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Özet. Bu çalışmada bir spin-1/2 parçacığın spin serbesti derecesi olarak bir kübiti (kuantum bit) ele alıyoruz. İki boyutlu
düzlem ve kuzey kutbu çıkartılmış 2-küre topolojik olarak eşdeğer olduklarından, iki boyutlu düzlemdeki hareket 2-küre
üzerinde temsil edilebilir. Ters stereografik fonksiyonu kullanarak iki boyutlu düzlemi 2-küre üzerine aktarıyoruz. Öte
yandan 2-küre, üzerindeki her noktanın bir kübiti temsil ettiği Bloch küresi olarak düşünülebildiğinden, bir parçacığın
iki boyutlu düzlem üzerindeki zaman içindeki evrimi, buna karşılık gelen kübitin Bloch küresi üzerinde zaman içindeki
evrimine karşılık gelir. Manyetik alanın spini döndürebilme özelliğini kullanarak iki boyutlu bir düzlemdeki parçacığın
hareketinin tek bir kübit kullanılarak simüle edilmesini sağlayacak zamana bağımlı manyetik alanın tam formunu veriy-
oruz.

Anahtar Kelimeler: Kübit, manyetik alan, düzlemsel hareket, stereografik fonksiyon.

Abstract. In this study we consider a qubit (quantum bit) as the spin degree of freedom of a spin-1/2 particle. Since
the 2D plane and the 2-sphere minus the north pole are topologically equivalent, one can represent motion on the 2D
plane on the 2-sphere. We use inverse stereographic projection to map the 2D plane to the 2-sphere minus the north
pole. Because the 2-sphere can be thought of as the Bloch sphere where any point represents a qubit, the time evolution
of a particle on the 2D plane corresponds to the time evolution of the corresponding qubit on the Bloch sphere. We use
the property of magnetic field to rotate spins to provide exact time dependent magnetic field to simulate, using a single
qubit, the path followed by a particle on the 2D plane.

Keywords: Qubit, magnetic field, planar motion, stereographic projection.

1. Introduction

Quantum computers are based on operations on qubits (quantum bits), whereas digital computers
are based on operations on bits. A bit can take the value 0 or 1, where as a qubit can take values
α|0〉+β|1〉 where α, β are complex numbers such that the sum |α|2 + |β|2 is unity and |0〉 = ( 1

0 ) , |1〉 =
( 0
1 ) are orthogonal basis vectors. For an introduction to quantum information theory, readers may

find Refs. [1, 2, 6] useful.
Bloch sphere is the space where any qubit is represented by a point on its surface. Technically

speaking it is the 2-sphere (S2), that is, the two dimensional sphere sitting inside R3. A point |θ, φ〉
corresponds to the eigenvector of the n̂ · ~S spin operator with the positive eigenvalue, where n̂ is a
unit vector in R3 given as

n̂ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). (1)

In this paper we considered the qubit as the spin degree of freedom of a spin-1/2 particle, i.e. an
electron. Then we considered motion of a particle on the 2D plane. By using the inverse stereographic
projection we mapped the motion of a particle on the plane to S2 minus the north pole. By considering
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the corresponding point on the S2 with the qubit it represents, we found out the exact magnetic field,
as a function of particle (polar) coordinates on the plane, that should be applied to the qubit in order
to simulate the motion on the 2D plane.

The organization of the paper is as follows: in Section 2 we find the Hamiltonian to make the qubit
trace any curve on the Bloch sphere, in Section 3 using the inverse stereographic projection we map
2D plane to S2 minus the north pole, in Section 4 we find the magnetic field as a function of particle
trajectory on 2D plane, in Section 5 we give details on how to prepare the qubit in the intial position,
in Section 6 we provide two simple applications of our model and finally in Section 7 we conclude the
paper.

2. The motion of a qubit on any curve on the Bloch sphere

In this Section we find the Hamiltonian that causes the spin to trace any curve on the Bloch sphere.
We then find the magnetic field as a function of angles and angular velocities that reproduces the
aforesaid motion.

2.1. The Hamiltonian to trace any curve on the Bloch sphere

Let us denote by the ket |θ, φ〉, the spin state with the positive eigenvalue of ~/2 of the operator

n̂ · ~S where n̂ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). Here both θ and φ are functions of time t. It is
known in the literature that we can write |θ, φ〉 as a superposition of |+〉 and |−〉 states (in the qubit
notation |+〉 and |−〉 correspond to |0〉 and |1〉 respectively) where |±〉 are eigenvectors of Sz with
eigenvalues ±~/2:

|θ, φ〉 =

(
e−iφ/2 cos(θ/2)

eiφ/2 sin(θ/2)

)
. (2)

The Schrödinger equation is as follows:

H|θ, φ〉 = i~∂t|θ, φ〉. (3)

By writing the Hamiltonian as a 2× 2 matrix as

H =

(
a b
c d

)
. (4)

The Schrödinger equation reduces to the following two complex quations:

ae−iφ/2 cos(
θ

2
) + beiφ/2 sin(

θ

2
) =

~
2
φ̇e−iφ/2 cos(

θ

2
)− i~

2
θ̇e−iφ/2 sin(

θ

2
), (5)

ce−iφ/2 cos(
θ

2
) + deiφ/2 sin(

θ

2
) = −~

2
φ̇eiφ/2 sin(

θ

2
) +

i~
2
θ̇eiφ/2 cos(

θ

2
). (6)

By equating the coefficients of sin(θ/2) and cos(θ/2) on both side of equations we can solve for
a, b, c, d. The solution is as follows:

a =
~
2
φ̇, (7)

b = − i~
2
e−iφθ̇, (8)

c =
i~
2
eiφθ̇, (9)

d = −~
2
φ̇. (10)

In the end, we can write down the Hamiltonian in the following form:

H =
~
2

(
φ̇ −ie−iφθ̇

ieiφθ̇ −φ̇

)
. (11)

If the initial state of the system is |θ(0), φ(0)〉 this Hamiltonian evolves the system along a path
|θ(t), φ(t)〉 on the unit sphere. We can then give the following theorem.
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Figure 1. The inverse stereographic projection maps each point on the x, y plane to a unique
point on S2 minus the north pole. Here we illustrate a 1D example for fixed φ.

Theorem 1. Let the state of the qubit is given by |θ, φ〉 where θ, φ are functions of time, then a curve
represented on the Bloch sphere by θ(t), φ(t) parameters is traced if the Hamiltonian given in Eq. (11)
is applied to the qubit.

2.2. Magnetic field to make qubit trace any curve on S2

First, let us remember the spin operators:

Sx =
~
2

(
0 1
1 0

)
, Sy =

~
2

(
0 −i
i 0

)
, Sz =

~
2

(
1 0
0 −1

)
. (12)

We can write the Hamiltonian operator, H, we found in Eq. (11) as a sum over spin operators as
follows:

H = − sin(φ)θ̇Sx + cos(φ)θ̇Sy + φ̇Sz. (13)

We give the following theorem about the magnetic field vector applied to the spin-1/2 particle that
will make its spin follow any curve on the Bloch sphere.

Theorem 2. The time dependent magnetic field that make the spin trace any curve on S2 is given as
follows:

~B =
1

γ
(sin(φ)θ̇,− cos(φ)θ̇,−φ̇). (14)

Proof. It is known that the Hamiltonian for a spin-1/2 particle under a magnetic field ~B is given by

Hm = −γ ~B · ~S where γ is the gyromagnetic ratio [4]. So, by comparing this form with Eq. (13) we
see that the time dependent magnetic field that make the spin trace any curve on S2 is given by the
form in the theorem. �

3. Mapping 2D plane to S2

As is well known in topology, one can map 2D plane to S2 with the north pole removed, in a
continuous manner. In this paper we will use the inverse stereographic projection (stereographic
projection is the one that maps unit sphere onto a plane, so we use its inverse). The main reason why
we chose this mapping is that it has axial symmetry that is φ coordinate on the plane is mapped to
φ coordinate on the sphere and θ coordinate on the sphere is a monotonic function of r coordinate on
the plane. Moreoever the (inverse) stereographic mapping has an intuitive geometric meaning. For a
review of the stereographic projection, readers may find Ref. [5] useful.

In order to define the inverse stereographic projection, we consider a unit sphere with center at
the coordinate (0, 0, 1) in R3. On the other hand the 2D plane passes though the origin, (0, 0, 0),
and extends in the x, y plane. In order to define the inverse stereographic projection, we will adopt
the polar coordinates r, φ on the plane and θ, φ on the unit sphere. There is no need to include r
coordinate in the unit sphere since it is always equal to 1.

The inverse stereographic projection maps a point (r, φ) on the x, y plane to a point (θ, φ) where
θ = π − 2α = π − 2 arctan(r/2) since α = arctan(r/2). Fig. 1 illustrates an example mapping.
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4. The magnetic field as a function of particle trajectory

The trajectory of a particle is given as a function of time as (r(t), φ(t)) in polar coordinates in the
x, y plane. We have seen in Theorem 2 (see Eq. (14)) the magnetic field that is necessary to represent
a trajectory |θ, φ〉 on the Bloch sphere is given by:

~B =
1

γ
(sin(φ)θ̇,− cos(φ)θ̇,−φ̇). (15)

The inverse stereographic mapping leaves the φ coordinate intact, so all we need to calculate is
the time derivative of θ in terms of r. We begin with θ = π − 2 arctan(r/2). It is known that
∂r arctan(r) = 1/(1 + r2). So we obtain:

θ̇ = − 4ṙ

4 + r2
. (16)

We have now all the information to present the following theorem.

