
when z=0, and %, h; and A, are finite.

If we write A = vH the equation (9) becomes
5 pi & sl

HH; = H, . sovie =i 'E‘(12)

Mif’ihdhg‘ﬂ
Since the equation is invariant when we replace z by z 4 ¢,

where ¢ is an arbitrary constant, any solution is still a solution
when we replace z by z 4 ¢ . i

The equation is homogeneous if H is taken to be of degree
—1 in z. This furnishes the particular solution

H=—4z"1, i
so that H=—4(z + c)‘*’l kot sl T

is also a solution. This shows that the Taylor series solution
does in fact converge under certain circumstances, in this case

for

—i—i << 1, where ¢ is arbitrary. T
. s} argine ad!
The equation (12) is also exact, and on integration fdrtishds
sitmnnd elimie
H, = HH, — %_ He + C, . ?m;i:»zm?? }9: ;:

IR IR §
where C, is the constant of integration. This equatiop .bas.the
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solution H = a + bz |- ¢z if C,= - (B—4ac), and H = — 421

lf C{‘:O.

In the particular case when H = — 4z~! the motion U,

becomes
b v
Ug — X —— s 1
2 X 22

b 2v
w=y|mw—F

where b is a constant.

The streamlines of the motion are given by the simultaneous
equations

dx . dy _ dz

b 2\ b ) 4y ’
x?“?‘,%ﬁ“? 3
F — ¢, and b2+ 2 (x* + y¥) — c,z=0.

X
The streamlines are the intersections of the surfaces

% =cy, b2+ 2(x®+y? =cyz.

If 5 > 0, these are similar ellipses touching XOY plane at
the origin. One of the principal axis is the z-axis always. The
distance of the centre of the ellipse is given by c,f2b. They are

1.
similar, because the ratio of the principal axes is (§/2v)? , i. e.
it is a constant. The streamlines in the xz — plane are shown
in fig. 1.

If 5 << 0 the streamlines are similar hyperbolae, one of the
branches of which touches XOY plane at the origin. The fig. 2
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shows the stream lines in the xz — plané. The inclination
of the asymptotes is constant and is the same as the ratios of
the principal axes of ellipses. When c, = 0 the streamlmes re-

%

Fig, 1

duce to a pair of straight lines passing through the ‘origin,
which are parallel to the asymptotes.

The solution of equation (12) by Taylor series.
HHy = HAV ’
where the suffixes denote differentiation with respect to z. Let
H=ctcztet+....9%cz"+....

Substituting in the differential equation and equating the
coefficients of like terms we obtain

" 8464 = [3c30
255 = facsty + ficicy
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ZnCn = [365Cn—s + ficsCp—s + - - - Ffoscnaco
where fa=ta(n—1)(n—2), and

g.=nn—1)(n—2)(n—3).

Fig. 2

Using these recurrence relations we can obtain a direct
proof of the convergence of the Taylor series *. They do not
give any information about the first four coefficients, i. e.
Co s €1 » C3 » C3 ; they are quite arbitrary. Replace all the coeffi-
cients by their moduli, which for brevity are denoted by the
same letters, and let

¢ > max. (¢g, ¢; , €2, C3h (13)

We want to determine two constants K > 0 and » > 1, such
that

c, = K (14)

(*) The method of proof of the convergence is due to Prof. d. A.
Strang.
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for all values of n. If this is true we shall then have a dominant
series K Z A"z", of wahich the radius of convergence is A1 .

According to (13) and (14) we have

g = c¢c =K ,
¢ =< ¢ =< K ,
cs = ¢ =< K)® ,
;g = ¢ =< KH3

Hence if K = ¢ and % > 1 these are all satisfied.

Atfter replacing the coefficients by their moduli the general
recurrence relation becomes

aln = f3c3cn*'~’n + f&cécﬂﬁﬁ + oo + fn—-icn‘—lco '
. n—1
= K91, 3 f, , by (14)
s=3

Dividing both sides by g, , since it is positive for n > 3 , and
using (14) again we obtain

0 = 2 gmat _ gon

But Fodfotfod oo .. S fei =g

and so PR 'Zlf.K'

and the least permissible value of % is max. (~Z—v » 1), Therefore

the series converges inside the circle
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1
lz| =

max. (—9— , 1)

and .the dominant function is ¢ (1 — 22z) ' .

One-way power series solutions other than
Taylor series.

