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Ozet: Liizuel sikistirlamaz homogen bir asigkanin hareket diferensi-
yel denklemleri lineer olmadigindan onlarin genel ¢éziimlerini bulmak giigtiir.
Bu ylizden ¢éziimii kolaylagtirmak igin ekseriya bazi kdbuller yapihir. Bizim
burhda kullandcagimiz kabul hareketin kendi kendisi iizerine bindirilebilme
(self- superposability) veya kisaca ss, Szeligidir. Prof. J. A. Stracg (9). bindi-
rilebilmenin gerek ve yeter gartim ifade etmigtir : Eger hareket denklemleri-
vin iki farkh ¢dziimii U; ve U, ise bunlarin toplaminin da bir ¢8ziim olmasi
igin gerek ve yeter gart

UUX(VXU)+ U X(VXU)=vy
h)

olup burada y, x,y,z ve f nin keyfl skaler bir fonksiyonu ve V =i —

ox
) 0 . s ey \
+ 15— -+ ks— dir. Iste bu bindirilebilme gartidir. Eger Uy=U,=U alinirsa
g z
UX(VXU=vVy

kendi kendisi tizerine bindirilebilme (ss.) sartr elde edilir, yx; evvelki gibi
herhangi bir skalerdir.

Bu sonuncu gart kullamldifn takdirde hareketin vektorlit denklemi birisi
yalaiz lineer olmayaun terimleri ve Steki yalmz lineer olanlan ihtiva eden
iki denkleme ayrilir. Bu iki denklemin ¢G6ziimii ise esas denkleminkinden ¢ok
daha kolaydir.

iste bu yazmda kullamlan ¢éziim metodu budur, Eser dért b8lime aynl-
migtir, 1k iki bdlimde iki boyutlular ele almmigtir.

1. The equations of motion.

The equations of motion of a viscous mcompressxble homo-
geneous ﬂuld in vector form are

DU _
e — VU= F-——ng, -1

V.U=0, | -2)

where U -—-‘(u, v, w) is the velocity vector, u=u(x,y, z, t),
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v=uv(x,y,2t) and w=w(x,y,z ¢ the velocity components
at a point M(x, y, z) at time . F(M, t) the force on unit mass,
p(M,t) the pressure, p(M, t) the dencity, p'M, ) the coefficient
of viscosity and

vV—=—
e

is the kinematic coefficient of viscosity. We assume v, u and v
to be constants.

DU U, 3 W U
Dt o T Ty t¥%

- is the ‘acceleration following the motion.
o d ) )
=i 0 . 9 k .
V=i tigg thse

2 2

are operators.
W shall suppose that F is derived from a potential function
Q, so that
= — VQ,
Equation (1-1) can be written in the form »
W Ux (< U)+WalV X U= —VH,  (1-3)
where V X U is the vorticity vector, and

_p R 4
H=P4o4;0m (-9

"If we apply the operator to both sides of (1-3) Vwevobtain

VX %f—j—V X [UX (VX U+ 9V X[V X (VX UJ=0. (L5)

‘This equation contains only the kinematic elements of the
motion, and is called “The kinematic consistency equation”. It
is the consistency condition of the three scalar equations in
(1-3); that is, If (1.5) is satisfied U is a solution of (1-3).

Hence the determination of a fluid motion will consist of
two successive processes; The first is to determine the velocity
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tield by (1-5), and the second is to determine the pressure, i.e.
the function H by (1-4).

The general solution of the equation (1:5)is dlfflcult because
of the non-linear terms. For this reason always some assumption
are made to simplify the equation. The principal assumption
which we shall make in this memoir is to use the self-superpo-
sability property of the motion. ‘ A

Since the equations of motion are not linear their solutions
are not, in general, superposable

If U; = (u), v;. wy) and U, = (u;, v,, U'y) are any two solu-.
tions of the equations of motion of a viscous incompressible
fluid corresponding to given external forces, initial and boun-
dary conditions, not necessarily the same in both cases, they
are_superposable on each other if and only if

where X is an arbitrary scalar function of x,y z and ¢. Thisis
the superposability condition [9] If U;= U, = U we obtain
the self-superposability condition.

Ux(vxU)=v 1.7
where as before X means any scalar function From this onwards
we shall denote the compound word “self-superposable” simply

by ss. in order to save writing.
It Ui is ss, the middle term in the equation (1-5) disappear

V><[U><(V><U)]——0 (1-8)

and the consistency equation reduces to

V><———+vV><[V><(V><U)] (1.9)

Hence the use of the self-superposability condition is to re-
move the non-linear terms from the equations of motion.

Prof. Kampé de Fériet [6] has used this fact in a rather
different way in the case of pure plane motion. Assuming that
the vorticity is constant along a stream line, i.e, by taking a

relation A ;
b = f(%) (1-10)

between the stream function and vorttcnty, he has got rid of
the non-linear terms in the equations of a plane motion, where
= — VX is the vorticity. -
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But the relation (1-10) is just the self-superposability condi-
tion in plane We must note the self superposability condition
is more general than (1-10) They mean the same thing only in
the case of plane motion. o

The object of this thesis is to find exact solutions of the
equations of motion, in various cases, when they are simplified
by the self-superposability condition. The work is divided into
four chapters. Each chapter begins by the definition of the par-
ticular motion to which it refers The coordinate systems which
will be used are indicated. The forms of the velocity and the
vorticity components, the self-superposability and the consistency
equations are shown, the pressure equation is given in each
system.

After these, first the steady solutions and then the non-steady
solutions of the equations are examined.

CHAPTER L
Self-superposable Plane Motions

2. Plane motion.

A plane motion is defined as motion in which the stream
lines are plane curves in planes parallel to a fixed plane, say
XOY, and the motion is the same in all such planes. There-
fore the velocity components do not depend on z Hence in
rectangular coordinates these are

u=u(xy,t), wv=uv(xgt), w-=0. (2-1)

The continuity equation (1-2) becomes

o | dv
S;+3§—0' - (2

This shows that there is a stream function $ = d(x, y, t)
such that

W oW @.2

4= gy’ dx

¢/

The vorticity components are
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E=0, M=¢0 §L[=-—V4¢ (2-3)

where

LAY Dyz.

Hence vorticity is always normal to the plane of motion.
The ss. condition (1-8) and the consistency equation (1-9)
furnish respectively™

D, Vi) _ .
ey 4

and
WWHV) — (V) =0 (2-5)
The equation (1-3) shows that /H does not depend on z
H=H(x,y,1t),
and is obtained from the equations
Hx = ('Pyt + "I"X'Viq) + V(Viq))y’
Hy = q’ﬂ't + "!)H'Viq) - V(V?q))m

after ¢ is determined from (2-4) and (2-5).
In plane polar coordinates 7,8 the velocity components are

vi=v,(r,8,1), wvy=uyr,0,8), wv;=0. (2-6)

(2-6)

The continuity equation is

d(rv,)
or

dvy
+ BO "—On

Hence there is a stream function ¢ = {(r, 6, ), such that

LR = @2-7)

Uy = — Uy = o

The vorticity components are

. 13 2
=0 L=0 53=7[3;(rug)—%%1].

The vorticity vector is always normal to the plane of motion.
The ss. and the consistency equations become respectively

(*) Letters as suffixes denote differentiation.
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D(nl) Vid)
.0 =% (2-8)

vvi(viw) (V) =0, 2-9)
where V' is the Laplacian of ¢

: _bfqa 13 | 1%
Vi _‘Drz r or +7 r2 0
Finally, the equation (1-3) gives for H = H(r, 9, t) the fol-
lowing two equations :

Ho=— Lo+ 4,V + 2 (V’cp)e,‘[‘

(2:10)
Lty = g+ Ly — v v, |
In a real fluid motion both the velocity components and the
pressure must be uniform. Hence if the fluid extends to a re-
gion where 0 may vary from 0 to 2xn this uniformity must be
secured.

3. Solution of the equations in the steady case,

In Cartesian coordinates the stream function ¢ must be a
solution of the system of equations

D(}, Vi)
D(x, y)

In plabe polar coordinates the first of these equations must
be replaced by

D($; Vi)
Dir, 8)
In perfect fluids v =0, and the only condition which will
be imposed on ¢ is
Vid = f(4).

H. Lamb (8.) referring to one of the papers of Stokes is gi=
ving this as the existence of steady plane motion in a homoge-
neous incompressible non-viscous fluid. It is in fact the ss con-
dition, and as it is clear from the equations (2:4) and (2-5), it is
one of the conditions of the existence of any ss. plane motion,
steady or otherwise, in a viscous or non-viscous homogeneous
incompressible fluid.

=0, YV(V}§)=0. (3-1)

=0, where V¢ = ¢, + - 4), + sbee
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The full solution of the system (3:1) is know [2]. The pos-
sible solutions are the following :

19 Let Vi = K, R

where K is an arbitrary constant. The vortic‘i'ty vector which is
always normal to the plane of motion is constant in magnitude.
The velocity components are harmonics. This class of motions
includes all irrotational plane motions, which correspond to K=0.

2°) Motion in parallel straight lines. If we take the x-axis pa-
rallel to the direction of motion the stream function ¢ is of the
form

b =19 (y). o ,
The first of the equations (3-1) is satisfied identically, and
the second requires
¢Il’/ — 0.
¥(y) = Ay® + By* + Cy, .3:3)
where A4, B, C are arbitréry constants of integration. The ve-
locity components and the pressure equation are

u=3Ay?+ 2By + C, ©=0,
L+Q=6Avx—lC’.
o 2

3°) Motion along concentric circles. If we take the origin at
the centre of the circles the stream function is of the form

b = d(r).

The first of the equations (3-1) is satisfied identically, and
the second requires

reer 2 22 1 ” 1 r__
YA = =0,

of which the solution is
W)= Artlogr 4 Blogr +CA, G4

where A4, B, C are constants of integration. The uniformity of
the pressure requires 4 =0, and therefore the motion reduces
~ toone with constant vorticity. The velocity components in pla-
ne polar coordinates are
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v, =0, u,=—2Cr—-—BT.

