Some remarks on the analysis of light curves
with the autocorrelation method.
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Ozet: Zaman serilerinin analizinde otokorelasyon metodu ve otokorolas-
yon fonksiyonunun “kuvvet spektrumu” na agilimi esasli olarak incelenmigtir.
Kuvvet spektrumunun ash olmiyan ikinci derece periotlar ¢ikardign bulun-
mugtur. Otokorelasyon analizi herhalde kiymetlidir. Kuvvet spektrumu ana-
lizi daha ziyade formal bir degeri haizdir.

Abstract: The autocorrelation method of analysing time series and
the subsequent development of the autocorrelation fucnction into a power
spectrum is critically considered. It is found that the power spectrum may
throw up secondary periodicities which are spurious. The autccorrelation

analysis is valuable in all cases. The power spectrum analysis mostly has
formal value only.

1. For the analysis of time series M.C. Kendall [1] has
developed the powerful autocorrelation method. If the autocor-
relation coéfficient is defined by
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and a second order autoregressive time series of the type u,,,+
augyq + bu, = €449 (€444 a random element) is considered, the
theoretical correlogram generated by this equation is of the
damped type
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where 2n/0 is the autoregressive period of the regression equa-
tion and is given by cos a = — 8/2/b, but the typical series of
this kind has no “period” in a strict sense. J. Ashbrook, R.L.

Duncombe and A. J. ]J. van Woerkom [2] have with remarkable
results applied this method for analysing the light curve of #
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Cephei. They obtain a correlogram which is strongly damped.
A disadvantage of the use of correlograms is that a secondary
periodicity may be masked, if shorter than the dominant period.
In order to overcome this disability, Ashbrook, Duncombe and
van Woerkom transform the correlogram in the corresponding
power spectrum,” which by Kintchine’s theorem [3] is the Fou-
rier transform of the autocorrelation function, thus
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where ffis the reciprocal of the trial period.

For p Cephei no secondary periodicities were found. Using
their method, the present author analysed the light curve of the
semi-regular variable Z Ursa Majoris [4]. For this light curve
the damping’ coéfficient p in the cerrelogram 2 proved to be
fairly small. The Fourier transform of the autocorrelation func-
tion indicates secondary periodicities of periods 1/2 P; 1/3 P.....
suggesting the presence of overtones.

2. By applying the autocorrelogram and periodogram analyses
to one and the same time-series, Kendall [5] finds that the pe-
riodogram indicates a far larger number of periodicities than the
correlogram, so that the conclusion is inevitable that either the
correlogram is insensitive or the periodogram is misleading.
Kendall is able to prove that most of the periods thrown
up for consideration by the periodogram are not significant.
Consequently the question must be raised asto what extent any
physical significance can be attached to the periods which turn
up when from the light curve of a variable the autocorrelation
function is computed while next this autocorrelattion function
is developed into a power series.

For k > N the numerical value of ri is largely determined
by sampling errors and has low weight. Therefore in their ana-
lysis of the light curve of p Ceph&i, Ashbrook, Duncombe and
van Woerkom when applying the Fourier transform, only con-
sidered the r¢'s for which k < 25. With the light curve of Z
UMa also all terms rx with k < 25 were omitted.

If a light curve is a pure harmonic, its correlogram also is
a pure harmonic and in the power spectrum [3] all terms are
zero except when f= 1/9 and in that case n(f) = 1. However,
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the series r« cannot be interrupted at any arbitrary inter-
val N. For a certain trial period 1/f all terms must be conside-
red up to such a value of N for which N, 1/f and P =29 are
commensurate. In other words, the part of the correlogram
which is considered, must contain an integral number of times
the trial period and an integral number of times the period P.
It is easy to see that if this precaution is omitted and for all
values f one and the same arbitrary value N is used, even with’
a pure harmonic the terms of the power series are w(f) =0
and in the curve n(f) several spurious secondary periods show
up. Consequently with the light curve of both p Cephei and
Z UMa there is the possibility that the shape of the power
spectrum m(f) has been affected by the choice of the value V.