Let H —Z ez, (e ==0)

r=1

so that if m, =<0, 1, 2, 3

Hy=Y f(m)er =

r=1

DO

H4:Z g(mr)c,- 2™, 4 >
r=1

where  f(m)—m (m, —1)(m, —2), and
g (m,) = m, (m, — )(m, — 2) (m: — 3).

The leading terms in the differential equation are
g(m)eczm 4 . ... =f(m)c 2234 ... ..
Since f(m)=+0, g(m)==0, we must have
my—4=2m, —3 and f(m)cth =g(m)es; |
i. e my=—1 | and ¢,=—=—4, since ¢;==0.

Hence apart from:m; =0, 1, 2, 3 the only possible solu-
tions in one - way accending or descending powers of z must
begin with —4z*.

It is evident that the case m; = O includes the Taylor series |
in ascending integral powers of z, and that with suitable values
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of the initial coefficients ¢, ¢, , ¢, the Taylor series will also
include the cases my=0, 1, 2, 3, provided the series are se-
ries of ascending integral powers. It only remains to inquire
whether these values of m, can furnish other types of series. It
is easily shown that they cannot. For instance if we assume that
m; =0, and that the solution is a descending power series,
so that

HIC{‘FZC'Z"'"’ » (c10, 50, 0 << my <mg .. .)

r=2

we find that the highest index after substitution is —m; — 3,
and it occurs only once. Hence the ' corresponding coefficient
must vanish. i. e.

f‘(—‘mz) cie; = 0,

but this is a contradiction, since none of the factors is zero.
Hence m; = 0 does not furnish a solution in descending powers
of z, whether integral powers or not; and the same is . true of
my=1, 2, 3. Similarly with positive nonintegral powers. The
values of 0, 1, 2, 3 lead only to series included in the Taylor
series.

Let my=—=—1, ¢,=—4, so that
H=—4z1+ Z ¢, z™ . , (16)
=2

On substituting in the differential equation and rearranging
terms we find '

VA

0 .
( Z fr Crvzm’—B B

r=2

r=2

o )
Z g, crzm A = Z c, z™
r=2

where - fr=m (m, —1)(m: — 2), and

g =(m +1)m (m —1) (m —2)—24,
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and c,, being merely the coefficient of the first term after z1,
is not zero. The leading terms cannot contain the same power
of z, for this would require

2my — 3 = my — 4 e mp=—1=m,

hence at least the first term on one sids or the other must dis-
appear, because its coefficient is zero. Hence

either fzcgg — 0 or graC2 = O.
Assume that f; = 0, and that f, is the first non-vanishing

coefficient in the corresponding series. Then comparing the in-
dices we must have

m?+ms_3:m2—4’
that is m, = — 1 == m; , which can not be true.

Hence f; == 0, and we must have g, == 0, or
(my + 1) my (my — 1) (mg — 2) —24 =0,
e m——2,3,5 (FiVD). a7

The other indices and coefficients now furnish

mg = 2my; + 1 g3Cs = facaCe
m; = 3my; + 2 gics = facaes + facace
n—1
m, = (mﬂ + 1) n— (mZ + 2) ‘ Znln — Z f,C,Cn.{_l_‘
=2

When mg=—2we obtain the expansion of — 4 (z —i——% )A’ in

descending powers of z. The other series are new, and evident-
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ly two of them are conjugate complex numbers, with terms
such as

cz? . [ cos (q log z) + i sin (q log 2)] .

The discussion of convergence proceeds on lines similar to
those employed in dealing with the Taylor series, except
since m; may have complex values we must substitute for £, and
g- their moduli.

Let us try to determine the constants K > 0 and ) > 1,
such that

e = K)* for all values of n. (18)
This is true for n<y—1, if
Kéc;max.(cg_,ca ..... cv 4}, AXx1.

In order to satisfy (18) for n>>v take the general recurrence
relation, which when all the coefficients are replaced by their
moduli becomes ‘

n—1
ZrCr = Z fscscn-'-l—a )

a=2
and assume that (18) is true, then

n—1

&aln é( Z fs). K3 ‘.

=2

After a sufficiently large value of n, say N, g, becomes po-
sitive, and :
lim xf 1
n-—>wx g, 4 I mg + 1 l

Hence we can find a sufficiently large positive number N, so
that

1 .
c.é?‘;nFﬂK’l + ) for néN,
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and the condition that (18) will also be true for n>v (=N) is

-,__1_—__ 2yn-t+1 n
[ my ”Kl = K

If K=, we have to satisfy the simultaneous equations

1é)\ém1.i—_1_‘.
c

Hence if ¢ =< 4 |m,; + 1| the series converges inside the cir-
cle 2-1. The maximum radius of convergence is 1.