If the fluid contains the origin we must take B = 0

4°) Radial motion. The stream function is of the form

b= 41(0)
Ve = ,z boo-

The ss. condition requires {; = a constant, say C. Hence
$ = C6. (3-5)
It follows that V4 =0, and the solution becomes a special
case of (3-2). The velocity components are
Uy = T ) 02 =S 0-

The motion is irrotational.
Although the more general solution of (2 4) or (2-8) is

Vi = f(), (3:6)

where f(¢) ie an arbitrary function of ¢, and ¢ depends both
on x and gy, or in polar coordinates on r and 8, the equation
V:(qu)) = 0 requires
vef =0,

and this set of equations gives nothing new other than (3:2),
(3-3) and (3:4).

M. Kampé de Fériet (6-1) has shown that the solutions (3-2),
(3:3) and (3-4) are the only solutions which satisfy the requi-
red conditions, i. e. the system of equations (3:1).

The system (3-1) shows the solutions given above are valid
both for viscous and non-viscous fluids.

These are the only plane steady motions of viscous incom-
pressible fiuids in which the vorticity is constant along a stream
line.

4. Solution in the non-steady case.

In Cartesian coordinates the equations to be satisfied are

D(}, V1Y)

Dy O @-4)
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VVi(Vi‘-P) - (Vi¢)t = 0, where Vi‘p = ux + dyye (2-5)

The vorticity vector being always normal to the pla-
ne of motion, its magnitude changes with time according to the
diffusion equation.

In plane polar coordinates x, y will be replaced by r, 6 and
Vi will be

1 1
Vig = by + — &0 + 5 oo

The consistency equation (2-5) shows that Vi{ can not be
a function of ¢ only.

Prof. Kampé de Fériet [7] has studied these equations also.
Although he has not given the exact forms of the solutions, he
has indicated the possible motions. obtainable. These are (i)
motions with constant vorticity, (ii) motions on parallel straight
lines, (iii) motions on concentric circles, (iv) motions of the
type

4)(x’ 9 l) = E-th (p(l(xa y)f

where §y(x, y) is an arbitrary solution of the equation
Vi% + kb =0.
We shall set in order the possible solutions of the equations:

1°) Motions with constant vorticity. There may be motions
of the fluid where although the velocity changes with time, the
vorticity is constant both in magnitude and direction. Hence
we can write
W=k
where K is an absolute constant. The form of ¢ is
$ = V(x,y, t) + Ax® + Bxy + Cyt, (4-1)
where 2(4 + C) = K, B may be an arbitrary function of ¢, and

W(x,y, £) is an arbitrary harmonic function. The velocity com-
ponents are harmonics.

2°) Motion in parallel straight lines. If we take x-axis paral-
lel to the direction of motion the stream function ¢ is of the
form

b = (g, 1)
The ss. condition (2:4) is satisfied identically.
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The consistency equation (2-5) becomes

22
B—y’ (vdgy — $) =0,
vy, — 4, = alf)y + b(1),

where a(t), bt) are arbitrary functions of ¢.
A particular solution of this equation is

2y® + By® + vy,
where _a,B are arbitrary constants, and Y is a function of ¢,
such that

6av — yv' = a(t),

28v =b(t), ... b(f) is constant.
Hence the form of ¢ is ‘ ,
Wy, ) = V(g, t) + o + By* + vy, (4:2)
~ where V(y, f) is an arbitrary solution of '
vy — ¢ =0;

i. e. the équation of heat flow in one dimension.
A particular value of V(y, ¢) is

A cos (ky + e)e=Vvk’t,

where, A, &, € are real arbitrary constants.
Since the equation is linear and the solutions

Ajcos(ky + e)e=V*t  and  Aycos(ky + €g)e= VY,

corresponding to different values of the constants 4, k and ¢

are both self-superposable on each other, they may be superpo-
sed. Hence a more general value of V is

Vg, ) =3 A, cos(ky -} &) e~V 4-3)
%
and this is also ss. (9, p. 7).
“On the other hand, the equation
, w'pyy s q)l =0
has a particular solution of the form
’ $ = ¢~12 c-yzfﬂ\lt’
which vanishes when y = w0 or # = w. The same is true for

§ = At=12 e—(y-*k)zll‘vt’
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and for different values of the constant k these are both ss.
and superposable on each other. Hence since the equation is
linear, in the solution (4-2) we can take

Vig, ) = 3, A= emomion, @4
’ k

The stream lines are straight lines parallel to x-axis
The pressure equation for both cases is

Etre=c+—6mx

where C is an arbitrary function of time

3°) Motion along concentric circles, If we take the origin at
the centre of the circles the stream function is of the form

b =49 (r, ).
The ss. condition (2-4) is satisfied ldentxcally The consis-
tency condition (2-5) becomes

V(i — §) = O.
1
v(q)rr + T q)r) - ﬁpt = a(t) lOg‘ r + b(t)s
where a(t), b(f) are arbitrary functions of ¢,
A particular solution of this equation is

(ar* + B) log'r + yri,

where @, 7. are arbitrary constants, and $ is a function of ¢,
such that

4av — ' = af),
4v(o 4+ y) = b(t), .. b(¢) is constant.
Hence the form of ¢ is

(r, ) = Vir, ) + (ar? + B) log r + 173, 4-5)
where V(r,t) is an arbitrary solution of
1
oo+ b = =0,
A particular value of V(r,?) is
[AJ, tkr) + BY, (kr)] e~

where A4, B* k are real arbitrary constants; J, and Y, are Bes-
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sel’s functions of order zero of the first and second kinds res-
pectively. Since the two solutions

[AiJotkir) + By Yo (kur)le™4t and [Aafolkor) + By Yolkor)le "%y,
" corresponding to different values of the constants 4, B and &

are both ss. and superposable on each other they may be su-
perposed at any rate. Hence a more general value of V is

Vi ) = X [Acfolkr) + B Yknle ™ (4.¢)
and this is also ss. '

Again an other form of V is [10]
- Vir, t) = t=%{F,,(k, 1;9)(A + Blog | g | ) + ZC,.g"}, (4-7)

provided k is not zero or a negative integer, where 4, B, m

are arbitrary constants, m > 1, g = — r¥/4v¢,
o) — k(k k(k+1) g
Fn(k,l,g)——l 1,11+ 2’ +
and ;
c (1, 1 12 2 2

ittt e T T T T m
k(k+1)..k+m—1)

(ml)?
If k is zero or a negative integer the series Fy(k, 1;g) termina-

tes, otherwise it is an infinite series which is convergent for
all values of g.

The stream lines are concentric circles with their centres
on the z- axis The pressure equation is

- Zie- f¢“—+(l3 —4a0)6+C

where C is an arbitrary function of time. The uniformity of the
pressure, in a region where 6 may vary from 0 to 2n, requires
B’ — 4av =0, i.e. B(f) = 4avt 4+ a constant.

4°) Radial motion. The stream function is of the form
$ = 'q"(e’ t);
1 N
Viip = Y %e-
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Now the ss. condition requires ¢y == 0, and since ¢y =0
it follows that :
b (9, ) = a()  + &), 4-8)
and Vip =0.
Hence this reduces to the case 1°) with K =0. The motion
is irrotational. This shows that the vorticity can not depend on

6 and # only, i. e. the constant vorticity lines can not be con-
current straight lines.

5°) Motions of the type

blx, g, 1) = e"* dy(x, y),
where k is a parameter. The equations (2-4) and (2:5) are sa-
tisfied if
Vidy ~ kb =0. |

" If k<O, put k= — A% Then a solution of the equation

VEhy + Ay = 0 is
$o= Acos(dx + ¢) —[— B cos (Ay + 9),
. d(x, g, ) = e\t [A4 cos(Ax 4 €) + Bcos(Ay + 3)]: (4 9)

and Vip = — A%,

Have we the right to superpose the motions of the (4-9)
in order to obtain more general solutions? Will the resulting
motion be ss. ?

If we indicate the two different values of ¢ by ¢, and 1,
corresponding to different values of the constants A, B, %, ¢ and
9, we shall have

V’\Px = - )‘211’1 ‘
Vz‘h == SV
These show that both ¢, and v, are ss. . In order that ¥, 4+,

may be ss. y; must be superposable on v, 9, p, 15). But this
is only true if A, = X;. Hence a more general form of v is

Ygt) = e T Acos(hx + &) + Bacos(hy +3,)].  (4:10)

If k>0, put k= )? in the equation Vi, — ky,=0. Then
a solution is _
Yo = Ach(Ax + &) + Bch(ry - 9),
P = et [Ach(\x -+ &) + Beh(hg +8)]  (4+11)
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and Vip = A%y,
Similarly a more general solution is obtained by summation

w(xgt)= eV 3 [A,ch(Ax + €,) + B,ch(Ay + 5,)], (4-12)
i the series is convergent.

Both for the solutions (4-10) and (4-12) the function
H=C + g —i—%(\pi + V) is given by
o /
=1 gy
H=+ ky?,

where k = — )* in the first and k = )? in the second.

All motions obtained in in this chapter have a common pro-
perty. The vorticity is constant on each stream line. This re-
sults from the equation (2-4), i.e. it is a consequence of the
ss. condition. It states that either Viy = f(), or both v and
V& depend on the same space variable. Therefore on each
stream line, where v is constant, Vv, that is the vorticity is
constant. This is true only in the case of ss. plane motions.

CHAPTER I

Axially Simmetric Ss. Motions in Planes
Passing Through OZ.

5. The stream lines are contained in planes passing through
OZ, and it is supposed that the motion in each of these planes
is the same; therefore the velocity components are independent
of 8. In cylindrical coordinates these components are

vy =uvy(r,2,t), wvy,=0, vz=uwyr,z21t). 61
The continuity equation is "

d(rvy) s("’a) _ .
or + dz = 0.