Theorem 3. The magnetic field to make the spin trace a curve on the Bloch sphere that corresponds
to a motion on the 2D plane is given as follows:

~B =
1

γ
(− sin(φ)

4ṙ

4 + r2
, cos(φ)

4ṙ

4 + r2
,−φ̇). (17)

Here r(t) and φ(t) are the polar coordinates of a particle on the 2D plane that depend on time.

Proof. The proof is obtained by substituting the time derivative of θ calculated in Eq. (16) in Theo-
rem 2 (see Eq. (14)). Since φ is mapped to φ by the inverse stereographic mapping, it is not a function

of r, and φ̇ is left as it is. �

5. Setting up the initial conditions

In this section we deal with preparing the qubit in the initial condition. Suppose the qubit is given
in the |0〉 state, which means it is given in the |z,+〉 or |θ, φ〉 for θ = 0, φ = 0. This state can be
prepared by passing the spin-1/2 particle through a Stern-Gerlach apparatus (for a review see Ref.
[7]) and selecting the ones with |z,+〉. Then applying a magnetic field one can rotate the qubit and
prepare it in the |θ0, φ0〉 state. In order to achieve the initial state |θ0, φ0〉 the magnetic field should

be in the direction φ̂. Another way to obtain the initial state |θ0, φ0〉 is to arrange the magnetic field
of the Stern-Gerlach apparatus in the direction |n̂〉 and select the ones with positive eigenvalues.

6. Some applications

In this Section, we give a few applications of the representation of a particle trajectory on a plane
by a spin on the Bloch sphere.

6.1. Free particle

Let us suppose that the particle moves on the line (r, φ) with φ constant. If the speed of the particle
is v, then its position on the plane is (vt − r0, φ). By a coordinate transformation on the plane we
can represent the point on the plane as (vt, 0). The trajectory of the particle as represented on the
Bloch sphere is a great circle passing through the north pole and the south pole. The magnetic field
to represent the motion of a particle on the Bloch sphere is as follows:

~B =
4v

γ(4 + v2t2)
(0, 1, 0), (18)

Figure 2 illustrates the path of a qubit on the Bloch sphere to represent the motion of a free particle
on the plane.
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Figure 2. The trajectory of a qubit on the Bloch sphere to represent the motion of a free
particle on a plane that passes through the origin.

Figure 3. Representation of a circular path for the Kepler problem on the Bloch sphere.

6.2. A simple example of the Kepler problem

The classic textbook [3] describes the two-body problem under Newtonian gravity in a detailed
manner. This is the Kepler problem. A simple example of the Kepler problem is that when the orbit
is circular: so r is constant and φ = ωt for some angular frequency ω. One can also deal with the
most general case when the path on the plane is 1) circle, 2) ellipse, 3) parabola and 4) hyperbola.

In this example we deal with the circular case. Because r is constant for a circle, θ̇ = 0. Hence the
magnetic field is given as follows:

~B = −ω
γ

(0, 0, 1). (19)

Figure 3 illustrates the path traced on the Bloch sphere by the qubit.

7. Conclusion

In this paper we considered a qubit implemented as the spin of a spin-1/2 particle such as an electron
or proton under a specific magnetic field to represent the motion of a particle on the 2D plane, on
the Bloch sphere. For that purpose we found out the Hamiltonian as a function of angles and angular
velocities on S2 (which is the Bloch sphere) so that the state |θ, φ〉 traces any desired curve. Then

by writing the Hamiltonian as H = −γ ~B · ~S as a sum of spin operators, we calculated the magnetic
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field necessary to produce the desired curve on the Bloch sphere, where γ is the gyromagnetic ratio.
By using the inverse stereographic projection of the plane onto S2 with the north pole removed, we
calculated the magnetic field as a function of polar coordinates on the plane that represent the position
of particle at time t, i.e. r(t), φ(t). In order to illustrate the procedure, we have given two examples
in Section 6.

All in all, in this study, we have represented the motion of a particle on the 2D plane as a path
on the Bloch sphere and have provided the magnetic field (to make the spin of a spin-1/2 particle
trace this trajectory) as a function of time to represent this motion. What we found out may be
useful on its own as an interesting mathematical connection or to prepare input qubits for a quantum
computer that may do some calculations with the motion on the 2D plane. Another possibility is to
model interactions between particles in a classical many body problem on the 2D plane as quantum
interactions between the qubits which the positions of particles correspond to. However, in the latter
case, it remains an open problem what an entanglement between qubits corresponds to in terms of
particle positions.
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