Solution of the non-steady case.

When the motion is variable we have to solve the equation
(8) instead of (9). F again has the form given in (11), but a and
b are now arbitrary funtions of time; y is given by (10), a being
an arbitrary function of .

It remains therefore to solve the equation (8). First of all
observe that it is exact, and can be integrated once. We have
then

v hzzz——h hsz+ % hzg—'hztzcl;

but this does not help us very much.

Now we wish to obtain the solution of the original equatioh
v hzzzz - hzzt =h hzzz

approximately in series form, and we shall do this in two diffe-
rent ways.

() Let h=vf(z) - g(=),

’ 2
where « :fv—t, ‘f(2) is a function of z only, and g(«) is a func-
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tion of « only; v is constant, it is kinematic coefficient of vis-
cosity. By denoting all the derivatives by suffixes the equation
becomes

fag—}‘%o‘c fs g1 24“ f222+32“ figs+ 165’ng+

162 16 1622
(@ +3) ( g+ gt fgsj L
80&’ )
+(10°¢+3) fgz szgl
122 12a

:fg : [fsg"l'éz—afﬁgi 2 fig: + —"fgs"l“ zzf1g1+ fgz]

Multiply both sides by z'/f. Then z disappears from the
equation if 2f,[f, 2flf, 22felf. zfilfs Zfs, Z°fe Zf1 zf are all
constants, which is true if f=kz"1, where k is any constant.

'The remaining equation is

12g —12a g, + 6 a2g, + 8l g; + 8alg, | 12 g, |+ 8t gg

=kg(—3g+3ag +4g) (19

We note that g==—4 k1, i.e. A=-—4vz !is a solution,’

that « = 0 is a singularity, so that negative powers of « must

be expected in the general solution.

If 3 c,«" is a solution of (19) we have the following recur- -
rance relations. :

3k (,‘0’ = 12 Cg i-e. '00 _ 4 ki;" . (20)
3kcyc; =0 ie. ¢ =0;

3k (coca— cgcy) = O identically + ¢, is arbitrary,
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3k(10 0003 + ci 62 — cO 03) -— 6003 + 24 62 i- e. Ca = e '77—02

n
A,c, + B,c,1 =k Z OmCrCrnm (21)
m=0

where

=12 —12n 4 6n(n — 1)+ 8n(n— 1) (n — 2) +
8n(in—1) (n—2)(n—3)=2(n—1)(n—2)2n—1)(2n —3).

Bi=12n—1)(n—2)+8(n—1)(n—2)(n — 3)
; =4(n—1)(n —2)(2n — 3),

and
O =—3+3m-+4m(m—1)(m —2) =(m — 1) 2m — 1) (Zm — 3).

By using the recurrence relation (21) we can prove the con-
vergence of the Taylor series. Rearranging the terms and pick-
ing out those containing c, the farmula (21) can be written as

n—1

[An - ch (C.DO + cP")] C, = k Z Pm CmCpnm — Bn Ch—1-

m==1

On using (20)‘and.replacing the terms on the righ’t by their
moduli this can certainly be written in the form

- n—1 |
[An + 4G+ 9)lon <k - Y O o Com + Bacans-

m=1

Now if we assume, as in p. 79, that

c, = K=, for all values of n
Wé must have
n—1
Loc, < K3 - k ), ¢n + Ba KA* 1, 22)

m=1
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where L, = An+ 4 (g4 -+ on)
=2n(n—1)(2n—1)(2n — 3) — 12,

n) 15
and 3 4 (n-_l)( ——-5n2+—2—n~—3).

m=1

Since L, > 0 when n > 2 we can divide both sides of (22)
by L. and obtain

ey = K2y . _k_ii?m_}_% K-t

U

L

is an increasiug function of n, and when n>3 it is

n

positive and remains less than —:3— . B,/Ln diminishes rapidly as n

. . : .1 .
Increases, its maximum value when n>3 is = - Hence if we

replace both the ratios by —,1]- it will be true that

c, —I%Ki)\"—}- Ko»1, when n>3.

Now the condition ¢, =< K" requires

k -1 1

= n it n—1{ n —_—
7K21 +7K1 = K\ lé7——’<K
H : X = max =t 1
ence A = '(7——kK’ ),
and K =max. (¢, ¢1, ¢5), since v=N=3.