If a light curve is cyclical but not harmonic, in the power
spectrum w(f) for all trial periods 1/f which are not commensu-
rate with the main period, the value n(f) = 0. It is supposed
of course that the correct values N are used. With a cyclical
curve both the light curve and the periodogram are strictly
periodical and the successive maxima and minima are
identical. This is impossible if for any non commensurate trial
period 1/f the term =(f) == 0. Obviously this same conclusion
is reached by simple consideration of the mathematical proper-
ties of the Fourier series. On the other hand with a cyclical
function some at least of the commensurate terms n(f) must be
== 0. If this were not the case the cyclical variation would be a
pure harmonic., Consequently in the power spectrum secondary
periods will appear with a frequency equal to 2, 3,4... times
the frequency of the fundamental period. Cyclical variations can
result from the interference of several harmonic' terms, this being
the mathematical way of describing the shape of the curve in
terms of a Fourier series. There is however no guarantee that
all terms, set up by such an analysis, have real physical meaning.
So we conclude that when analysing a cyclical variation by
using the method of correlogram analysis and power spectrum,
we are bound to obtain a series of “overtones”. If, moreover,
the series rx is broken off at an arbitrary interval N, just as
with a pure harmonic this may cause some additional values
n(f) 5= 0 to appear and these latter certainly are spurious in
this sense that they have no physical reality.

If the correlogram is a damped harmonic (2) similar effects
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are to be expected and the physical interpretation of the power
spectrum will be difficult. In the next sections some examples
are considered for the different curves.

3. It is supposed that some disturbance affects the atmosphere
of a star in such a way as to cause oscillations in magnitude
which can be represented by a damped harmonic. 't is
supposed that the disturbance repeats itself at regular inter-
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vals of time of length P and at the moments P=0; P =1;
P =2 etc. causes an instantaneous decrease in magnitude of
an amount a. (P is expressed in arbitrary units). For the
present we take the length of the intervals to be equal to the
“period” of the damped oscillation, but further on it will be
shown that this latter assumption is not essential. The time in-
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terval P is divided into n equal subintervals. For practical reasons
n is taken to be equal to 24. So the limits of the subintervals

are at #,=0; ,=1/n P; t,=2n P.-..’L:—1 P, ¢ =P, The
magnitude disturbances occur at the moments = — nP;
—(@n—=1)P. e —1P; O; + 1P; + 2P etc. The damping

during a complete period P =1 is represented by d and that
during one of the subperiods by p= d!/. The total effect of
all disturbances together at the instants #); ¢,; f3,°" " is

a

uo=a+ad+ad2+...=1____-‘-1 ....(4)
and at the instants £y, 2,4n ez 3 23 fagns fo4aa" "
uj = ugp’ cos 2% j/n -+ e (5)

When for d the values d =1/2; d = 1/4 and d = 1/8 are used,
the resulting light curves are as indicated in tabls 1 in the co-
lumns under % =0. Up till now it was assumed that the in-
fluence of the disturbance is instantaneous or is at least con-
centrated within an infinitesimal amount of time ©—> 0. This is
hardly probable. The disturbing influence will cover some inter-
val of time v =k 0 and within this interval the influence of the
disturbance rises from zero to maximum and decreases again
from maximum to zero. The disturbance sets in before the in-
stants £{,=0; £, =1; &,, = 3-- - and also continues afterwards.
At different times in the interval t the influence of the distur-
bance on the magnitude is indicated by a.3; a-y; a—; ao;
a413 @4q - Instead of (4) and (5) we now have

(ao + a_,p cos?n—rl; + a—,p® cos 2x % .. )

u0= (l_d) ....(6)
and
, i 1 , i— 1
uj:lﬁdplcos%t%—kl_:? P’_'a+10052n (] - )+
a—4 p"'H cos 2x @ -+ a_,,zpf—2 cos 21 (—]-;':—2—) ..... ; . (7)

There is no information available about the shape of the func-
tion a(t). Therefore a simple relation was adopted viz. gy =1;
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a1 =ay; =3[4; ay=a,3=1/2; a_3=a,;=1/4; a_, =
Ay =g =Seeerrenn. = 0.

Using these values of a we obtain the light curves which
in table 1 are given in the columns under the heading © = At.
They are easily derived from the columns preceding them. Each
of the resulting curves was multiplied with a constant in order
to reduce the largest negative deviation of the magnitude to
Am = — 1,000. The three curves of table 1 are graphically
represented in fig. 1. They bear a striking resemblance to some
curves which have been published for Cepheid variables. There
is nothing astonishing about that, because all constants were
chosen in such a way, that the resulting curves should resem-
ble Cepheid curves. Perhaps in a rough way it might be pos-
sible to consider Cepheid variations as the result of damped
oscillations which are set up in the atmosphere by disturbances
coming from the interior, while these disturbances are repeated
at regular intervals. However, any attempt to identify the arti-
ficial curves of fig. 1 with Cepheid curves would be at least
premature. We have assumed that the effect of a disturbance was
such astocause a magnitude defect of the amount a. If instead
of this we had supposed that the disturbance was such as to
cause an increase of magnitude, the curves in fig 1 would re-
tain the same shape. They now would indicate a rapid decrease

in magnitude to minimum and afterwards a slower increase to
maximum,

Actually the curves in fig. 1 are purely artificial. They re-
present cyclical variations which have been made outwardly to
resemble Cepheid light curves. They definitely contain but one
period, e g. P=1 (or P = 24 when expressed in the subin-
tervals as unit of time).

