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Ozet : Otokorelasyon metodu Z Ursa Majorisin 1:ik  efrisine tatbik
edildi. Korelogram, peryodu 195 giin civarinda olan bir séniimli oksildsyon-
dur. Oksilésyon simetrik degildir ve 1;1k egrisi ikinci mertebeli bir otoreg-
rasyon zinciri ile tarif edilemez. Isik egrisinin kuvvet spektrumu otokorela-
syon fonksiyonuna Fourier transformu yaparak elde edilir. Kuvvet spectru-
mu, miiteakiben, 195, 100 ve -70 inci giinlerde {i¢ tepe gdsterir. Bu, uyartma
stochastik ise, esas tondan bagka birinci’ ve miithtemelen iist tonlarin mev-
cut oldugunu ifade eder; boylece, v; 2v 8v frekanslh bir oskilasyon serisi verir,

Peryod biiyiik sihhatle tayin edilemez. Ust tonlarin mevcudiyetine, daha
bagka 151k egrileri, ayni gekilde incelenmeden, katiyetle tesbit edilmis olarak
nazar: itibare alinmamasi lazimdir.

§ 1. Introduction.

A powerful method for the analysis of time series has been
developed by Kendall (1). In their careful statistical analysis of
the light curve of p Cephei, Ashbrook, Duncombe and van Woer-
kom (2) have succesfully applied his autocorrelation enalysis.
Ashbrook, Duncombe and van Woerkom found the light curve of
it Cephei to result from stochastic rather than harmonic processes
while it could be represented by a second order auto-regressive
chain, At the same time from the method espplied by them, they
were able to show that the four periods, which on the Lasis of a
Schuster periodogram had been assigaed to p Cephei, were illusory.

The light curve is not explainable by a simple pulsation; in-
stead it may be interpreted as arising from temporary, random
surface disturbances on the star. These same authors finally call
attention to the interesting possibility of applying the autocor-
relation method to the analysis of light curves of Mira variables,
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The result might be the detection of harmonic terms. Kendall
(1) shows that the correlogram of a series, generated by moving
averages, may oscillate but will vamish after a certain point;
that of a series of harmonic terms will oscillate, but will not
vanish or be damped ; that of the autoregressive scheme will
oscillate and will not vanish, but it will be damped. Consequently,
although the three types of series he considers are very similar
to the eye, the correlogram offers a theoretical basis for dis:
criminating between the three types of oscillatory series. As a
result of the suggestions made by Ashbrook, Duncombe and van
Woerkom, in the present paper the autocorrelation method is
applied to the light curve of Z Ursa Majoris.

§ 2. The light curve of Z Ursa Majoris,

The requirement of extent, continuity and reasonable homo-
genity for the light curve to be analysed led to the selection of
Z Ursa Masjoris. Since the autumn of 1931 this semiregular
variable has been under continuous observations by the members
of the section of variable star observers of the Scandinavian
Astronomical Society. The total number of observations made
prior to 1950.5 amounts to about 6000. A summary of these
observations is given by Axel Nielsen (3) who derives normal
points through which the light curve is drawn. Nielsen
finds great differences in the course of the light varia-
tions He finds that during the interval of time 1931.5.42.0 the
range of variation repeatedly exceeded 1.0"5 or even 2,70, but
during the first interval the variation was a regular one or at
any rate semiregular, but during the second interval any trace
of regularity disappeared. Finally during the interval 1949.0 - £0.5
the range again increased and a trace of the old penodlcny
appeared.

The autocorrelation method to be used requires equidistant
observations. Therefore I have derived by interpolation 475 mag-
nitudes of Z UMa at 10 days intervals from ]J.D 2428720 to J.D
2433460. This interval of length was chosen because it is con-
veniently short in comparison wnh the penod of 198.0 days
indicated by Nielsen. :

Io the computations it is convement to use ‘the deviations
from the overall mean ; '
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up = m, — 1.72

which are tabulated in table 1. There is no clear-cut secular
trend in the series as may be seen from the consecutive groups
glven in table 2.

§ 3. The correlogram.