So the Taylor series for g(z) converges for
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or

(a)

(b)

(©)

(d)
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1
|al < et m— =1 say,

max. (,7—:??, 1)

‘ 2

VAt < <Al -
Hence, since A= V?k g (=)
h —=o always when z =0, because of the z in the deno-

minator (c,==0).

When ¢ =0, g(x) converges only on z=0, and diverges
everywhere else. Hence A = o everywhere.

When ¢ >0, g(x) converges in
— VWt < < /4yl - 112,
v

so that the convergence extends through an expanding region.
Hence A converges throughout this region except on z =0,
where A= o0, (¢, == 0). '

When ¢-> oo, z finite, 22/4 v t—>0, = g(«) > ¢y, a finite value.

veg k
Hence h—->-——;°— .

" (i) Solution of

v h - hzzt =h hzzz

zZEZZ

by a different substitution.

The varibles can be separated and v cancels out if we put
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h=y'l" f(t) - g(«)

where « =224 vt. If we denote again all derivatives by suffixes
the equation becomes

3¢, 10a43 1
ta fg4 + O‘C”j:‘"g gs + :tj— fe. + tgfgl f1 g2 — Q_tflgt
x3/2 3“1/3
ng(t“sﬁfgs’*' 2 #3102 fg: ) :

Multiply both sides by #/f. Then ¢ disappears from the equa-
tion if #f,/f and #'/?f are constants, which is true if

f=bt %, (23)
~ where b is any constant. |

Now the equation becomes

3 3 _ 3
a3g, + (o3--302) g+ (30: -+ T) g +Tg‘ =bg <a3lzg3+ 5 “1[2g2>~ - (29)

By the substitution u == «*/? this reduces to

git2ugs+6g=2bgg;, (25)
where g is now a function of u, and the suffixes denote diffe-
rentiation with respect to u.

The equation (25) has a particular solution obtained from
g2 =0, which is :

g=A4u + B,
g = Aa'l’ + B,
’ Az
or : B,
g= 2\/vt +

where A, B are constants of integration. This makes
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Abz  Bbv'P

G TR

which' corresponds to an irrotational motion.

The equation (25) is exact, and can be integrated once,’
which furnishes '

g5+ 2ug, +4gy—2bgg, + bg® = C, (26)

If we assume that Zc,. u" is a solution of the equation (25),

on substituting in the differential equation we obtain a recurrence
formula. of the form

Ancn—{—Bcng——Qcho € 1Cnm> (27)
m=—=4
where

Ay=n—1) (1= —3), 3 50—t n(o—1) (=2 (1=3),
m=4 .

B,=2(n—1)(n—2)(n—3),

¢m = (m—1)(m—2)(m—3),

:74- for all values of n.

n

Let us apply the preceding method to find the interval of
convergence of the Taylor series for g(u). The recurrence rela-
tion can be written as

A Cnézbz Pm Com- 1Cn m+B C" 2

m=4

Dividing both sxdes by A. which is posmve when n =>4, we
obtain

n
2b
éz— 2 Fm Cm-1 Cn m—}_(Bn/An)Cn*Q’
" m=—4

and the same assumptian ¢, = K" furnishes
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n

e < 28 Z o K00 0 4 Deions < Ko

m—4

2o, 1 B, 2 _1
But A =7 for all values of n, and A= = 5 for n>4
\ b 1 .,
Hence _ 7K)\+7é1 5
or 222 — bKr—1>0.

This is true if
2 > lK_ﬂL_\/_z’_@_ﬂié ,

therefore the best value for X is given by

) = max. (1 ;b_lf_ﬂz_ggg_"l'é),
and K = max. (cy, ¢1, ¢35 c3), since v—=N =4,
The series converges in the interval of length 224 i. e. for

Jul = ot <t

\/_4—vt112
A .

or .. lz| <

1
Therefore, since A=1056v11>-t 2 . g(a)
(a) When t=0, A= o everywhere,
(b) When ¢ > 0, g(«) converges in
—VEy R <2< Aot

so that the convergence extends through. an expanding re-
gion. Hence, /2 converges throughout this region.
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(¢) When ¢t~ m’, z finite, 2%/4vt—>0 + g(x)—> c¢, afinite value.,
. -1
Hence A= 0 because of the factor # ?.

Hence, % represents initially an infinite velocity everywhere,
but a region of finite velocity spreads away from the plane
z=0 as ¢ increases. The boundary of the region of finite
velocity is at a distance \4v 2 1. #1/> at time ¢ Its velocity of

1
propagation is \/v-1~1# °. At time {= o the whole fluid has

no velocity parallel to OZ.

(Manuscript received 30 June 1949)