Before continuing it should be pointed out that if in (7) the
period of disturbance P is not identical to the period of the
vibration, the resulting curve will still be a cyclical one with
G +1)

n

period P, but in the terms cos 2% the term n is no lon-

ger equal to 24. The period P having been divided into 24 equal
subintervals, 0 is not equal to 24 of these subintervals.

4. Using the relation (1) the autocorrelation functions cor-
responding to the curves in fig. 1 are computed. The results
also appear in table 1 in the columns r¢. Only the values & up
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to k = 23 have to be considered, while in the relation (1) the
denominator is a constant. For obvious reasons the descending
and the ascending branch of the autocorrelation function are
found to be symmetrical. Next from (3) the power spectrum
is computed. For reasons stated before n(f) = 0 for all values
for which the ratio P: f is not an integer number. Consequently
in table 1 only the values a(f)corresponding to f =24; f = 12;
f=28.... ate given. In all three curves “overtones’” are present.
Our artificial curves definitely contain one period P =24. No
physical reality can be therefore attached to the overtones. In
purely mathematical terms they describe the shape of the curves
in figure 1. Still as long as no attempt is made to ascribe such a
physical significance to them, these overtones may be valuable
for the description of the artificial curves in fig. 1 and the ob-
served light curves of variables.

On the other hand the autocorrelation function rx does not
uniquely determine the curve u(¢) and neither therefore does the
fundamental and the overtones as derived from the autocorre-
lation furction.

5. Next the case is considered where the time series is of
the second order autoregressive type u 4 = Qu4q -+ buy + €149
so that the corresponding autocorrelation function is given by
equation (2). If for simplification the phase angle W is taken

¥ = j_—% n, the equation (2) reduces to

rx = pX cos 0.k = p¥ cos 2n k/P

The period P is again divided into 24 equal subperiods and the
damping coéfficient d = p* during a complete period is assu-
med to be d =1/2; d =1/4 and d = 1/8 respectively. The
three resulting autocorrelation curves are given in table 2. In
order to reduce the amount of tabulation in the table only the
numerical values of rg for even k’s are given. Next the power
spectrum corresponding to the different curves in table 2
is obtained by applying the relation (3). By adopting different
values for N we can now study the influence which the choice
of N has on the shape of the power function. For N the va-
lues N=230; N=40; N=50; N=60; N24; N=48 res-
pectively are adopted. The resulting power spectra are ta-
bulated in table 3. The first part of this table gives the va-
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lues (f) as directly computed from the curves in table 2. In
the second part of table 3 all curves have been reduced in such
a way that for f=24 the term n(24) = - 1.000. Some of these
latter curves are also graphically represented in figure 2. From
table 3 and from fig. 2 it is clear that to a considerable extent
the shape of the power spectrum depends on the choice of N,
that is on the interval at which we break off the series r.
With all curves there is but one fundamental period viz. P =24
In the power spectrum the maximum corresponding to this funda-
mental is strongly broadened and several secondary maxima are
thrown up resembling overtones. Both the position and the amp-
litude of these overtones systematically depend on the choice of N,
It is not too difficult to realise how they originate and why
they vary with N. When f, P and N are not commensurate and
the autocorrelation function is broken off after the interval N,
the part of the autocorrelation function which is considered con-
tains N -+ n” times the fundamental period and m + m’ times
the trial period. Here n and m are integers and n’ and m’ frac-
tions << 1 and > 0. With a given value of N the fraction n’
remains a constant, but m’ varies with different values of f.
With any value of f a part of the harmonic curve representing
the trial period is left out of consideration. Sometimes positive
and sometimes negative amplitudes are omitted and of this the
result appears in the numerical value of n(f).