For a time series with equidistant terms u,, uy, 15, .. .. uy
for which Zu, = 0; the autocorrelation coefficient r¢ of the se-
ries is a measure of the correlation of the series with itself;
after a displacement of k steps in time. It is defined by

ceee (1)

2y, ek
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where all summations are from 1to N — k. For practical compu-
tations (4) the convenient approximation

rg =

— Dtk e (2

| i &)

was used. This approximation is adequate if N =K. The cor-

relogram of the series is the plot of rx against the lag of %

and from examination of this plot the existance of a periodicily P

in the time series can be detected. When the lag of % is zero,
eq. 2 obviously reducesto r, =1,

From the values u,, observed for Z UMa and as enume-
rated in table 1, the correlation coefficienls r¢ were computed.
Up till £ =30, table 3 gives the numerical value of r¢ for all
consecutive values k. Between %k ==30 and k=60 only coef-
ficients r¢ for even values of & were computed, except near
maxima of the correlogram, where a few additional values rx
have been determined. Between k=60 and &k =82 only some
significant values of rx were computed so as to determine the
general shape of the correlogram between k = 60 — 82. In this
interval also near the maxima a few extra coefficients rx were-
computed. The numerical results of table 3 are graphically re-
presented in fig. 1, where the values rx are plotted againt k.

From figure 1 it is evident that the corrgjogram isa damped
oscillation. The maxima are around k= 19: k=39; k=359
and k =79 indicating a period of oscillation of about 19.5 X
10 =195 days. This is very near the value indicated by Nielsen.



beginning with J. D 1428720 (unit 0.01 magnitudes)

TABLE 1.
Values of ui==m;— 772 for Z Ursa Maj,, at 10 day intervals

+ 31

1+ 92]+ 18 + 58] — 7] + 15] 4+ 10] — + 4] — 22
+103 0] + 14} 4+ 28] + 8]+ 9+ 4|+ 6] — 12— 4
+ 98] 4+ 5, — 81|+ 1| + 18] + 8] — 7} 4 18] — 26|+ 10
+ 81} + 25 — 77} — 20| - 11| + 31| — 7|+ 15| —29] - 18
+ 9|+ 44] — 8} — 35| — 87 of — 4]+ 18| — 28] + 28
— 22| + 56, — 77| — 40| — 41| — 14| + 8|+ 2| — 82| + 46
— 42| + 62| — 39| —at| — 37| = 23| — of — 7| — s8] + 63
— 85| + 61y + 28| — 84| — 17| ~ 85| — 20] — 6] — 37| +
— 100 + 62] + 569} — 80| — 2| — 40| — 81| 4 5| — 311 + 79
+ 11] + 66) + 76| — 26| — 9| — 85| — 27| 4 5| — 27| + 62
+ 16| + 61] 4 851 — 28] — 11| — 26| — 8| + 5| — 32| + 38

o) + 29} 4+ 68) — 27| — 12} — 95] + 18] + 4] — 33] 4 13

— 17| — 8!+ 30] — 45| — 18| — 19| 4+ 25} — 2} — 19| — 48
— 20| — 86| — 1| — 42| —22] — 8| + 80| — 19|+ 8] — 70
+ 8| — 60 — 10| — 31| — 28 0] 4+ 24] — 85 4+ 19] — 71

0]l — 58} + 4] — 7} —36] 4+ 9f+ 8] — 40| 4 16| — 66
4+ 1561 — b2| + 82| -+ 45| — 42| 4+ 33| — 19| — 26| 4+ 6| — 50
+ 46| — 85| + 45} + 59 — 55| + 37| — 2| — 12f + 7| — 27
+ 70| + 6] 4 89| + 65| — 42] + 24| — 15] — 6| 4 82] — 17
+ 85 + 85| + 28] 4 59 — 28| + 15| — 16| — 15| 4 42| — 12
+ 87|+ 46f — 8| + 8] — 4|+ 7| — 28] — 21| + 6] — ¢
+ 8]+ 55| — 47| — 11| + 16| + 7] — 80| — 16| + 53| + 15
+ 41| + 49| — 61| — 33] + 36] + 14] — 81| + 9| + a1] + 80
— 81| + 83] — 56) — 88) + 83| 4+ 6| — 29| + 26| -+ 26| + 67
— 80| 4 27| — 81| — 82| + 83 .+ 5| — 26| + 32| + 18| + 83