Hence there is a stream function v = y(r, 2, f) such that
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12y 1 dy

o e 2 T -2
U1 = rbz‘ ,va' T . 5-2)

The vorticity components are
& =0, 52="_‘D2‘1’»‘, & =0, (5-3)

where ,
¥y 1w,

_ v r dr 02

Hence vorticity is always normal to the plane of motion.

The ss. condition (1-8) and the consistency equatlon (1-9)

become respectively L
1
D% qu»)

D(r, z) =0, ‘ . (5'4)
vDy(Dyy) — (D), = 0. (5-5)
Equation (1-3) shows that // does not depend on 6,
H=Hlr, 2,1,

and is determined by the equations

1 1 v o
Hr: '— ;wzt + ;‘;‘l’r‘Dz‘P‘{‘% (D2w)¢
. 1 .0 1 ©
Hz; = Py +;_TW,‘D’(1)“‘—':_(DQ'¢),\.

r i

(5-6)

After v is dctermined by the system (5:4) and (5-5), H will
be determined by (5-6).
If the motion is steady the equation (5:5) becomes

Dy(Dyp) = 0 (5-7)

6. Solution of the equations in the steady case.

In cylindrical coordinates the stream function ¥ must be a
solution of the system of equations (5-4), (5:7)

D (wr DZW) .
—'T(r"—'z—)—— =0, B (5 '_4)
Dy(Dgyp) =0, (5:7)

where
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The first requires
LDy = 1), (6:1)
where f(y) is an arbitrary function of ¥. Now (5-7) furnishes
£ 408+ F O+ 2+ v =0,
or, taking account of the equation (6-1) this becomes
Lrer+vd+if+50r=0 62

In particular, if f(p) is constant the equation is satisfied, and
(6-1) becomes ,
Dz’lp = Crz, (6'3)
where C is an arbitrary constant.
U. Crudeli has studied the solutions of this equation [3,4,5].
The following formal solutions can be obtained easily:

V=1 + 3 (Aer® + By) (axz + b;),
%

6-4
w= e+ 3 LAk + B Y0} (ot + Doty | €D

where J; and Y, are Bessel’s functions of order unity, and ¥,
is a particular solution of (6-3). U. Crudeli gives for 1,

Wy =g Cri+ Er,

where E is an arbitrary constant.
If f() is not constant, the equation (6-2) is integrable only if

v var=rigly) (6:5)
and 50, = A, (6-6)

where g(y) and Ah(y) are functions of 1. Now the equation (6:2)
is written

f'g+ff +hf=0.
By eliminating vy, and v, between the equations (6-1), (6-5)
and (6-6) we obtain the following relations:
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htg=f (6-7)
“PY3h2 + dgh"— 2hg') = 16 . (6-8)

The second shows that, either g=h=0, or ¢ is afunction
of r only. The first possibility is excluded, because then the
equation (6 7) requires f= 0, and we had assumed that f is
not a ‘constant. Hence :

b = ¢(r).
" This gives the well-known solution on straight-lines paralle!
to OZ, i.e. Poiseuille motion. The stream function is of the form
$ (r) = Ar¥ogr + Brt + Cr?, (6-9)

where 4, B,C are arbitrary constants.
The velocity parallel to OZ is™

vy;= — 2A logr —4Br* — (A + 2C).

The pressure equation is
!1 +Q=—16Bvz— l (A +2C).

‘ lf the reglon in which the motion is taking place includes
the z-axis, we must take 4 ==0 in order to prevent the vel*o-
city from being infinite on the axis. e

Thus, the only ss. steady motions in.planes "passing ‘through
OZ are (6-9) and the motions represented by the solutpons of
the equation (6-3).

8. Solution. in the non-steady case.

We shall use . cylindrical coordinates. The equations to be
satisfied are (5-4) and (5-5)

(4», qu))
D(r.2)
vDy(Dy}) — (Dyb), =0, (5-5)

1
where Dy =1¢,, — - $, + ¢,

== 0, , l (5'4)

Let : | 4% Dy = s (r, 2, 8).
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Tﬁe equation (5-4) suggests that it can be satisfied in parti-
cular if

- 1% sis a functlon of r and ¢ only, ;

o )’s is a function of z and ¢ only, and in general if
3% s is a function of ¢, i.e. s = f({)."
We shall discuss each in turn.

1) s =—1— qu) is a function of r and ¢ only. The equation

(5 4) requires
: Y8, =03
hence -either s, =0, or ¢, = 0. SRR
It s, =0, s may depend only on ¢. Let o

T qu) = a(t)' LR
Dy = '2 a(t)
Now (5:5) requires o’ = 0. Hence we obtain the equatlon

Dy =art - : (7-1)

where a is an arbitrary absolute “constant. The equatlons (5-4)
and (5-5) are satisfied. We obtain-the solutlons, similar to (6-4)

"Nr: z,t) = ¢y + 2 (Ak’2 + Bk)(ckz + Dk)’
4‘(’:2 t)=d¢,+ Z"[Akjl(k") + B, Yi(kr)}i Cre = + Dke-kz)

where the capital letters A4, B, C, D denote arbitrary func-
tions of ¢, and ¢, is a particular solution of (7-1): For example
we can take for 4)1 the expression - :

(2)

‘ ¢y =% art + br2,
where b may be an arbltrary function of ¢.
lf 4, =0, then ¢ = §(r, #), and inserting
" Dy = r2s
into the equation (5:5) we obtain
v(rs,, 4+ 3s,)— rs; = 0.

By the method ef separation of the variables we find a.finite
solution when r = 0, i.e.
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20 = e frar [ feinar v Bor, a9

where A, k are real arbitrary conéﬁnts, and B(?) is an arbitrary
function bf time.

For different values of the constants A, k and the function
B(#) the solutions obtained are both ss. and superposable on
each other. This can easily be tested by the formula (1-6).Hen-
ce a more general solution is

o(r, t)*Z[A,, oV f rdr f ar / r Jlkr)dr + Bu)rt). (7-3)

2°) s= ?Dg'.b is a function of z and ¢ only. The equation
(5-4) requires , _

‘ . q’r'sz = 03

hence either s, == 0, or ¢, == 0.

If s, =0, s depends on t only. We have discussed this ca-
se in 1°),

If ¢, =0, then ¢ = t!z(z, t), and the relation
Dﬂ‘p = q)zz = ris

is possible only if ¢, =0, s=0. Hence this is a particular
case of (7-1) with a = 0. There is no new solution of the equa-
tions in this case.

3°) In general, s must be a function of ¢, say

s=LDg=fw.. - a4

Since. we have discussed the cases where s=s(r¢) and
s = s (2,f) in the previous paragraphs, it is reasonable to assume
here that both ¢. and ¢, are different from zero. (5.4) is satisfied
identically, and (5.5) furnishes

P+ +F G+ 20+ b — % =0 (15

We can satisfy this in three di(fekent'ways“:
(i) f=0. .. f())=a constant, say a. Hence
Dy = ar?,
and we are led to the equation (7.1) of No: 1°).
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) £ 40, but f=0and b, + >4 + = 4 =0.

This reduces to an impossibility. For, we have

=0,
“ f=20C,
", f=C+D,

where C, D are arbitrary constants, and this last equation gives

Y= b 4 b — 1 (CY + D)=01by (7.4),;
in addition to (7.6)

3 1
q)rr+74’r + 4’;;—74’::0-

By subtracting the first from the second we find
4v¢, ~ ry, + vr3(Ch + D) =0,
a linear partial differential equation of the first order to determine
¢ as a function of r, z and . The general solution is

Co+ D =9 (s, 4vt + % ra) g=CrtS,

or

CY + D=1 (z, a)e=o"";

where a = 4vt+Lr2, and ¢ is an arbitrary function. If we

insert this into the equations (7.6), we find that both are satis-
fieds if C =1 and

'icpaa—_f'r‘q’a‘*' (Eri—é—)rch—}-(p“:o.

But this is not integrable, since the coefficients are not functions
of @ or z.

(iii) Neither /" nor f° is zero.

The equation (7.5) indicates that ¢, contains the factor v. Let
by = vk,

where k is an arbitrary constant. Hence
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b= ™ g(r,2) (7.7)
and Dy = eVt Dy g,

where ¢(r,z) is an arbitrary function of r and z, and neither ¢,
nor ¢, is zero.

Inserting these into the equations (5.4) and (5.5)1 we obtain
1
D(CP’ 'r_g" Dz CP)
D(r,2)
Dy(D; 9) — k.D, 9 =0.

The first requires

=0,

— Do =F() (1.8)

where F is an arbitrary function, and according to the equation
(7.7) we have ‘

s = fi) = e" F.

The second requires
" ’ 3 ’
F'or+ 92 + F'(p,, + = 9, + 92) — kF = 0.

Since f'5=0, f =40, it follows that F'==0 and F"==0. Hence
this is integrable only if the coefficients are functions of ¢, say
9+ ¢ =g,

3
cFrr+Tcpr+(Pzz=h!

where g and A are functions of 9. And we have the equation
(7.8) at our disposal. Subtracting the equations

3
Prr + Tcpr +sz,=/1,

1
¢\O"_—;'CP, +chz=r2F

we obtain % @, = h-—riF, ie. ¢, = % (h—r2F)
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'+,,=% (4h — 12,3 A+ r2 b’ — P FK —r' hF' 4 S FF).
And from

Cpi == g? — cpf we find
W =g — g r(h—ri P,

Differentiating both sides withrespect to z and dividing by 2¢,,
we find

b =gg — g5 Ph—r F) (K —r1F).