If f increases, the part of the trial period which is left out
of consideration changes, rapidly at first with small values of
f and more slowly later on when f approaches P. So in the
beginning several spurious maxima are thrown up close together,
but later on near P the power spectrum gradually rises to the
maximum representing the fundamental period. Also beyond P
the decrease is a gradual one. When for N a slightly different
value is selected, the terms n, n” and m will hardly be affected,
but especially with low f values there is a considerable influence
on m’. The result is a change of both the position and the inten-
sity of the secondary maxima. With large changes of N all four
terms n;n’; m and m” are affected and an altogether different
power spectrum isthrown up. This latter also will have its maxi-
mum at the fundamental period P, but at both sides of the ma-
Ximum the shape of the curve n(f) will be different. In this
case also secondary maxima are thrown up, but these may be
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different from the previous ones. It is to be understood that
N is small as compared to the total number of terms in the
original time series.

The conclusions, which can be drawn from the curves in
table 3 and in figure 2, may be summarised as follows :

a) For any given value of N a power spectrum is obtained
which indicates a maximum corresponding to the fundamental
period and in addition a number of secondary maxima.

b) The fundamental maximum is broadened out over a large
range and the degree of broadening depends on the choice of
N. On both sides of P the curves =(f) become considerably
steeper when larger numerical values of N are used.

c¢) This broadening of the fundamental maximum is most
pronounced with the power spectra corresponding to the auto-
correlation functions which are strongly damped. In a certain
sense the degree of broadening can even be considered as a
measure of the damping while with large damping the exact po-
sition of the maximum is rather undetermined.

d) The secondary maxima are most pronounced if small va-
lues of N are used. With increasing value of N these secondary
maxima are displaced while at the same time they are flattened
out. With N = 60 they have almost completely disappeared.

e) In the power spectrum corresponding to an autocorrelation
curve with small damping coéfficient the secondary maxima have
large intensities. In the spectrum of curves with large damping
coéfficient the secondary maxima are almost non existent.

f) On the whole the influence of N is largest with the cur-
ves corresponding to a small damping coéfficient and smallest
with those corresponding to a large damping coefficient.

6. Ashbrook, Duncombe and van Woerkom found the light
curve of p Cephei to be due to stochastic rather than harmonic
processes. As a specific instance they mention temporary distur-
bances on the surface of a rotating star. The actual observed
light curve then consists of many superimposed short trains of
damped oscillations, commencing at random distributed times.
The autocorrelation diagram of such a light curve contains a
“period” approximately equal to the period of rotation, The fun-
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damental period appearing in the power spectrum must also cor-
respond to the rotational period. This hypothesis for explaining
the shape of the light curves of irregular variables seems to be
very reasonable. On the other hand the power spectrum cor-
responding to the autocorrelation function of the semiregular
variable Z UMa suggested the presence of various “overtones”.
This seems to indicate some sort of pulsation which is set up
in the atmosphere in such a way that the atmosphere not only
oscillates with the frequency of the fundamental but also simul-
taneously with that of some overtones. However, the results
summarised at the end of the preceding section prove that the
physical reality of the overtones thrown up by the power spec-
trum is highly doubtful. If the damping of the superimposed
trains is fairly small, so will be the damping in the correlogram
and the result is that several spurious overtones appear in the
power spectrum. Their value is formal, e. g. in a purely mathe-
matical way they describe the shape of the correlogram up to
a certain interval. With the correlogram of Z UMa the damping
was found to be small and spurious secondary overtcnes must
turn up. ‘

The periods of about 720 days and about 190 obtained from
the correlograms of p. Cephei and Z UMa respectively may there-
fore very well correspond to the rotational periods of these
stars. For a single star the limiting period of rotation is given
by the relation log P = —1/2 log p — G.936 where P is the
period in days and p the mean density of the sun py=1. Using -
the periods mentioned before, the mean densities of p Cephei
and ZUMa can be estimated to be p =2:09 X 10~* and
p = 3-023 X 107 respectively. Thess values are not unaccepta-
ble and consequently the rotational hypothesis does not violate
other observational data. On the other hand these results do not
prove the correctness of the hypothesis. For this it would
be necessary (cumf note. 2.) that the separate trains be observed
fotoelectrically.

7. If the effect on a stellar atmosphere is such that each
disturbance apart from a fundamental damped oscillation sets up
additional oscillations with larger frequencies, the overtones in
the power spectrum might have real physical significance. How-
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ever, it is doubtful whether such overtones could be traced
either in the shape of the correlogram or in the corresponding
power spectrum.