— 69| + 20 — 10| — 84} + 82| ~ 38| — 22 + 18] + 9}

— 581 4+ 821 + 21| — a7t + 81| — 71 — 18] — 3] — 22
— 40| + 83 — 4l — 57| + 17] — 4| —12f + 1| —52
+ 7|+ 66| + 89} — 45| 4+ 3]+ 4|+ 8] + 8] — 53
4+ 21|+ 61| + 82 — 36| + 8| + 15| 4 14} + 5| — 49
+ 20] + 39% + 59} — 28] + 16| -+ 14| + 15] — 16| — 45
+ 18+ 11— 1} —25] 4 19| + 8|4 14] — 20] — 26
— 1} — 44| — 80| — 20| + 13| — ‘4| +-13] — 20| + 4
— 8| — 74| — 83} — 23| — 5| — 18] + 14| — 19| + 19
— 11| — 86| — 45] — 25| — 81} — 12| + 16} — 18] + 20

0 — 84 — 38] — 20 — 60| — 2¢ + 8 — 18] + 23

4+ 21 — 53| — 21 — 8] — 62+ 8} — 7] —17]+ 30
<4881 — 5] — 25} + 9| — 64| 4 20| — 16] — 22] + 80
+ 631 4+ 321 — 41|+ 7| — 64} + 10] — 15| — 26] + 25
+ 88] 4 58) — 44| — 18] — b1} + 2] — b| — 34} 4 28
+ 6] + 77| — 63| — 87| — 20} — 5| — 4| — 20| + 36
4+ 47| + 82 — 72| — 46| — 4} — 8 — 4| — 8]+ 23
— 121 + 7o — 64| — 41] + 88! -+ 4| 4+ 3 ol — 2
— 47| + 89| — 60} — 41| + 46] + 141 4 2| + 15] — 85/
—50) + 3 — 8| —40] 4+ 47| + 18| — 4| — 22| — 54
— 401 — 84} + 23| — 40| + 26| + 23] — 11| — 35| — 66}

— 270 4+ 16| + 48| — 87| + 62| + 34| — 7] — 29] — 70
4+ 614 99 + 62| — 89 + 64 -+ 83 + 1| — 8| — 66
+ 2t} + 44| + 92 — 80| + 38] + 28] — 7| + 8| — 53
+ 22| 4 48| + 86] — 18] 4 24| + 19 — 9| + 11| — 86
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The period of the correlogram is not a period in a strict sen-
se (3). The lengths from peak to peak vary in a characteristic
way. The distribution of the distances from peak to peak is of
the unimodal type with a central value somewhere near the mean
distance between peaks. With the correlogramof Z UMa how-
ever the distances from peak to peak are nearly equal.

f

K
+100 Corretogram for ZUMae

K=0-82 . iy

N e

+0.80 for K>30 only some significant values of K
have been indicated

4060 oL T
+0.40 4 "
+020
+0.004

- 204

- 40

10 20 ) 0 50 50 70 80 K

Fig. 1.

Quite obviously the oscillations of the correlogram of Z UMa
are damped, though the damping is considerably less than that
which Ashbrook, Duncombe and van Woerkom found from the
light curve of p Cephei. Therefore it is tempting to try in this
case also to represent the light curve by a second order autore-
gression equation for which the recurrence formula is

: Uppy = AUy + bu: + 8442 ""(3)
The correlogram then will be of the shape
_ pXsin (k0+9) e
s sin ¢ e )
It will oscillate with period 2%/§ but owing to the factor p¥X it
will be damped. However, the correlogram in figure 1 is not a

damped sinus curve. There is some resemblance to a sinus curve
but the oscillations are non symmetrical,
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On the ascending part of the oscillations a hump occurs of
which the position seems to be variable. This gives rise to the
suspicion that a second oscillation of lesser amplitude may be
present. A disadvantage of the use .of conelograrrp is that a
secondary periodicity may be masked, if shorter than the do-
minant periodicity.

§ 4. The correlogram from % — 175 — 200.

I have considered the possibility that apart from a stochastic
there also is a harmonic disturbance. If a harmonic term is
present, it would persist in the rx coefficients through the higher
values of k, while the stochastic disturbance would be damped
out of existence. The disadvantage is that with the higher values

of k the numerical values of rx are largely determined by
sampling errors. Nevertheless "‘

I have thought it worth while Correlogram for Z.UMa
to compute some of the ad- I K=175-200
vanced values of rg. In table 4 +'20--K ‘

the autocorrelation coefficients aon®,

rg for k = 175—200 are given o o

and in figure 2 these values 007 . o

rg are plotted against the cor-  |% o° .
responding values k. The o’ etk
result however is negative. The -20 - ; p
oscillation with a period of. 75 180 190 200
about 19.5 X 10 days, though Fig. 2

much damped, seems to per-

sist even through these higher values of r. There even seems
to be an indication that here also the oscillation is not quite
symmetrical, but hardly any weight can be attached to this.

