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Abstract 

The detection of epileptic seizures by electroencephalography (EEG) signals has become a standard method in 

recent years for the diagnosis of epilepsy. Accurate and automatic detection of epileptic seizures is needed since 

manual identification of epileptic seizures by specialist neurologists is a time-consuming and labor- intensive 

process, which also leads to various errors. For this purpose, frequency-based features were extracted from the 

EEG signal and various classifiers based on ensemble learning were used to detect epileptic seizures 

automatically. The performance of the proposed method was tested using cross-validation and cross-patient 

experiments. According to the experimental results, sensitivity, specificity, and accuracy rates were obtained 

94%, 93% and 93% for cross-validation and 76%, 90% and 90% for cross-patients, respectively. 

 

Keywords: epileptic,  EEG, ensemble learning, rusboost, robustboost, logitboost. 

 

Yükseltme Sınıflandırıcıları kullanarak EEG Sinyaline dayalı Epileptik Nöbet Tespiti 

 

Öz 

Elektroensefalografi (EEG) sinyallerinin analizi ile epileptik nöbetlerin belirlenmesi, epilepsi hastalığı tanısı 

için standart bir yöntem haline gelmiştir. Epileptik nöbetlerin uzman nörologlar tarafından el ile belirlenmesi 

yoğun çalışma gerektiren, oldukça zaman alıcı bir işlem olduğu gibi kişilerden kaynaklanan çeşitli hataların 

oluşmasına sebep olmaktadır. Bu sebeple epileptik nöbetlerin doğru ve otomatik bir şekilde belirlenmesine 

ihtiyaç duyulmaktadır. Bu amaç doğrultusunda bu tez kapsamında, EEG sinyalinden frekans tabanlı öznitelikler 

çıkarılmış ve kolektif öğrenmeye dayalı sınıflandırıcılar kullanılması önerilmiştir. Önerilen yöntemin 

performansı çapraz doğrulama ve çapraz hasta deneyleri kullanılarak test edilmiştir. Elde edilen deneysel 

sonuçlara göre çapraz doğrulama deneyi için duyarlılık, özgüllük ve doğruluk oranları yaklaşık olarak sırayla 

%94, %93 ve %93 ve çapraz hasta için ise %76, %90 ve %90 olarak bulunmuştur.  

 

Anahtar Kelimeler: epileptik, EEG, kolektif öğrenme, rusboost, robustboost, logitboost. 

 

1. Introduction 

Epilepsy is a chronic brain disease 

characterized by recurrent seizures. These are 

short stretches of involuntary movements that 

affect part or all of the body, and are caused 

by excessive electrical discharges in a group 

of brain cells. The most common way to 
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reveal the onset of a seizure clinically before 

it occurs is through the use of 

electroencephalogram (EEG) analysis, a non-

invasive, multi-channel recording of the 

electrical activity of the brain.  

It was stated by (Mormann, Lehnertz, 

David, & Elger, 2000) that phase 

synchronization between different EEG 

channels can be used as a criterion to detect 

the pre-seizure stage. In another study for 

epileptic seizure detection, various machine 

learning techniques such as support vector 

machine (SVM), logistic regression and 

neural networks were used and reached 71% 

sensitivity (Mormann et al., 2003).  

Many researchers have used Mel 

Frequency Cepstral Coefficient (MFCC) 

based features for speech signal processing, 

and this approach was also adopted for EEG 

signal (Feudjio, Noyum, Mofendjou, & 

Fokoué, 2021; Krishna, Tran, Han, Carnahan, 

& Tewfik, 2020; Kwon & Shin, 2009; Nor, 

Wahab, Kamaruddin, & Majid, 2011; 

Rathikarani & Dhanalakshmi, 2013). 