At any time the term u, would be equal to the sum of se-
veral others so u, =4, + u,” +:-- - while we would have:

r r 7 ’ " ” 14 s
Uppy = — a'ugyy — bu, + €haa UWpge = — @' Upyy — by, + €'y
and consequently

’ " Ua
Upo=— (" +a" - )uy — @ + b )u, + g0

Therefore the correlogram would have the normal shape 2 while

p=V& +¥b and 02—((.1__-’__3._.1._._:.)
TR

The representation of this correlogram would lead to exactly
the same difficulties in the interpretation of the eventual secon-
dary periodicities.

Another case is when apart from the fundamental periodicity
a faint harmonic term is present. The obvious danger is that in
the correlogram this secondary periodicity is masked by the
dominant one. In order to see to what extent this might be the
case we consider the artificial curve

Uppy = 1,87 uy; — 094 u, + €,,, e (17)

If the random terms &,,, are taken equal to the two final digits
of the consecutive numbers in the telephone directory, we rea-
dily obtain the artificial curve u(¢). In order to keep the num-
bers reasonably small, the values u(f) obtained in this way
were divided by 10. Next we assume an harmonic term to
be present of constant amplitude A =20 and period
P=24 and add the terms of this harmonic to those ob-
tained from (1.7). The range of the numerical values of the
first series is from about — 60 to 4 60 and that of the har-
monic from — 20 to + 20. The values u, were computed for
t =0 to ¢t =240. I do not think it necessary to tabulate these
values here, It is easy to construct such a table of numbers and
apart from small differences due to sampling errors, the corre-
lograms corresponding to any such curve must be the same.
Due to the choice of the coéfficient b the damping coéfficient
of the correlogram of the undisturbed curve, e. g. the curve un-
affected by the harmoonic curve must be nearly equal to the
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corresponding value of the first curve in table 3 and also the
period P = 2%/0 must be of the same order of magnitude. From
the disturbed curve used in the present paper the correlation
coéfficients rx as given in table 4 were obtained. This correlo-
gram is graphically represented in fig. 3. The rapid decrease

rk
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Fig. 3. Correlogram of certificial curve (second ordem autorogressive series
plus harmonic term).

of the values r¢ from ro = 1.000 to negative numbers is clearly
indicated and also the subsequent rise to the maximum corres-
ponding to the fundamental period.

At the same time the influence of the harmonic term on the
shape of the correlogram is very evident. Obviously the harmo-
nic term is only very partlally masked by the fundamental pe-
riodicity. -

The harmonic term is only partially suppressed in the part
of the correlogram where K is small, but with the larger values
of k the curve is largely determined by the oscillations due to
the harmonic term. Even if we had not known about the exis-
tence of the harmonic term we would immediately have traced
it in the correlogram. The power spectrum corresponding to
this correlogram, appears in table 5, while its graph is givenin
figure 4. In the power spectrum also the harmonic period is
clearly indicated. However, I doubt that the harmonic term is
better indicated in the power spectrum than in the correlogram.
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The present author would have more confidence in the corre-
logram. '

As far as the correlogram is concerned, the case considered
here is an unfavourable one. The damping in the correlogram
is small. As regards the power spectrum the case considered
here is a rather favourable one, because for the oscillations of
the harmonic a rather large amplitude viz. A = 20 was adopted.

0.0 / ) 1

_o.z.r

Fig. 4 : Power spectrum corresponding to the curve in fig. 3.

8. Our conclusion is that while the autocorrelation analysis
is a very reliable method for analysing the light curves of va-
riables, it seems dubious whether much is gained by supplemen-
ting this method with a power series analysis of the autocorre-
lation function. In any case the results of this further analysis
must be handled with utter caution. No physical importance at
all can be attached to secondary periodicities which are thrown
up. unless their reality is confirmed by evidence from other
sources. This conclusion is not quite new. Kendall has empha-
tically warned against accepting as real all periods which turn
up in a periodogram analysis. The aforegoing shows that his
conclusions remain true also when the power spectrum is deri-
ved in this indirect way.

It does certainly not mean ' that the method is without me-
rits, but merely that the secondary periodicities mainly have
formal value only.
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Table 1
Artificial light curves with cyclical variation. The deviations Am for p =1/2
(curve 1); p=% (curve 1) and p = —;— (curve II1) and for *=0 and t==A¢.