Anyhow, the extension of the correlogram does not lead to the
detection of any harmonic terms. At the same time in this range
the weight of the coefficients rx has diminished tosuch an extent

that from this we may not conclude that no harmonic terms are
present,

§ 5 The power spectrum of Z UMa.

While the disadvantage of the correlogram is to mask a se-
condary periodicity, this disability can be overcome by transfor-
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TABLE 2.

Mean values of U;
¢

1—95 4 .15
9% — 190 — .04
191 — 285 — .06
286 — 380 — .01
381 — 475 — .05
1 — 475 .00

TABLE 3.

Autocorrelation coefficients from the light curve of Z UMa
(unit of &k is 10 days)

k Ty k rg k 8%

0 -+ 1.000 20 + 662 48 — .148
1 4 .865 21 + .498 50 + .012
2 + 592 22 + .264 52 + .027
3 4 .264 23 4+ .01 54 + .079
4 — 011 24 — .156 56 4 .205
5 — 214 25 — 302 57 4 .288
6 — .301 26 — .332 58 + .346
7 — 315 27 — .306 59 + 342
8 — .270 28 — 234 61 4 .093 .
9 — 233 29 — .167 64 | — 341
10 — 222 30 — 120 67 — .206
11 — 215 32 — .058 70 + .075
12 — .188 34 -+ 031 73 + .075
13 — .24 36 + 212 || 76 + .157
14| — 174 38 + .433 77 4+ 202
15 — 032 39 + 472 78 4237
16 + .164 40 4 404 79 4+ 144
17 4+ .385 42 + .051 82 — .167
18 4+ .580 44 + .248

19 + .685 46 — .302
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TABLE 4.
Autocerrelation coefficients rp (K=175— 200)
k g k 1873
1.6 | — .056 189 | + 125
1.7 — .095 190 + .131
178 — 126 191 4+ .132
179 — .130 192 + .134
180 — 151 193 + .107
181 — .118 194 + .050
182 — 100 195 — 019
183 — .061 196 — 089
184 — 012 197 — 135
185 + .046 198 — .146
186 | + .086 199 | — 151
187 + .107 200 — .141.
] 188 + 115 :

ming the correlogram into the corresponding power spectrum (6).
By Kintchine’s theorem the power spectrum is the Fourier trans-
form of the autocorrelation function (7). The power sptctium
gives the mean squared amplitude of each frequency. In the
present case it has been computed from the relation :

II([)—- ¥ rkcos 2 f k c(8)

le—'O

where f is the reciprocal of the trial period The computations
can be limited to k=1 .... 25 because of the rapidly dimi-
nishing weight for hlgher Ie s. The values II(f) as computed from
eq. (5) appear in table 5 while the graph appears in figure 3,

The peak of the power spectrum indicates a mean cycle of
approximately 19.5 X 10 =195 days, but it is now .at once
‘apparent that a secondary period is also present with a mean
cycle of approximately 10 x 10 =100 days, probably shghtly
shorter than 100 days.

The way in which we have determined the length of the
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TABLE 5.

The power spectrum of Z UMa. as computed fromeq (5). The
unit of trial period f is 10 days.

Trial Trial Trial

period I(f) period II(f) period II(f)
f f f
1 |- .016 11 + .064 71 + 415
2 — .018 12 — .081 22 -+ .368
3 — 034 13 — 089 23 + 316
4 — 043 14 — 004 21 + .262
5 — .065 15 + .152 25 + 217
6 — 042 16 + .290 26 + 159
7 4+ .008 17 + .330 27 + .116
8 — 081 18 + .451 28 + 074
9 + 147 19 + 464 29 4+ 039
10 + .235 20 4+ 445 30 -+ .003

mean cycles is not a very refined one, but it is templing to
describe this power spectrum

as being generated by a
stochastic disturbance with a

mean cycle of approximately

195 days and its first and

perhaps even its second over-

tone (the third peak at appro-

ximately f = 7), the frequencies

‘being v, 2v and 3v. From a

purely physical point of view

such an explanation does not

seem impossible, but such a

K far reaching conclusion must
be considered as provisional
uotil some additional light
curves have been inspected.