 (Alvarado-Rojas et al., 2014) 

classified the EEG signal of an epileptic 

patient into four states as inter-ictal, pre-ictal, 

ictal, and post-ictal. They used 22 features 

such as energy, average, power, Hjorth 

parameters, etc., in a multi-class SVM 

classifier. They also generated a 

comprehensive patient database of 278 

patients. As is the case in many databases 

tailored for medical signal processing 

applications, there is class imbalance problem 

in EEG signals, and some techniques have 

been proposed in the literature to solve this 

problem. One of them is the use of algorithms 

based on an ensemble learning method 

(Ogawa, Sumi, Matsuo, & Kadotani; Rao, Li, 

Wu, & Mu, 2021; Taran & Bajaj, 2018; 

Weiss, 2004). In these studies, it is examined 

ensemble learning, especially RusBoost and 

RobustBoost methods, to eliminate the 

database imbalance problem. In addition, 

(Tahernezhad-Javazm, Azimirad, & Shoaran, 

2018; Zhang, Zhou, Wang, & Sung, 2017) 

(Ghritlahare, Sahu, & Kumar, 2019; 

Karunakaran et al., 2021; Zuo et al., 2021) 

examined another ensemble learning method, 

LogitBoost, for the same problem.  

In this study, the performance of some the 

ensemble learning algorithms, used to detect 

epileptic seizures from EEG data, were first 

examined, and then obtained results by using 

the proposed algorithm were compared with 

the other results available in the literature. 

2. Material and Methods 

The aim of this study is to predict epilepsy 

seizures using EEG signals. For this purpose, 

EEG signals were divided into 10-second 

segments, their MFCC-based attributes were 

extracted, and epileptic seizure 

presence/absence dual classification was 

performed using Boosting-based classifiers. 

Also, the results obtained with the proposed 

model were compared with the results in the 

literature. The block diagram of the proposed 

method is shown in Figure 1. This model 

consists of four main stages: receiving EEG 

signals, applying pre-processing steps to these 

signals, feature extraction, and classification. 

These steps are explained in detail below.
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Figure 1. Main block diagram of the proposed model

Electroensephalograpy (EEG) data 

collection 

EEG is an electrophysiological monitoring 

method that records the electrical activity of 

the brain and is a non-invasive method that 

has a wide and important usage in diagnosing 

epilepsy. Figure 2 shows 16-channel electrode 

placement to obtain EEG recordings used in 

this study.  

 

Figure 2. EEG electrode locations (Oude 

Bos, 2006) 

A sample EEG signal of a subject with 

epilepsy seizure, recorded on FP1-F3 

electrode, is shown in Figure 3. The Seizure 

time window is marked with red lines in this 

figure. 

  

Figure 3. A sample EEG signal of a subject 

with epilepsy seizure (Chen, Wan, Xiang, & 

Bao, 2017) 

Pre-Processing of EEG Signals 

EEG signals contain 50 Hz power line noise, 

and this needs to be removed. For this 

purpose, an IIR-based bandpass filter was 

designed, and this noise was removed from 

obtained EEG signals with this filter. In 

addition, the observations, captured on each 

EEG channel, were normalized to a zero mean 

and unit standard deviation signal so that they 

can be used together more efficiently. 

 Feature Extraction 

At this stage, the feature extraction was 

applied to remove the redundant information 

in the EEG signals so that the abstract 

information that is needed in the classification 

process can be captured. A wide variety of 

feature extraction methods have been used for 

that purpose in the literature, and also various 

studies have been performed. 
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In this study, MFCC based features were 

obtained in order to obtain the characteristics 

of EEG signals. MFCCs have been used 

successfully in many applications such as 

speech recognition, music modelling or 

emotion recognition as well as in the detection 

of epileptic seizures (Davis & Mermelstein, 

1980). The extraction of MFCC features from 

EEG signals is shown in Figure 4. 

 

Figure 4. MFCC based feature exctraction 

from EEG signals 

The EGG signal is split into 10s-long frames 

that do not overlap with each other. Then, 

Hamming windowing is applied to eliminate 

discontinuities at both ends of frames. In the 

next step, frequency components of each 

frame are determined by calculating their 

Fourier Transform. Then the transformed 

signal is pass through a filter bank consisting 

triangular filters followed by logarithm of 

each frequency band that is the output of each 

filter in the filter bank. At the final step, 

MFCC features are obtained by applying 

Discrete Cosine Transform (DCT). 

Boosting Classifiers 

In this study, RUSBoost, RobustBoost and 

LogitBoost methods based on collective 

learning techniques were used to overcome 

the class imbalance problem in EEG signals, 

and they are briefly explained here. 