The autocorrelation functions rx corresponding to these three curves and the
power spectrum w(f).
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T=0lt=A¢# rx w(f) (T=0it=A¢# rg ) |t=0|v=4f rg (#)
0 |—1.00 |— .83 | +41.000 —1.00|— .91 +1,000 —1.00 |— .90 | 4-1.000
1]|— .94|—1.00] + .961 — .91 |—1.00| + .960 | — .89|—1.00|+ 954
2|— .82{— .94+ .856 — .77|— 96|+ .847 — 73|~ 98|+ .825
3|— .65|— .79 | + .693 — .60|— .80 |+ .673 — .55|— 82|+ .631
4|— 44|— 43|+ 486 — 40|— 55|+ .456 — .35|— .55| + .898
5|— 22{— 28]+ .246 — 19— .29|4 216 — 17— 29|+ .155
6{— .00|]— .02/ — .010|4+.001| .00(— .04|— .080|4-.001| .00|— .05|+ .083|4.00)
704+ 21|+ 28| — 262 + 174 19— 265 + 14|+ .16~ .299
8|4 .40 |4+ 46| — 495 |+.002 |+ .81 |+ .38| — .477 [4.007 |+ .25 |+ .32|— .48% | .01
9|+ .55 |4+ .64 | — .694 + 42|+ 52| — .653 + 38|+ .44|— .68
+ 64|+ 76| — .847 + 49|+ 62) — 785 + .36 |+ 50| — .741
+ 71|+ 83| — .942 + .51+ .66|— 867 + .38+ 51| — .805
+ 71|+ 85— .975|4+.010 |4+ .50 |+ .64 |— .897|4-.041 |+ .85 |+ .50 | — .828 |+ 081
+ 67|+ .80|— .942| " + 45|+ .60 — .867 + 81|+ .45|— .806
+ .58 |+ 70| — .847 + .89]4 .52]— .785 + 26|+ .87 — 741
4+ 46|+ 56| — .694 + .80 |+ .40 — .653 + .19+ 29| — 633
+ 81|+ .39| — .495 + .20+ 28| — 965 + 2{+ 99— 484
+ 16|+ .20 — .262 + 10|+ 18| — .277 4+ 06|+ .10| — 299
00+ .0t|— .010 00|+ .02~ .030 D3|+ 0z|— 083
— .15 |— 16|+ .246 — .09 |— 10|+ 216 — 05|— .06+ .155
— 28|— 821+ .488 — .16|— 20|+ .458 — 09— 11|+ .398
— 38— 49|+ .693 — 21— 33| 4 618 — 41— 24|+ 631
— 46|— .66 + .856 — 24 |— 50| 4 .847 — A8|— 41+ .82
— 49— 73|+ .961 — .95|— 70| 4 .960 — 14|~ 64]4 954
—100|— .83 [+1.000 |4.985'—1.00 | — .91 | 4-1.000 |+.945 | —1.00 {— .80 | 4 1.000|+.905




SOME REMARKS ON THE ANALYSIS OF LIGHT CURVES

Table 2

269

Curves g = pK cos 6K for d = p2¢ = % (curve I); d=1— (cufve I1) and

d = 1/8 (curve 111). The corresponding power spectra appear in table 3.

K

12
14
16
8
1R
22
24
20
28
30

Eooa\.:amo|

K K K

I | m I | m
+1.000]| +1.000 | +1.000| 32 |—.197 | —.078 |—.031
+ 817 |+ 772| + .728] 84 |—.328 |—.121|—.046
-+ .446| 4 .326 | + .854|86 |—.852 |—.125 |— 044

.000{ .000| .000|38|—.287 |—.096 |—.082
— 396 — .314| — .250 40 |—.156 |—.049 |—,015
— .648| — 485|— .865(42| .000| .000| .000
— 706 — 500 | — .354 | 44 |-+.140 |4-.089 |+.011
— .578| — .886 | — .257) 46 |4.228 [+.061 | +.016
— 814 | — .198| — .125 [ 48 |+.248 | +.062 |--.016

.000 .000 .00050 |4-.208 ; +.048 |4-.011
+ .280 |+ .157| + .088] 52 {+4-.1104-.025 |--.005
+ 467 |4 248+ .129(64} .000| .000| .000
+ 500 | + .250 | 4+ .125] 56 |-—.098 |—.019 |—.004 |
+ 407 |4+ .192| + .091|58|—.161 |—.030 |—.006
+ .222|+ 099 | 4 04460 |—.176 |—.081 |—.006

000} 00! .000




Ta

ble 3

Power spectra @(f) corresponding to the curves L, II and III in table 2.
For N in the Relation (3) the values N = 30; 40; 50; 60; 24 and 48
have been used.