)

+?.0
+30
+20
+10

000

ST 20 30
Power Spedrum-of Z.UMa light curve
Abcissae K ordinates mw(f).
Fig. 8 : :
Also it will be necessary more closely toinspect the theory. The
series rx had to be broken off at a rather small value k. Owing
to this the power spectrum may throw up some spurious pe-
riodicities. Anyhow, these results bear out the conclusion
reached by Ashbrook, Duncombe and van Woerkom, viz,
that interesting results may be expected if the autocorrelation
method is applied to the Mira variables and we may add per-
haps to other stars also.
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To explain the idea underlying the autoregressive scheme,
Ken&sﬁh%&wes the following analogy. Imagine a motorcar
proceeding along & horizeatal road with an irregular suiface. The
springs permit the car to oscillate to some, exteni, but are
designed to damp out the oscillations If the car stnkes a bump
or a pothole in the road, the body will oscillate for'a time but
will soon come to rest so far as verlical motion is con-
cerned. If, however, the car proceeds over a continual suc-
cession of bumps, there will be a continual oscillation of varying
amplitude and distance between peaks The oscillations are
continually renewed by disturbances, though the distribution of
-the latter may be quite random. The regularity of the motion is
determined by the internal struclure of the car, but the existerce
of the motion is determined by external impulses.

In a similar way we can imagine that the existerce of osecil-
lations in the atmosphere of the star is determined by impulses
from the interior. The regularity of the oscillations is determined
by the structure of the atmosphere and in this case especially
this structure might be such that the first and second overtones of
the oscillation are mot negligible. . -

'§ 6. The generating function.

The general solution (9) of a second order regresswe equation,
that is if the difference equation (3) is

. sin(B¢ 4 W) : :
“P FE o ©

where
- 2
o S=Tw et .
The second term in” eq. (6) represents the cumulated effect of the
random terms.

If overtones are present, the series cannot longer be repre-
sented by a second order autoregressive scheme. This can be
ascertained by determining the numerical values of a and 5 from
a least squares solution of the first 20 conditional equatiors of
the form

n ¢

argy + brg=rgy:
Writing the solution 6 in the form
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u; ——pK(AcoseK-{»BsmOK), p—\/-—-b cos@—-i\/ﬁ_ V)

we find v

a=4+173;b=—085;6=1935; P =2x/0 = 18,3 and
p =092

The adequacy of the description can be assessed by a y? test
(10). For y? the value 3,14 is obtained and the probabilily that
the residuals of rx are due to chance is only 0,074,

The simple second order scheme is therefore quite inadequate,
F\X/hen overtones are present, the general form of the term 4,
~.would be

_ , sin (8¢ + lI".) ~ sin (3064 W)
u=Ael gy, TAP Tww, t
‘ 16¢ 4 W n sin(1 6t + W) .
.+A33sm‘('—'_r£~—‘—3)+€ —zAnnf‘m; +¢ (8)

where €', represents the cumulated effect of the random terms,
The coefficients A may be expecled to decrease rapidly with
n increasing.

Still the expression will contain a large number of terms which
are not negligible and therefore also a correponding large number
of coefficients. It certainly will be pessible 10 represent the
observed series u, by a series of the form 8, but it would be
difficult accurately to determine the various coefficients. It even
seems possible that several series might be constructed which
represent the observed series u, equally well. Such a procedure.
therefore would be purely formal and no physical meaning could
be attached to the coefficients. Consequently, for the present at
least | have made no further attempt to determine the shepe of
the generating function,

§ 7. Summary.

1. A correlogram of the light curve of Z Ursa Majoris = has
been obtained. The correlogram is a damped oscillation with a
period of approximately 195 days between the peaks.

2. The damping is sufficiently small to allow several peaks to
be observed. We conclude that the curve resulls from sto-
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chastic rather than harmonic processes, but cannot be described
by a second order autoregressive chain.

3. By applying a Fourier transform to the correlogram, the
power spectrum is obtained. Apart from a peak at approximately
195 days, there are secondary oscillations of smaller amplitudes with
periods of approximately 100 and 70 days respectively. The peak
at 70 days is poorly determined.

4, The power spectrum suggests that the oscillations in the
atmosphere of the star are determined by impulses from the
interior which eventually may be at random. Apart from the
fundamental oscillation in the atmosphere of Z Ursa Majoris also
tones of frequencies v, 2v and 3v appear to be present.

5. Although for the existence of overtones the evidence seems
rather conclusive, these results should be considered as tentative
ones until additional light curves have been analysed in a similar
way and evidence has been obtained that such overtones cannot
result from the breaking off of the series rx at alow value K.
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