 

 

RUSBoost 

RUS data sampling techniques try to eliminate 

class imbalance problem by adjusting the 

class distribution of the training data set 

samples. This can be accomplished by 

removing samples from the majority class 

(sub-sampling) or by adding samples to the 

minority class (over-sampling). One of the 

most common data sampling techniques, 

largely because of its simplicity, is RUS. 

Unlike more sophisticated data sampling 

algorithms, RUS does not try to intelligently 

remove the samples from training data. 

Instead, it removes samples from the majority 

class randomly until the desired class 

distribution is reached. The RUSBoost 

algorithm randomly samples the data set in 

each iteration, removing instances from the 

majority class.  In this case, it is not necessary 

to assign new weights to the samples. For this 

reason, the RUSBoost algorithm is a simpler 

algorithm with faster model training times and 

satisfactory performance. 

RobustBoost 

Many ensemble learning classifiers rely on 

some assumptions such as normally 

distributed training set noise. As a result, they 

may perform very poorly especially for noisy 

real-world data. For example, if methods, that 

first eliminate the inconsistent data and then 

perform, fail to detect such data properly, the 

weights of such samples may be increased at 

every boosting step and this may result in 

concentrating on a few deviating data while 

neglecting the necessary training samples. In 

other words, this datum significantly degrades 

the performance of these methods. 

RobustBoost, however, does not aim to 

minimize a particular loss function. Instead, it 

maximizes the observations whose 

classification margin is above a certain 
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threshold. The outliers are then removed from 

the next boosting step by means of a carefully 

selected loss function. This method tries to 

make a design suitable for most of the data. 

That is, even if a small part of the data set 

consists of deviating values, the remaining 

part gives reliable results. 

LogitBoost 

LogitBoost algorithm is another boosting 

algorithm. This algorithm has been developed 

to solve the problem of overfitting caused by 

very noisy data that AdaBoost algorithm has 

problems with. LogitBoost linearly reduces 

training error to solve this problem. Therefore, 

it provides a better generalization. In short, 

AdaBoost reduces exponential loss, while 

LogitBoost decreases the logistic loss 

function. As a result, LogitBoost further 

increase the weight of the data that causes the 

overfitting problem. Thus, it overcomes the 

overfitting problem better than the AdaBoost 

algorithm. 

Dataset: 

In this study, CHB-MIT database, composed 

of EEG recordings, was used. All signals were 

recorded at Boston Children's Hospital 

(https://physionet.org/content/chbmit/1.0.0/). 

Most recordings are an hour long while some 

are two or four hours long. EEG recordings 

are divided into 24 sections and stored in EDF 

data format. Each EDF file corresponds to an 

EEG recording. CHB-MIT dataset signals 

consist of 23 individuals, aged 1.5 to 17 years 

old, and contains approximately 686 EEG 

records. The used sampling frequency of the 

dataset is 256 Hz, and each subject is 

represented with multiple EEG signals of 

different channels. In this database, the Chb01 

(1st subject) and Chb21 are the same person 

who was registered with an interval of 1.5 

years. In addition, there are recordings with 

some missing channels such as Chb12-27.edf, 

Chb12-28.edf and Chb12-29.edf.  

In this study, 17 common channels were 

selected for each patient, and the data of these 

channels were used to extract seizure and non-

seizure features. These common channels are 

P4-02, FP2-F4, P7-O1, C4-P4, F7-T7, C3-P3, 

FP1-F7, F8-T8, FZ-CZ, CZ-PZ, F3-C3, T7- 

P7, P8-02, FP1-F3, F4-C4, FP2-F8 and P3-

O1. 

Performance measures 

To measure the performance of the proposed 

method, confusion matrix, shown in Figure 5, 

is obtained. In this table, (TP) represents true 

positive (epileptic region predicted as 

epileptic), TN represents true negative (non-

epileptic region predicted as non-epileptic), 

FP represents false positive (non-epileptic 

region predicted as epileptic) and FN 

represents false negative (epileptic region 

predicted as non-epileptic). 