Curve |
/ Nl 30 | 40 | 50 | 60 | 24 | 48 ; 30 40 50 60 24 48
2 |+.041]4-.028 +.oz4i+.017 +.021 [4-.015 4 .058 | + 086 + 043 |+ .034| + 028 + .027
4 |4.086|+.024|+.018 +.015|+.022 |[4-.015 ! + 051 | + 038 |+ .032| 4 .030| + .030 | + .027
6 |4.029 |+.083 |4+.027 [4+.019 |+.028 | +.017| + .041| - .052| - .048 | 4 038} 4 .081| + .030
8 |4.046 [+.087 |+.088 \+.023 |+.081 |4+.022 | + .064 | + .058 |+ 068 |+ .046 |+ .042| 4 .089
10 |¥.019 |4.058 |+-02¢ |+.024 [+.119 [3-.005 |+ 027 |+ 083 |+ .048| 4 048] 4 .16 |+ 009
12 [4.085 |F.016 |+.044 | +.023 |+.081 |4-.024 | + .120 |+ 024 |+ 078 | 06| .042 |+ .043
14 |F.021 [4.079 [3-.082 (+.010 |—.045 | +.062 | + 080 | + .124 | + .u61 |+ 020} — .060 |+ .111
16 |4.047 |+.025 |+.068 | +.078 | +.167 | +.042|| + .067 [+ .089 |+ .121 |+ 146 4 224 |+ .075
18 |1+.252(+.101 (1045|7040 .49 | +.052 | + .856 | + 150 + .080 | .080 | + .602 | 4 .098
20 |+.487 |4+ .845 | +.248 [ 4-.172 [4+.646 |+.291 |+ . 688 |+ .542 |+ 482+ .345| + .866 |+ .521
22 |+.618|4.536 |[+.461 [+.896 |+.734 |+.475| + .873 |-+ .848| 4 .820 |-+ .795 |+ .984 | + .850
24 |+.708 |4-.636 |+.562 {+.498 | +.746 |+.559 || +1.000| -+-1.000 | 4-1.000 | +1.000 } 4+1.000 | 4-1.000
26 |F.691 | T.594 | F.497 [+.422 |+ 705 |[1-.498 |+ 976 |+ .984| + .884 |+ .848|+ .v4b5|+ .891
28 |4-.625 |+.486 |+.368 {+.287 |+.641 |--.388 (4 .921 |+ .764 |+ .655 |+ .576|- .859 | + .685
80 |-+ 584 '4.858 |+ 286 +.169 |+.565 |+.965 + .754 | 4 .563 | 4 .420' 4 3801 4+ 758 | + 474
Curve II
2 |-+.038|+.028 | +.020 4015 +.081 +.019 4 .064 |+ .054 |4 .057 |+ .050 |+ 054 [+ .051 |
& |4.088 |4.026 |+.021 |+.017 |4+.034 +.021 |+ 073 |+ .061 |+ .059 |+ .057 |+ .059 |+ .058
6 |4-.086|+.031 [+.024 |+.019 -4.087 4.0238|+ .070 |4 .078 |4 .060 |+ .063 |+ .064 |+ .064
8 |+.096 |4.078 |4-.064 |+.052 |+.105 +.062 |+ -186 |+ .184 |4 .181 |+ .178 |4 .182 |+ .171
10 |F.088 | +.038 |+.029 |-.024 |+.099 +.025|+ .074 |+ .089 |+ .082 | .080 | .171 |+ .069
12 |+4.079 |4-.049 |+.040 |4.035 |+.061|+.047 |4 .150 |+ .115 |+ .118 |+ .117 (4 .106 |+ .130
14 |1.045 |4+.057 |-+.089 |-+ 029 |+.024 +.047 |+ 087 |+ .184 [+ .110 |+ .096 [+ .041 |+ .130
16 |-4.121 |+.085 |[+.079 | +.069 |+.205 |+.076 - .284 |+ .200 |+ 223 |+ .230 |4- 854 |+ .210
18  |+.256 |+.163 |+.121{4-.102 |4.886 |+.128 |+ 495 |+ .884 |-+ .842 |+ .340 |4 .667 |+ .854
20 |+.896 |+.292 |+.226 |+.182 4-.511 | +.241|+ 766 |+ .687 |+ .686 |+ .607 |4 .888 |+ .666
22 |4.488 |+.389 |+.820 |-+.268 |+.568 -.83Z |+ .935 |+ .915 |4+ .904 |+ .893 |+ .981 |+ .917
24 |4.517 |4.425 |+.854 |+.800 |4.579 |+.862|/+1.000 |4-1.000 |+1.000 |4-1.000 |+-1.000 |+1.000
26 |+.506 |+.405 |1.880 |+-.267 |+.556 |-.888 ,+ .979 |- .963 |+ .953 |+ .890 |+ .960 |+ .934
28 |4-.461 |+.850 |+.274 |+.226 {+.509 [4-.285 ||+ .892 |+ .824 |+ .774 |4 753 |+ .879 |f 787
80 |4-.421|4.299 |+.226 J+.1s4 |+.477 +4.240|+ .814 |+ .706 |+ .689 |4 .618 |+ .824 |+ .663
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+.034 |+.026 |+.021
+.087 [4-.027 |+-.022
+.089 |4-.081 {4021
+.047 |4.085 |+.029
4-.054 [.045 |4.034
+.082 [-}-.056 |4-.046
+.099 {4,083 |+.069
+.155 {4-.118 |[4+-.093
+.249 | +.176 |+.188
+.882 |4-.249 | +.197
+.381 |4-.296 [{-.239
+.401 | +.814 [+.255
~+.898 |+.308 |-+.244
+.879 |+.285 |+.226
|+'349 +.254 +.200