Hence

1 1
D2<P=°P"'—7<P,-+tp“=gg—7r2F=r3F by (7.8)

2gg’ — 3 F =0.
Under the assumptions we have made this is impossible. For
this equation is valid only if'F=g =0, or ¢ is a function of

r only, But we have excluded both cases by assuming F’ =&0,
@, =<0 and @, =<0.

It seems that, there is no ss. non-steady solution in planes¢
passing through OZ (symmetrical about OZ) other than of the
forms ¢ =4 (r,t), ¢ =9¢(z,¢) and the solution of Dy =ar3?,
though ¢ =(z,t) leads to a particular solution of the last one.
These possible solutions are given by (7.2), (7.3), and (7.3').

It $ =1¢(r,t) the stream lines are straight lines parallel to
OZ, and since r — constant on a stream line, % Dy 9, i.e. the vor-

ticity is constant also. It is always normal to the plane of mo-
tion. Hence in this case only constant vorticity lines are coin-
cident with the stream lines.



CHAPTERII

Three-dimensional Ss. Mqtions

8. Ss. pseudo-plane motions of the first kind.

A plane motion is defined by the following two conditions:

(i) The stream lines are contained in planes parallel to a
fixed plane, say XOY; this means

w == (.

(ii) The motion is the same in all such planes, that is, the
velocity components are mdependent of z.

But these two conditions may not be satisfied snmultaneously
We may consider the motions which satisfy only one of the
conditions, but not the other. Thus we obtain two classes of
motions, each containing the plane motion as a particular case.

The first class of motions satisfy only the first condition,
but not the second. Hence w =0, but u and v may depend on
z. The second class of motions satisfy only the second condi-
tion, but not the first. Hence the velocity components are inde-
pendent of z, but w 0.

R. Berker [2] calls these two classes of motions “pseudo-
plane motions;, of the first and of the second kind respectively.

In this chapter we shall discuss the ss. pseudo-plane moti-
ons of the first kind, leaving the other to the next chapter.

For these motions the velocity components are of the form
u=u(x,y, z,t), v=uv(x,y,%1), w=0.
The continuity condition is

du Dy
Ty =Y

hence there is a stream function § = (x, g, 2, £) such that
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) MW
“= Sy U= (8-1)

and ¢ is determined except for an arbitrary additive function
of z and ¢.

The vorticity components are

_ % 0% _ (2% LAY
I yoys 7""b_qbz g_(bx“ + by‘)

The ss. condition (1.8) gives three equations:
5 @ 4 ¥, — (4, Vi), =0,
1

5 @+ §e — (e V19), =0, ) (8.2)

DW.VY _,
D(x,y)

The consistency equation (1.9) also gives three equations:
VOV P — e = 0,
V(Vid)ye = by =0, (8.3)
vV Vi) = (Vi) =0

where Vi and V2 are the operators

2 2
“=w+$

bx’ + ’+bz’ )

The first set of equations is equivalent to the system
|

5 8+ 4, — 4, Viv=Q,

1 .2 2 2 (8.4)
2 (q)x + q)y)x - "Px'qu) = Qy

— —., ot m————

since the third is a consequence of these, where Q is an arbit-

rary function of x,y, z and ¢, such that Q,,=Q,,=0; i..
neither Q. nor Q, depends on z.
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- . The second set of three equations is equivalent to
Vi~ =F(x, 5,0 + Gz, ) | B
s (8.5)
i) [
where the function G (z¢) is enfirély é’rbiti'a‘ry.'

Thus the systems. (8.4) and (8.5) are equivalent respectively
to the systems (8.2) and (8.3), and are therefore the kinematic
conditions of the problem.

As for the dynamical condition, (1.3) shows that

H=P—Q+ ¥+,

and Q does not depend on z, where Q is defined by the edu-
ations (8.4), and P is the harmonic conjugate of F given in
(8.5). Hence the pressure equation is :

—l— Q = P(x,y, ) — Q(x,y,t), (8.6)

i.e. thek% + @ does not depend on z. The function H, and

therefore p, is determined only except for an arbitrary additive
function of ¢.

9. Solution in the steady case.

The ss. condition is given by the equations
1
5 Wi+ )y — 4 Vi9=0,, ©.1)

3 9D, ~ b Vig=0,, 9:2)
and the consistency equation is k .
Vip = F(x,y) + G(2), 9.3)

where Q is an arbitrary function of x,y and ViF=0. The equ-
ation (8.6) becomes

—Pp—— + Q@ = P(x,y) — Q(x, ). . (9.4)
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If we choose V3¢ as in (9.3), the equations to be satisfied
are (9 1) and (9.2), and in all cases Q.; = (Qy, requires

D, V')
Dieg ©:3)

We shall consider the following cases:
f1) V¢ =a function of z only, say V:¢=h(z);

' (2 Vid=a function of x and z, or y and z only, say

Vid = h(x,2); | :
3) Vfd} = a function of ¢, say V:¢ = A (J).

Té obtain a solution we shall start from the equa_fion 9.5)
and satisfy it in the ways indicated above. Then we shall de-
termine the unknown function 4 by (9.3) and ¢ by (9.1) and (9.2).

(1) Let Vi be a function of z ouly, say V¢ = hA(z).
Vip=h(2) +d.. = F(x.5) + G(2).

Vi F = 0 requires
h,, =0,

. h (z) = az + b, ‘ 9.6)
where a, b are arbitrary constants. Then
boo=F (5,3) + G(2) — az — b,
Integrating tw:ce with respect to, z, we find
= L aFay) bz A + Blxn) + ff(c—az—z»dz*
We can discard the last term by taking
G(z)=az+b

since § is determined except for an arbitary additive function
of. z. Hence ¢ is

=5z F(x, y) + 2z Alx,y) + B(x, y). 97

\ch—— z”VF—I»—zVA-(—VB——az-{-b

This requires
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Vid ’

A= (9.8)
ViB=b,-
since ViF=0.

With these values of A, B and F, ¢ satisfies the equations

(9.3) and (9.5) There remains only to satisfy (9.1) and (9 .2).
They furnish

Fz + F =¢y,
F A+ F A, -—aF'-—ca.
F.B,+ F,B, + Ax + Ay —2aA — bF=¢,,
A.B.,+ A,B, — aB — bA = ¢,
where c’s are arbitrary constants of integration.

The equations (9.8) and (9.9), together with V2F=0, de-
termine A, B and F.

If ¢, 5=0, c;==0 they are
F=oax+ By, where a®+4 f2=c,,

(9.9)

a ¢ ‘ . ‘
A= 5 (ax+ By + ;’f— (ax + By), (9.10)

o, |
B = . (ax + g+ —g— (ax - By),

and c’s are always related by c’c,=c;(cic3—¢c)), whatever
their values are.

2 Q= (px— o) + 2 (ax + ) + C,

where C is an arbitrary constant.
If ¢,5£0, ¢;=0, then c4===0, and F, A and B are

F=oax 4 6_(1, where ot 4 ﬁz €1

A= '2? ox + py)2, : (9.11)

(ax + By)? + (ax+ﬁy)
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In this case the pressure equation is
— 4 Q=v (fx — ay) + (ocx + By) + an arb. constant.

If ¢, =0. then F2+ F2 = 0 shows that F is constant; but

we can take this constant to be equal to zero, since otherwise
it will give a‘term depending on z only in the expression of .
Hence ¢; = 0, and the system (9.9) reduces to

A+ A —20A=c,

(9.12)

AB, + A,B, — aB — bA=c,,

where cp ¢y are now arbitrary.
A solution of this system is
a c3l 12
A= g+ a4 2 g+ ),
2k k -

(9.13)

b
B =i (u+ W+ 75 (gHh),

where ), k& are arbitrary constants, such that &%= 1 + A2, and
¢35 0. If ¢g=0, ¢, must also be zero. The pressure equation is

e -+ Q = an arbitrary costant.

In every case we obtain ¢ by inserting the values F, A and
B into the expression (9.7).

(2) Let Vi be a function of x and z only, say
Viz[) = h(x, z).
The equation (9.5) shows that ¢, = 0. Then
Vg = £ (x,2) + ¥,, = F (x,y) + G (2)
requires F, =0, Now V;F=0 furnishes
: F(x) = ax + 8,
and he + h,, =0, (9.14)°
where «, [ are arbitrary constants.

After determining a solution of (9.14), ¢ is obtained by in-
tegrating’ the equation
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) ‘pxx = h’
with the condition '

q)xx + q)zz = ax + B + G (Z) o (9 ]5)

The equatlons (9.1) and (9.2) are always satisfied, whatever
the value of ¢ (x,z) is; and the stream lines in " planes
z == const. are the straight lines x = constant.

Ihe pressure equation is
-—+Q=‘-——V“y+bc
P . ’

where C is an arbitrary constant. T TR

For example, if A is of the form

A (x, z)—X—I-—Z

where X X (x), Z Z (z), (9.14) requires
XII + Z// =-— 0’ |
" X'=—2Z'=a const., say 2a.

Hence X =ax? + bx +¢, Z=—az’+bz+c. Now
N '\‘= ax? 4+ bx 4 (c + ¢;) — az? + bz,
d(x,2)= ax"+—bx3+——x’(-—az’—l—b,z—]—c+c,)+-xA(z),

where A(z) is yet arbitrary. This gives ,
b = —ax? + xA’. }
Vi =+, = (A" + D) x + (c + Ca)—-az +bxz
Comparing - thn w1th (9.15) we find ‘
A+ b=ua
c‘—-’ B
— az”-{— bz4 ¢ =G (z)

“The first of these furmshes
A(z)=7(oc—~b)z2 + mz+ n.