 

Figure 5. Confusion matrix layout  

The related measures, on the other hand, such 

as accuracy, sensitivity and specificity are 

calculated using this matrix. Here, accuracy is 

the correct classification rate, sensitivity is the 

proportion of the epileptic regions that are 

correctly classified while specificity is the 
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proportion of the non-epileptic regions that 

are correctly classified, and they are defined 

as follows. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
           (3) 

These values vary in the range 0 to 1. Hence, 

higher the value, better the performance is 

achieved.  

3. Results 

In this study, experimental results are given 

for two cases as cross-validation and cross-

patient. 

In cross-validation test results, all EEG 

signals in CHP-MIT dataset, obtained from 24 

subjects, are divided into 10-second long 

segments. Then using 10-Fold Cross 

Validation method, dataset is divided into 

train and test partitions. Based on these, 

training sessions are performed using 9 out of 

10 folds while the remaining fold is used for 

testing. Hence, the test fold is shifted through 

available 10 folds to ensure that all data is 

used. 

For cross-patient test results, on the other 

hand, all data of 23 people are used for 

training each time and data of remaining 1 

subject is used for the test. This time, the test 

fold is shifted through all available 24 subjects 

to ensure that all data is used. 

Results based on cross-validation: 

In this section, the results obtained from 

RUSBoost, LogitBoost and RobustBoost 

methods in cross validation experiments are 

given in Table-1, Table-2 and Table-3, 

respectively. The sensitivity, specificity and 

accuracy values for each fold along with mean 

and standard deviation of the obtained results 

are shown in these tables. Summary of these 

three tables are given in Table 4. From the 

examination of this table, it is observed that 

the LogitBoost algorithm gives better results 

in all values compared to the other two 

algorithms in cross validation experiments. 

Table-1. Cross-validation test results for 

RUSBoost method 

 Sensitivity Specificity Accuracy 

1 0.795 0.815 0.815 

2 0.711 0.855 0.854 

3 0.720 0.803 0.803 

4 0.819 0.837 0.830 

5 0.760 0.787 0.789 

6 0.696 0.835 0.835 

7 0.695 0.845 0.845 

8 0.734 0.854 0.853 

9 0.666 0.854 0.854 

10 0.758 0.81 0.816 

mean 0.735 0.830 0.830 

std 0.045 0.022 0.022 

 

Table-2. Cross-validation test results for 

LogitBoost method 

 Sensitivity Specificity Accuracy 

1 0.976 0.941 0.941 

2 0.916 0.937 0.937 

3 0.961 0.940 0.940 

4 0.930 0.938 0.938 

5 0.970 0.938 0.938 

6 0.952 0.940 0.940 

7 0.944 0.937 0.937 

8 0.890 0.940 0.939 

9 0.941 0.942 0.942 

10 0.916 0.934 0.9341 

mean 0.940 0.939 0.939 

std 0.025 0.0022 0.0028 

 

Results based on cross-patient  

Results obtained from RUSBoost, LogitBoost 

and RobustBoost methods in cross-patient 

experiments are given in Figure 6 - Figure 8, 

respectively.  
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Table-3. Cross-validation test results for 

RobustBoost method 

 Sensitivity Specificity Accuracy 

1 0.896 0.918 0.918 

2 0.88 0.919 0.918 

3 0.925 0.916 0.917 

4 0.921 0.919 0.919 

5 0.938 0.920 0.920 

6 0.926 0.917 0.917 

7 0.902 0.920 0.919 

8 0.928 0.915 0.915 

9 0.935 0.914 0.914 

10 0.953 0.914 0.915 

mean 0.921 0.917 0.917 

std 0.0201 0.002 0.0020 

 

Table-4. Summary of Cross-validation test 

mean values  
 Sensitivity Specificity Accuracy 

RUS-Boost 0.735 0.830 0.830 

Logit-Boost 0.940 0.939 0.939 

Robust-Boost 0.921 0.917 0.917 

 

From the examination of these figures, it is 

observed that especially the sensitivity values 

of subjects 12-15 fall below the average. This 

is due to the fact that these subjects’ EEG 

electrodes are connected in a different layout 

than that of Figure 2.  