+.0i7
+.018
4.015
+.024
+-.029
4-.038
+.056
+-.078
+-.115
+.168
+.200
+.214
+.204
+.188
+.166

Curve III
|-+.088 [+.021 |‘+ 085 |+ .083 |+ .u82 [+ .079 |+ .08L [+ .078
+.040 |[4-.022]+ 092 |+ 086 |+ .086 |+ .085 |+ .085 [+ .082
+.044 |+.025 f+ 091 |+ .099 |-+ .082 |-+ 071 |+ 092 [+ .09¢
+.051 |+.029 I—1- 127 |4 112 |- 114 4 112 | 109 [+ 108
+4.090|4.085 |+ .185 |+ 144 |+ .134 |4 .136 [+ .192 |+ .181
3088 |[+.047 04 + 179 |+ .180 |+ 178 {+ 77 |+ 175
+.109 |[+.074 ,’+ 247 |4 265 |+ 271 [+ 262 |+ 282 |4 276
+.220 +.096 |+ 887 |+ 361 + .865 |+ .365 |+ .469 |+ .458
+.341 |[+.144 |+ 621 |+ .562 |+ .41 |+ 58T |+ .727 |4 .537
+.428 |+.207!+ 819 |+ .796 |+ .778 |+ .76. 4 .902 |4 .773
+4-.459 |+.249 |4+ 951 |+ .942 |+ .941 |+ .935 |4 .979 |+ .929
+.469 |+.268 |1+.1000 |4+-1.060 |4-1.000 |41.600 |+1.000 |-+1.000
1455 |+.258 |1 980 |1+ 968 |+ .957 [+ .958 |+ 970 |+ .944
+.879 | +.236 '-{- 945 |+ 910 |+ .886 [+ .879 |-+ .808 | .881
+.314;+.210 L+ 870 |+ .812 |+ .784 |+ 776 |+ 171 |+ 784
{

toregressive scheme (1.7) after addition of an harmonic term

Table 4

The autocorrelation coefficients corresponding to a time series for
which the individual terms are obtained from the second order au-

K e K i rk K rE
. 0 | +1.000 10 | — .487 20 | —.166
1|+ .846 11 | —.280 21 | —.165
2 | + .519 12 —.189 22 +.005
3| + .286 18 | —.2380 23 | +.186
4 | 4 .257 14 — 412 24 -+ .14b
5 | + .848 15 — 425 25 ~~.066
61 4+ .330 16 | —.219 26 | —.208
7 |+ .070 1% -+ .029 27 — 187
8 | — .291 18 +4 177 28 +.120
9 | — 518 19 4 023 29 -+-.339
Table 5.

The power spectrum corresponding to the autocorrelation

function in table 4

~

w (t)

O W= N

=

—.113
—.011
+ .082
— 016
4242
+.051
+.034
-+ 027
+ .057

K| =@
12 | +.022
14 + .026
16 | +.162
18 | +.205
20 | +.258
22 | +.299
24 | +.330
2 | -+ .34
28 | +.348
30 | +.848