Hence ¢ becomes
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¢(x.z)~—ax‘+ —é—bxs-l-—;- x} (—az? |- bz + B+ ¢)-

gt metn| ©:16)

where b, b,, ¢;, m, n are arbitrary constants.
The pressure equation is - »
% 4+ 2=C—vs '8 |
where C is an arbitrary constant.
If we assume the form A= XZ, (9.14) requires
X __-Z A,
X zZ
where 1 is an arbitrary constant. In a sm;ular way we obtain
the solutions :

¢ = ach(mx + €)-cos(mz + ) —{—x(—,} wz? + bz + c), if A=
¢ ==a cos ﬂ(mx-,l-s,)»-ch (mz+8) +x(—1— ozl +b‘z+c) , if A== —m?,

¢ a{ax”—k—bx’) (cz+d) +x [-—acz“-{- —= (@<-6ad) 23+ clz+c2]

if =0,
where the coefficients are arbitrary parameters.

It can easily be proved by the equations (1.6) and (1.7) that
when §, =0 or §, = 0 or more generally when ¢/, = a cons-
tant, i.e. when the stream lines in planes z = constant are pa-
rallel straight lines ), and ¢, corresponding to different values
of the arbitrary parameters. are-both ss. and superposable on
each other hence if the differential equation for-¢ is linear and
homogeneous these solutions can be added.

Thus instead of the solutions obtainéd above we can take
the following more general expressions:
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4= (a,,, ch (knk +¢,,): cos (mz+3,) +x(% L L )] .

<
ll

m

3 [a,,, cos{mx-e,) ch (mz—l-‘B,..A)l +x (-—;— am22+bmi+¢;; )} 'k

. e ) 01
g = 2”; g(a,,,xh;l— b,x?) ‘(c;,,,z+ d,) +x [—amcmz3-?—:% (2, —6a,dn)2? | =

+01mz+62m]: V- .v "

(3) More generally, let -

Vid=h@), (9,18)

where h($) is an arbitrary function of ¢. Then the equation’
(9.3), i.e. '

Vg =h+w, = F (x.9) + G (o)

requires ; ; _ v
Vi(V19) = V2 (Vig) = VA =0,
(V3Y)., = (V?9),, = 0.
- Hence o _
K@+ 4+ 4+ K-V =0, (9.19)
and -

K dube + K o + raee =0 ; L (9‘.éo)”
K, b, + K, + %gﬂ 0 -

We shall consider the following cases:
mhu=m%“=aTmusﬁ¢=caﬁ
=5 2F (o9 +2469) + B (xy)
Vfcp = C requires |
V:F =0,
Vid=o0,
- ViB=C.
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This is a partlcu‘ar case of (1) with a=0, 6 =C; see . 7)
and (9 8) .
(u) h" =0, V3 =0. Then h=C¢ -} D, and \ :
_ Vy=Cd+ D+, =0. o
Both the equations (9.19) and (9.20) are satlshed We have N
| oot Co=—=D. "

We éan take D == 0, since its contnbutlon to ¢ is only to add
an arbitrary constant.

If C>0, let C= k3 Then a solution: of L
"pss + k2q) =0 (9°21)

is: ‘ ¢ = A(x,y) cos kz + B (x,y) sin kz.
Vi¢ = C requires
VA =3
1A=k A 9.22)
ViB = kB

The equations (9.1) and (9.2) furnish
A+ A — ke =
B. 4 B, —k*B* =, 9-23)
AB,+ A,B,— k*AB =c;, |
where c;, ¢y, c3 are arbitrary constants of integration

The systems (9.22) and (9.23) determlne A and B. From
(9.22) we find particular solutions

A =aych(kx+¢) + ay ch (ky + &),
B = bych (kx + 3,) -} by ch (ky + 3)),
where a,, a3, b,, b, ¢,, &, 5, 3, are arbitrary parameters.
Inserting these into the system (9.23) we obtain the relations
' aya, = biby = a.by = ayb, = 0,
—k@+ ) =c,
— K (b + B)=cn
— k*[asb, ch (e, —3,) + azby ch (55— 3,)] = c;.
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The last three determine the values of ¢;, ¢ c5. The first set
of relations is satisfied if a,= b2~ 0, or if ¢y=28, = 0. Hence
we have the solutions™

Y (x,z) =a,ch(kx+ s,) cos kz-{—bl ~cﬁ (kx+3,)sin kz

¥ (y, 2) = a; ch (ky+¢,) cos kz+by ch (ky+3,) sin kz } (8.24)

Since the stream lines are parallel straight lines and the

equation ¢_, + k¥ = 0 is linear we can take the more general
expressions ’

lP(x, z) =Z [ay; ch lhex+ €,;) cos /&—{—b,i ch (kx+3,;) sin kz] l
¢ (g’ Z) - 2 [am ch (ky+82') cos kz+621 ch (ky+ 521) sin k’] I (925)

The pressure equatlon in both cases is

— + = an arbitrary constant.

If C< 0, let C=—k in ¢, + C =0, then
d — k3 = 0. (9.26)
= A(x, g)eb + B(¥, gle~t=. :
V’q; = 0-requires

VA + k24 =0
VB 4 k3B =0, ©-27)
The equations (9.1) and (9.2) furnish
Azx' + A2, -+ k24 = ¢, e (9.28)

Bﬂx + B‘zy + k232 = 02)\

where ¢, ¢, are arbitrary constants.
The systems (9.27) and (9 28) determine A4 and B. From
(9.27) we find

A(x, y) = a, cos (kx + &) + a,cos(ky + €)
B(x, y) = b, cos (kx + 3,) + bycos(ky + 3)),
where a’s, b’s, £’s and 3's are arbitrary constants.
Insertmg these into the system (9.28) we obtam the relatlons
ayay; = b bz = 0
k(al 4 o)) = ¢,
kz(bi + b:) = Cg.



122 AN, ERGUN

The last two determine ¢; and c,. The first is satisfied lf

al:bl‘_—oy
or ag==54,=0,
or a =5b=0,
or : 2——b1—0.

Thus. we obtain the solutions ,
y(g, 2) = aycos(ky + e)eks + bycos(ky + 53)(:""
§(x, 2) = a,cos(kx -+ €)e*= + b,cos(kx + 3,)e~*

$(x.y,2) = agcos(ky + &;)e*= -+ b,cos(kx + 6,)e—"= S

(9.29)
$(x,,2) = a;cos(kx + ¢,)ek* 4+ bycos(ky -+ d;'e—*k=. |

These are also ss. and superposable on each other for different
values of the constants, except k. For we had previously poin-
ted out that two solutions ¢, and ¢,  satisfing the relation
V3 = A{ are superposable on each other only if % is the same

in both. Thus instead of the solutionns (9.29) we can take the
following more general ones:

Uy, 2) = Z[azxcos(ky i + bycos(ky + 52:)6 *],
$(x,2) = Z[alicos (kx 4 &,:)ek= + bj;cos(kx + dy;)e—*<),
s v , (9.30
$(x.y,2) = 2[02;‘005(/(!] + e5)e*= + bycos(kx + By)e*<],
Wxg,2) = T [aycoslkr + €,)ek + byicos(ky + d,)e=*]
The more important solutions are the last two ; because they

contain both x and Yy, as well‘,y, as z. Therefore u and v are dif-
ferent from zero. In the“la‘sti‘ one for example

u=— kek 3 bysin(ky + 52,
v z kc"‘ 2: a,sin(kx + €);
and the pressure eﬁu'ation is .
»’i + Q:C, — k3, aycos(lr + eu). Sbucos(ky + 3,
where C,| is an arbltrary constant. |

HC=0 in¢, + Cy=0, we obtaln a particular case of
(1), with F=a=56=020.
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. (iii) Neither 2" nor A’ is zero

Multlplymg the first of the equatlons (9.20) by $, and the
second by — ¢, and adding. we find :

hl' D(‘P—z’,‘!’) ﬂz:z’ q)) —
D(x, y) D(x: y)

* This requires ¢, == a function of ¢, say

= f(}). . (9.31)
= ff,

where (') means a dlfferentlahon with respect to ¢. Now (9.20)
is satisfied' if : '

Kf+ Kf + 5 LAY =0,
Wf+ [ =e, 0

where ¢ is a contant of integration,
The equation (9.19) becomes

R(E + %+ ) + Kk + ff)=0
which shows that ¢?, + ¢?, must be a function of ¢ .also, say B
¢ + O3y = gl¢). - 0933)

Kg+ A+ K+ ff)=0. (9.39)

We have yet to satlsfy the equations (9.2). Since Q,,=0,,=0
we “obtain

Hence

L

flgg —2h)=a, (9.35)
where a is a constant of integration.
Hence we have the following simultaneous equations :

g+ f)+hth+ff)=0, (9.39)
WL+ (f2Y =c¢, (9.32)
flg —2h)=a (9.35)

to determine A, g, and f as functions of ¢.
If @ =0, either f =0 or g" = 2h. The first’ posmblhty ma-

kes ¢, = 0. i. e. ¢ = d(x,y). The last two équations are satis-
fied, and the first becomes , :

\ g+ hK =0,
V“’h =0, where 24) = h(¢)
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Then ¢ satisfies the equations (3.1). Hence this dete'ﬁnines_ all
ss. steady- plane- motions studied in section 3.
Now take the other possibility :

2h= g’
By eliminating A from (9.34) we find
| %f + £ — fi' =0,
which is satisfied by
g = bf", (9.36).
where b is an arbitraryr positive constant different from. zero.

For, if 5=0, then g=14¢% 4 ¢2,=0, i e. both u=¢, =0,
and v = — ¢, = 0. Hence from {9.36) and 2h = g° we find

h = bff. (9.37)

Now if we use the relations {9 36) and (9.37), then both the
equations (9.32) and (9.34) are satisfied by

f(fY =2m, : (9.38)

where 2m --c/(b —+ 1), it is arbitrary since ¢ and b is arbitrary.
(9.38) determines f as a function of ¢.
m can not be zero. For otherwise we should have

(fl)"— h=0 by (9.37),

which is not true, since at the Beginning we have assumed
h" == 0. The equation (9.39) can be written in the form

Since ¢ is absent, put f = p and /' = p’ﬂ’, then we have
R : df ‘ .