Cross-validation test results for RUSBoost method
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Figure 6. Graphical representation of cross-

patient test results for RUSBoost method 

 

Cross-validation test results for LogitBoost method
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Figure 7. Graphical representation of cross-

patient test results for LogitBoost method 

 

Cross-validation test results for RobustBoos method
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Figure 8. Graphical representation of cross-

patient test results for RobustBoost method 

 

Summary of these three figures are given in 

Table 5. From its evaluation, it is observed 

that the best results are obtained for the 

LogitBoost algorithm in the cross-patient 

experiments. 

Çizelge 1. Table-5. Summary of Cross-

patients test results 

 
 Sensitivity Specificity Accuracy 

RUS-Boost 0.725 0.810 0.797 

Logit-Boost 0.762 0.905 0.903 

Robust-Boost 0.761 0.887 0.886 
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Here, the experimental results obtained with 

proposed method are compared with similar 

studies in the literature. For that, the results of 

LogitBoost method are compared with 

literature since this method produces best 

results in both experiments. Corresponding 

cross-validation test results are given in Table 

6. From the examination of this table, it is 

observed that the results of the proposed 

method are better than most of the results 

available in the literature. Cross-patient 

results, on the other hand, are given in Table-

7. When this table is examined, it is clear that 

the proposed method is better than others in 

terms of specificity and accuracy while some 

literature studies have better results in terms 

of sensitivity. 

Table-6. Comparison of cross validation test 

results with literature 
 Sen. Spe. Acc. 

LSTM(Yao, Cheng, & 

Zhang, 2019b) 
0.844 0.843 0.8435 

CNN (Yao et al., 2019b) 0.848 0.81 0.829 

BiLSTM (Yao et al., 

2018) 
0.87 0.886 0.878 

BNN  (Hussein, Palangi, 

Ward, & Wang, 2019) 
0.91 0.95 0.93 

ME  (Hussein et al., 

2019) 
0.95 0.94 0.945 

SVM(Chandaka, 

Chatterjee, & Munshi, 

2009) 

0.92 1.000 0.955 

ELM  (Yuan, Kewley, & 

Sanders, 2010) 
0.925 0.96 0.965 

LDA  (Khan, Rafiuddin, 

& Farooq, 2012) 
0.836 1.000 0.918 

SVM (Nicolaou & 

Georgiou, 2012) 
0.943 0.933 0.938 

BLDA  (Xin, Jianjun, & 

Zhong-Can, 2000) 
0.952 0.967 0.966 

SVM  (Kumar & 

Kolekar, 2014) 
0.98 0.967 0.985 

SVM (Song, Wang, Cai, 

Deng, & Qin, 2016) 
0.945 1.000 1.000 

The Proposed 

(LogitBoost) 
0.94 0.939 0.939 

 

4. Resarch Findings 

 

In this study, various methods were 

investigated to automatically determine 

epileptic seizures using EEG signals. With 

this, it is aimed to aid the work of neurologists 

and reduce person dependent errors. For this  

Table-7. Comparison of cross-patients 

test results with literature 
 Sensitivity Specificity Accuracy 

LSTM (Yao et 

al., 2019b) 
0,863 0,828 0,845 

CNN (Yao et 

al., 2019b) 
0,834 0,887 0,86 

BiLSTM 

(Yao, Cheng, 

& Zhang, 

2019a) 

0,87 0,886 0,878 

The Proposed 

(LogitBoost) 
0.762 0.905 0.903 

 

purpose, RUSBoost, LogitBoost and 

RobustBoost, machine learning based 

ensemble learning algorithms, are used for 

classification utilizing MFCC based features. 

The CHB-MIT data set is used in the current 

study to measure the performance of the 

classification results. In this data set, there are 

multi-channel EEG signals collected from 23 

people. They are split into 10s long frames, 

their MFCC based features are calculated and 

used in the classifiers.   

In order to measure the performance of the 

proposed method, training of the learning 

algorithms was performed in two different 

categories as cross-validation and cross-

patient, and the experimental results were 

obtained accordingly. It has been observed 

that the LogitBoost method is more successful 

than the others. In addition, the experimental 

results were compared with the literature and 

it was observed that the obtained results are 

better than many others available in the 

literature in terms of accuracy rates. In this 

study, the best sensitivity, specificity and 

accuracy rates obtained for the cross-

validation experiment were calculated as 

approximately 94%, 94% and 94%, and 76%, 

90% and 90% for the cross-patient, 

respectively. 
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