Ppdp + pfdf =mdf, -
or PP=2mf +n:
By integrating again we obtam . L
(2mf 4 n)*2 — 3n(2mf + n)l/z — 3m¢ +1, : (9.39)
where n, [ are arbltrary constants. Seosa

Differentiate both sides with respect to z, and put ¢, = f.
After rearranging the terms we find
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2m(2mf + n) 12 df = dz,
_or by integrating |
- 2@2mf + n)'2 = z + A(x, y),

where A(x,y) is an arbitrary function of x and y.
Now by ellmmatmg @2mf + n)t?2 between this and (9. 39) we
obtam

2md =1 1—2 (z+ AP — (2 -t A), - (9.40)
the arbitrary additive constant / is neglected. Hénce o
. ) L 1
2m-V§¢ =5 (= + A)(A% + 4%) + [T (z + A) — n] Vi/l
| =_;— bz + A) by (9.37),
‘requires -
Via=0,
A+ A%, =,
These show that A4 is of the form A = ax + fy + v where
a? + 2 = b. Hence (9.40) becomes
mp=y5(@x+fy+z+ vV —nlex+By+z+7). (940)

The stream lines in planes z= constant are straight lines
parallel to ax -}- By = constant. The vorticity components are

;,e=z;in<ax+sy+z+y), n~£(ax+@y+z+v),

C=— et By bz 4 )

Hence vorticity is constant on each stream line.
Finally the pressure equation is

f + 2= (b+ DBx—ay) + C,

‘where C is an arbitrary constant.

1. Solution in the non-steady case.

The ss. condition is given by the equations
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5 W, ), — 4V = Q,
5 W+ ) — eV =Q,

and the consistency equation is

W — ¢, = F(x.y,8) + G(z, ), (8.5)

where Q(%, y, £) is an arbitrary function of x,y and £; ViF=O,
and G(z, t) is arbitrary, '
The pressure equation is

(8.4)

l + Q=P g8 —Qxyt, 3.7)
where P is the harmomc conjugate of F glven in (8 5), and Q

is defined by (8.4).

It we choose V2§ as in (8.5), the remaining equations to be
satisfied are (8.4), and in all cases Q,, = Q,, requires

be, vy ©95)
D(x, y)
We shall consider the following cases: .
(1) V¥ = a function of z and ¢ only, say Vip = h(s, t);
(2) V2 = a function of x, s and¢ at most, i.e. Vip=h(x,z,1);
3) V) = a function of ¢, i. e. Vicp = h(}).
To obtain a solution we shall start ‘from the equation (9.5)

and satisfy it in the ways indicated above. Then we shall de-
termine the unknown function & by (8.5) and ¢ by (8.4).

(1) Let Vi) be a function of z and ¢ only, say Vi)==h(s, ).
Applymg the operator V2 to both sides of (8.5) we find
vV2h — h, =0, (10.1)
‘. vh,—h, =0, ( :
This is the diffusion equation in one dimension. Its solution

depends on the boundary conditions of the problem. If we as-
sume, for example, that V) =h, i e. the component of vor-

ticity in the direction of z-axis is constant when ¢ — o we take
h(z, t) = e~ V*q cos(Az +¢) -+ b, (10.1)

where a, b, A, ¢ are arbitrary constants. Note that by (10.1) &
can not be a function of ¢ only. Now the equation




SELF-SUPERPOSABLE FLUID MOTIONS 127

VWi -, = F(x,y, ¢ +:‘G(2, t)

can be written as
| V=W =F+G—vh
We can take

G(z,t) = vh(z, t) = va e_‘“ztcés(Xz + €) + vb,

since G(z,t) is arbitrary. Hence .

: V‘I"zz - ‘pt = F(X, Y, t)'
~ A solution of this equation is :

b= eV A(x, y)cos 3z + ¢€) + w(x, g, 1),  (10.3)

where A(x,y) is arbitrary, and ¢ is a particular solution, i. e.

VP, — 9 = — @, = F(x, gy, ).
Now Vip = e""}‘y‘AiA cos(Az + &) + Vip,
- = "Mlacos(hz + &)+ b by (10.2).
o VA=a,  Ve=b (10.4)

The ss. condition (8.4) furnishes

Az, + A%, — 2aA : e )
A + Ay — ap— bA = cifd), )
where ¢, is an arbitrary absolute constant, and cy(t) is arbitrary,

The equations (10.4) and (10.5) determine A(x, y} and ¢(x,y,{).
These equations are just the same as those in (9.8) and (9.12).
The only difference is that in (9.12) ¢; and ¢, were absolute
constants, but in (10.5) c; is replaced by ¢, which is an abso-
lute constant again, and c, is replaced by c,(¢), an arbitrary
function of time. Hence in a similar way we obtain the solutions

(10.5)

A=t oxr + Y0 g + e,

_b ot ..
cP""2kz(y""ax)z"'kvz (y+“x)’

where «, & aré are arkitrary constants;,such that k% == 1 - &2,
" and c;'=k 0. If ¢, = 0, o,(f) must also be: zero. Hgnce ¢ is
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¢

ll

[zkz (g + ax)? + 3/—’ (y + “"’} e "Weos(h + €)
+ W(y + ax)? 4 k:/(t_) (y + ax). ‘ (10.6)

The stream lines are straight lines parallel to y + 2x = cons-
tant, The pressure equation is
k]

R T

\/Cl

(2) Vi4 = a function of x,z and ¢ only, say Vip=h(x, 2, t).
(9.5) shows that ¢, = 0, then according to the equation

| W — ¢, = F(x, g, 8) + Gz, t).

F,=0. Now the equation (10.1) requires
v (hxx + hzz) - hl‘ = 0.
A solution which is constant when £ > o is
h = e} [a cos(hx 4 €) + bcos(re + 8)] + 2¢,

where a, b, ¢, &, 3, A are arbitrary real constants. Hence in-
tegrating the equation Vid = ¢., = h twice with respect to x,
we obtain

b= e—mf[_ 112 cos(Ax + &) + —;— bx*cos(Az + 9) + cx?

+ xp(2, 8) + x(z2, o). (10.7)
This makes
vV — O, == vbe—Vviitcos(Az + 8) 4 2ve + (vy,, — ) x
+ (Voo — Xe)s . {10.7°y

whlch must be of the form F(x,¢)+4 G(z,¢). This is pos-
sible only if v¢,,— ¢, and vy,, — ¥, are functions of ¢ only, say

VP, — ¥ = cl(t) (10 8)

Yoes = %Xe = Calt). '
Hence ¢ is defined by the equations (10.7) and (10.8). The
stream lines of the motion are always straight lines parallel to
y-axis, whatever the value of ¢(x,z,¢). Note that when one of
the variables x and gy is absent in the stream function the ss.
conditions (8.4) and (9.5), are satisfied automatically. Then.there
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remains to satisfy the coasistency equatlon (8 5) which becomes
if for example ¢, = 0, :

V(e + d,0) ~— b = F(xv ) + G(” t),
where ViF =F,=0. . ;
Applying the operator V: to both vsides, we find
vhe + h,) — h, =0, where b= V"’q) z}ax,, ‘
~ To determine ¢ we first solve this last equatlon sultably,
and then integrate the equation ¢,, = = h twice with respect to

x. This procedure brings some new:arbitrary functions to the

expression of ¢. They must be determined by taking -account
of the form

v(q)"x + (‘szz) - ‘P: = F(x) t) + G(Z,l)- .

Now the pressure equation for the solution (10.7) is given by

where P is the harmomc con]ugate of F, and Q is determined
by (8.4). (107) and (10.8) show that F =¢;(t)x + c4(?). Then
P = —c/(t)y, and Q = Q(¢) is arbitrary. Hence

(3) Let V2 be a function of ¢,
| Vi =h@). (10.9)
The equation (9.5) is satisfied, and (10.1) furnishes
VR 4 48, F ) ROV — ) =0,  (10.10)
- This can be satisfied in different ways. We sbal! consider
all possibilities :
i) K =0. Then h=Vi) =C=a constant, Hlence this
becomes a particular case of (1) wnth a=0, b=C, a
(i) A"=0, vw¥ — ¢, =0 Then A" =C and"
h=Viy=0Cy, (10.11y

where C is an arbltrary parameter. We have neglected an ar-
bitrary additive constant of integration, since its contributionte .
¢ will be only to add an arbitrary function of z. Now
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W~ 4= WCY + 4. — b= 0;
) vq)zz - "')t = ch) '

Let ¢ = ¢,-T, where ¢, is a function of x,y,z and T is a
function of ¢ only. Then this becomes

v (% + C) = %‘.— = a constant == — v)3 say.
o
{ .
We have assumed the constant to be negative. The cases
where -it is‘positive‘or zero can be investigated similarly,Hence

. Tme A%, (10.12)
Vand $o wull be determmed by
q)Otz + (C + )\2) ql() ::vo' (10'13)

Now there are three possibilities: C + 2 may be positive,
_negative or zero,

a) f C+2>0,let C+ 22=m Then (10.13) gives [1]
o = A(x,y) cos mz + B(x,y) sinmz,
and Vi = C{, furnishes

Vid= CA, © (10.14)
V:B = CB.
The ss. condition (8 4) gives other three equations:
A%, + A% — CA% =y, _
By, + B, — CB* =g, (10.15)
A.B, + AB,— CAB=c,.

C itself may be positive. negative and zero If C > 0 let
.C = k*, then the equation (10.14) and (10.15) become just the
same as the equatlons (8 22) and (9.23).. In a similar way we
find the solutions: :

%(Jq, z) = aich(kx + &) cosmz - b,ch(kx + 3,)sinmz,

A 4’0(9» z) = aych(ky + &) cos mz ~}- bych(ky + 3;) sinme,

corresponding to (9.24), or

P(x,2,6) = [a)nchlkx+E,,)cos me+b;meh(kx+3;,)sin mele V%

tp()é,l‘,;) =2[a,,,.ch(ky + &3,,)cos mz+ bz,;,ch(ky‘+82m)sin m‘z]c""m (10.16)
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corresponding to (9. 55), where 22 = m? — k%
It C <0, let C==~— k% Then A4 and B satisfy the system;
(9.27) and (9.27), and we find the solutions

b(x,2 t)=2[a,,,,cos(kx-+ elm)cos mz+b,,,,cos(kx+§1,,,)sm mzle—v*

10.17
$(y,2.8) = Z[GamCOS(ky+ ng)cos mz+ bzmcos(ky + Bzm)sm mz]e“"““ ( )

4

where A’ ==m? + k2 For these two sets of solutions the pres-
sure is given by : :

-E -+ @ = arbitrary function of £.

If C=0, we fmd the case (1), since then K = 0.

b} If C -}- 22 <0, et C + A*= — m? Then C must. always
be negative. Take C = — m? — A\* == — k% The equation (10. 13)
for ¢, becomes

Poex — mz‘% =0, ;
$p == Alx, y) e 4 B(x,y)e=™=.

A and B are the the solutions of the‘_equations (9.27) and

(9.28). Corresponding to (9.30) we obtain the solutions:

?!)(y,? t) =2[dgmcos(ky+82m)e*"’= + b;,;,cos(ky—}; B, )em=] e~ VA,

‘m
dx;z,t0n ——z[a,mcos(kx-}- €ym)e™ by, cos(kx+ 8, )e = e~ M

10.18
) = Eanscosthy -+ ea Jemt bycoskr- 3yle-nefe—rite 1010

m

Yy 28) = D[y conlkx+Eynlem +by,conlky+ By e "A%,
% |

where A% = k2 — m?2. :
¢) If C+4+3A2=0, then C = —)* and (10.13) gives
% = A(x,y)z + B(x,3),
§ = (Az + B) e\,
V”cp = — A2 requlres 3
V’A = — A4,
VB = — B,
and ss. condition (8.4) gives- ‘
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' Azx+ Azy + AZAZ =Cp
_ - AB.+ ABy, + MVAB=c¢,,"
where ¢y, ¢, are arbitrary parameters. From the first set of equa-
tions we fmd partlcular solutions of the form

A(x, y) = a;cos(hx + &) + azcos()«y + 8,)

- Blx,y) = bcos(Ax + 3y) + bycos(Ay +3,), .
where a, b, €, § are constants of mtegratlon Now the second
set requlres .

a,az =0,
albg + agbl == 0
>k'(az + aZ) =.Cyy

;“2[0161005(81 - 51) + "252005(52 i 82)] = C3.

The last two determine the constants Cy. Ca3 the first two are
'satlsﬁed lf either
a2 = o2 = OI
or a, = b, =0,
or a;=ay==0,
The last possibility cannot be'accepted, because then ¢ can
-not depend on z.- The first and the second furnish the solutions

4) = [a,cos(Ax + &)z + b.cos(lx + 3)]e "%,
= [ascos(ig + &)= + byeos(hy + B)]eNt,
l‘Slnce the stream lines are parallel straight lines and since

the equation (10.13) is linear and homogeneous, we can take
as the more general solutions

‘I-’ = 2_.[“1)‘ cos(Ax + €13)z + by cos(hx + )]
\I) = 2[027\ cos(Ay + ¢0)z + by cos(hy + 55)] e~ VA%

(10. 19)

“ }(io 20)

The pressure equation is

—’—; + Q' = an arbitrary function of ¢.

(iii) In the equation (16.10) assume that neither A" nor A’ is
zero. The equation is integrable if and only if
¢2x + q)zy + Lpzz = g(q)) > (10'21)
and vV — 4, = vp(¢),
where g and p are arbitrary functions of ¢. .-
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Now (8 5) reqmres Vip ; 0" Pz —'—"P‘“ = 0 ' e o
P + 43,) + p'h =0, . . (10.23)

P 4)"74)5 + P (‘sz - 0 % Vo (1,0.24)
P%%‘l’l’%z"jo ”
(8 4) requlres sz = Qyz =0, i. e. o
_;_ g - 2 (‘qu)z -‘2,1)4);;"" zzq)zx q) (‘pzsx = 0 , o
1 (10.25)
—5 (g - 2h )q}y(‘ps ’_—(g *2")4)!]9 ';lzs(pzy q’:tpzzn = {\

In addition to these we have the equatlon (10 10), whqch:
now becomes

T Kgwkp=o (1026

; From (10.24) we fmd o A
e, o2

P B g 0 (10,27)

by mulhplymg the first equation by ¢, the second by — u’u and
adding. By. the same ‘way from (10.25) we obtain -

‘e . . lxq’,, 4’) D((pzz’ 4)) ——
3 [—_ ‘g — 2h) - (pzs] 'D(x,y) 4-': D(X, y) =0.

Both the equations (10. 27) and (10 28) are satlsfled if ¢= is a
functlon of ¢, Let 7

(10.28)

) b =f). - (10.29)
Then (10.23) may be written in the form R
' : p'(g— f3) +p’h=0. © (10.30)
The equatlons (10 24) are satisfied if o
Pf+pf =0, S
copf=e, 7 (1031

where c is a constant of mteg'ra.tlon
The equations (10. 25) require

1 Il' 14 1 ’ ’ (4 '3 A Y4 k2

5 & — 2 + 5 — M — - f— Y =0.".

| (¢'—20)f —2f'f = ey, (10.32)
where c¢; is a constant of integration.
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In addition to these we can find other two equations:.The
firat' of which is obtained by applying the operator V; to both
sides of (10.29).

V:@»z) = (V}), = h, = Vf,
. f@g—P+ FR—fR=0.  (10.33)

The second additional equatlons from (10.22). It can be writ-
ten in the form

$y = V(V% A1 ) )
bo=vh+ ' — ) (10.34)
by (10.9) and (10.29). ,
Now from ¢,; = ., we find
Gh+ff—pf=fh+ff —P).

or by integrating once

A+ ff —p=af, (10.35)

where a is an arbitrary constant. Thus (10.34) becomes
7 &, = vaf. | (10,34
Hence we have the following similtaneous equations
. AKg+Rkp=0, . (10.26)
pg — )+ ph=0, (10.30)
L pf=c, (10.31)
(& — 20)f — 2f3f = ¢y, C(10.32)
(@ —Af +fh—fK =0, (10.33)
and h—p+ ff =af, (10.35)

to  determine the functions p, g, h and f in terms of ¢ Only
four of these equations are independent.

Solution : Eliminate g — f? between the eqnatlons (10 30)
and (10.33), We find

P W)=
(L I _.
B -F)-F=0
By using (10.31) this becomes

K_f r.
=7t7
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oo h=bffy 0 0 0 7 (10.36)
where b is an arbitrary constant. R

Inserting the value of 4 from (10.36) and the values of p’,
p" from (10. 31) into the equation (10.30), we obtain

(g— ) f —bftff =0.
f =0 since otherwise A becomes zero, hence - V ‘
| g =(b+ 1) (10.37)
where b is different from —1, for if b= —1, g =493+ %+
$z* == 0, and ¢ becomes: only a function of #, which can not be
the stream function of any motion.

These values of h and g satisfy the equations (10 30), (10.33)

and (10 82), and show that ¢; =0. (10 35) determines p as a
function of f

p=(5+ 1ff —af. (10.38)

There remains only to satxsfy (10.26) and (10. 31) They far-
nish respectively

b+ DA+ (TG + 1f —a] =0, ‘
TG+ (Y = 20f )] =2, (10.39)
where the first equation is a consequence of the second one.

We first try tp solve (10.39), which determines f= LI); as a
function of ¢. Then the equations (10.36), (10.37) and (10.37)
and (10.38).give the values of A, g and p in terms of ¢. Finally
¢ will be determmed as a function of x, y, z and t, by using
the dehmtlons of h, g, p.and f.

Neither & nor & + 1'is zero. For 6=0 makes h=20, and
b-+1=0 makes g =0, but both are impossible since A" ==0
and ¢ is not a functlon of ¢t only. In fact 6+ 1 is always
positive, - P

If @ =0, the equation (10.34) shows that §, = 0. This gi-
ves the steady case, which has been dlscussed in sectlon 9.
Hence a must also be different from zero,

cis arbxtrary It may be or may not be zero. We shall con-
sider the case ¢ = 0 later on.

The equation (10.39 can be written in the form
boss — k=3, _ (10.40)
since ¢z = f, $ss = ff’, and $zss = f(ff)’, where k = a/(b + 1),
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and ¢=c/(b+ 1). By mtegratmg three times with respect to

z, we find

q,_’— Ae*s 4 Bz + C—Q—kz
where A, B, C are functions ‘of x, y and t.

The equatlon (10 34’) requires

A, = vakA,:
B, = — V—Zj = — ve,
C,=vaB.

A :_’A.ev“k',

B= Bo — vet,

C= CO + vaB t -—% viact?;

where Ao, By, C, depend only on x and y -
The equations (10.36) and (10.37) furnish
- ViA, = bk* Ay, )
ViB, =0,
bs

V’Co_'“_‘z—?

and Co ‘
A% + A%, = bkiA?,,
Ay BoxtAgyByy= "‘_bSAo: ‘
AOxC()x‘l_AQyC.yL': bkA Bo,
bs

uxco**i'BoqCOy . 7“ Bo:
bs?
B 0x + B oy — ’?82 ?

Cle + Cly = bBY,

(ioﬁon

,(10;455

-~ (1043)

- (10.44)

These two sets of equations determine Ao, B, and CO comp-
letely. Before solving them we must consider . the cases ¢ = 0

c =k 0 respectively.
If ¢ =0, then s = 0. Now. the equatlons ;
. . : VEBo =0

;nd A B, + B, =0

show that B, is a constant, say
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" Then the femaining equations becomd

V24, = bk2A4,,
V1zco = 6,
A A + A,,C, = bkmA,,
Ct,, + Cty =bmt.

The second and the last one show that C; is linear ih »
and y. Let

Co(ry)=ax+fy,
where a? 4- 2 = bm? Now the equation 4,.C,, + A,,Coy = bkon

.gives
Ay = 9 (Bx — ay). exp [3 (ax + By) ],

~where ¢ is an arbitrary function, bu A”a;-{- A%, = bkEA
requires ¢ = constant, say n. Hence

A(,:n. exp [’%(ax + By)].

With these values of A4, By, and C, all the equations are
satisfied when ¢ = 0. Hence, by neglecting the ' terms which
depend only on z and ¢, w find

q;:l% exp ['%(ax + By 4+ mz 4+ vamt) ]‘*"“"”"py; (10.45)

where k == a/(b + 1), and m, n are arbitrary constants, such
that m==0. If m =0, then B, =0, C;, = a const. and

Ay =ny- exp [1(zx + Biy) ],
where «;. B,, I, n, are parameters, such that [2(«? - ;%) = bk2.
Hence

¢ =Z—; exp [1(xx + Biy) + kz + v aki]. (10.46)
If ¢ =~0, then s#:O. By a similar way we obtain the values
k2
Ao——-n. exp [——s-—(otx+ py):,;

BO = ax '];I_ 6!”
Co=—75= (ax + ByP,
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from the system (10.43) and (10.44) where o, B, n are arbitrary
constant such that a2 4 B2 — bs?/k?, and an arbitrary additive
constant in the expression of C; has been neglected. Hence ¢ is

n k2
4;:7(—2 eXp[—?(ax—}—By)-l—k(z—l-vat)] |
+ (ax+ fy) 2 — o (ax + 8y) (ox + By —2vet),  (10.47)

terms depending only on 2 and ¢ have been neglected.

.. The stream lines in planes z = constant for the solutions
(10.45), (10.46) and (10.47) are straight lines (parallel to ax--By
= constant), Finally the pressure equatlon for (10.46) is or to
%3 + Biy = const.

L4 a=valay—Bx)Fm(),
and for the others it is
2 +Q=valay—px)+ m(0),

where m (¢) is arbitrary.



CHAPTER IV.
Three dimensional Ss. Motions (Continued)

11. Ss. pseudo-plane motions of the second kind.

In pseudo-plane motions of the kind the velocity compo-
nents are of the form ' '

"“"(x»y,t); vzv(x,y, t)r w==w(x,y,l),
i. e. they do not depend on z.

The continuity equation is
du |, W
oy + S = 0.
Hence there is a velocity potential ¢ (x, y, £) such that

U=1vy, v=—1¢,, (1L1)

and ¢ is determined except for an arbitrary additive function
of t. :
The vorticity components are

E=wy; 7]=—wx‘r E="—'V§4"
Ss. condition (1.8) give two equations:

D, V9
S 1) ), 11.2)
D (xy) (1.2

D, w)
—— =0, . 11.3
| D(x,y) (11.3)
The consistency equation (1.9) gives other two equations:

v V1 (Vie) — (Vi) =0, (11.9)
vViw —w, =c(t), (11.5)

where V! is Laplacian differential operator in two-dimensions and
¢ (t) is an arbitrary function of time.
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Equations’v(11.2) and (11.4) show that ¢ is the stream func-
tion of a ss. plane motion (See the equations 2.4 and 2.5).
After determining ¢ from (11.2) and (11.4), the equations

(11.3) and (11.5) determine w.
The quantity

H:—_%-I—Q-{-%(u’—{-vz-l—w’)

is determined by the equation (1.3), which is equivalent to the
system ‘

H, = — o + b2 Vib + v (Vid), + wws,

Hy = ¢, + %-Vflv —V (Viq))x + ww,,

H,=—w +v Vw +dw, —w, =c(t), by (11.3) and
(11.5).

The first three terms in the expressions of H, and H, are
the same as those of the expressions H,, A, in (2.6). Hence

if H, is the corresponding value of H in the case of pure plane
motion we obtain the relations

H.,=H,, +ww,,
Hy == Hly + ww!] [
H,=c(t).

H=H, +%w“+0(f)2;
and ' g + Q= c(t)z + @ (x, g, ), (11.6)

_where ¢ fx,y,t)=H, — —;— (u? + ©°) is not anything else than

% 4+ Q in the case of pure plane motion.

In cylindrical coordinates the velocity components of a
pseudo-plane motion of the second kind are of the form -
v, =79 (r»e’t)’ vﬂzuz(r) Brt)’ 03==03(r,9,t),

i.e. they do not depend on z.°
The continuity equation is

Arovy) n vy

dr 5 O
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Hence there is a stream function ¢ (r,0,?) ‘such that

1
'Ux:—r‘ %- v, = —1¢,, (11.7)
and ¢ is determined except for an arbitrary additive function of ¢.
The vorticity components are

1 bug DU3

e —— —_— aa— 2
ci“"‘ r De ’ C2 D" CB qu)’
1 1
where V?"P:q)rr + T q”r + —r_g *.])60 .
Ss. condition (1.8) gives two equations: .
D (¢, Vi) _ 11.8)
D(r,9) =0, (
D (q); 03)
Dir, 0) =0. (11.9)
The consistency equation (1.9) also gives two equations:
WiV — (Vid =0, (11.10)
Wios — vy, = ¢y (£), (11.11)

where ¢; (#) is arbitrary. And finally
!;l + Q=c,(®)z + o, (r, 6, 9), (11.12)

where o, is the value of% + Q in the case of pure plane motion.

~ Prof. Ratip Berker says [2] that the motions of this class
seems to be the result of a superposition of

1°) a linear flow in straight lines parallel to OZ, i.e. (0,0, w) on

2°) a pure plane motion in planes parallel to XOY,i.e. (u,v,0).

R. Berker’s equations for pseudo-plane metions of the second

kind ® are [See the equations (32.1) and (32.2) of the same
memoir]

VAt Dz()q()f;;p) (Agd)t =0, 7N
o+ ) =K @), ®)

™ R. Berker has not considered the as. property. Therefore his equa-
tions (A) and (B) are more general than ours.
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where A, and A, are the operators

2 hb
Az:s—x’_lpb_yz’ B4= B34y
The equation (A) shows that ¢ is the stream function of a
pure plane motion in plane parallel to XOY plane. In order that
(0,0,w) may represent an actual motion it must satisfy the equa-

tions of motion, which requires

vi,w — ', == K (¢), ©)

and after that the as. condition
D(}, w) - D
D(xy) ¢ ®)

is satisfied automatically. Hence in order that R. Berker’s guess
may be true the equation (B) must be separable into (C) and (D).

As for our own equations, (11.2) and (11.4) show that ¢ is
the stream function of a ss. plane motion in planes parallel to
XOY plane. (11,5) indicates that (0,0,w) satisfies the equation
of motion, it is the same as (C). And lastly (11.3) shows that
the motion (0,0,w) is superposable on (u,v,0) the plane motion
of which the stream function is ¢. (11.3) is. just the equation
(D) above; it is the ss. condition.

"The equations (11.2) - (11.5) show that if c(f) = 0 equations
(11.3) and (11.5) are satisfied by

w=k Vi, (11.13)

where k is a contant. If ¢(2) == 0, then the solution takes the form
w=k-Viy +1 (), (11.14)

where I'(f) = — ¢(#), and since c(t) is arbitrary I(¢) is also arbi-

trary. Nevertheless we can find other expressions for w, by
solving tha equations (11.3) and (11.5) directly.

Solution: In order to find ss. pseudo-plane motions of the
second kind we have to solve the system of equations (11.2) —
(11.5). As we have stated before ¢ is determined from the equa-
tions (11.2) and (11.4); it is the stream function of a ss. plane
motion. After ¢ is determined the equations (11.3) and (11.5)
determine w. If both ¢ and w are independent of time the resul-
ting motion is steady; otherwise it is non-steady. :
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In chapter I. we have shown all ss, plane motions steady or
not, By using them we can construct a ss. pseude-plane motion
of the second kind corresponding to each one. We shall give
some examples; ‘

1°) Let Xy =K, where K is an absolute constant.

The equations (11:2) and(11.4)are satisfied whether ¢ is inde-
pendent of ¢ or not. If one of the variables x and y is absent
in the expression of ¢, the equation (11.3) shows that the same
variable is absent in the expression of ‘w. For example if ¢,=
then w, =0, and (11. 5) furmshes

v wx, — w, = c(t)
A partlcular solutlon of thls equatlon is
w= e g cos (Ax + &) + b(t)

or a more general solution is :
w= 2 e VW ’q; cos (Ax + &) + b(¢),
where A, a;,¢, are arbxtrary parameters and &'(¢) == —-—c(t)
Since ¢, = 0, V4 = ¢,, = K,
<I)——K2+l(t)x+m(t) (11.15)

where I(t) and m(t) are arbltrary Hence the velocity compo-
nents are

u= 0,

v =— Kx —I(t),

11.16
w= 2‘. @) cos (xx + gy e A% 4 b(t) ( )

The pressure equation (11.6) becomes
E+o=—bw 40y

If both c}a,,:;EO and P, 5= 0 the equatlon (11, 3) is satisfied by

w=f(y), / (11.17)
where f(¢) is arbitrary, Then (11.5) .furnishes
P ) UK — 40 = ol - (11.19)

This is integrable. if
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b2 + 4 = g(d)
and be = vh (),

and this implies that c(f) is a constant, say vc.
Now we have the simultaneous equations

b2 + gt = g({),
V=K
by = vh ()

to determine . After ¢ is determined (11.17) and (11.18) give w,
Let ¢ = ¢ (s,#), where s = s (,y). Then

(pxz + 4’!}2 : 2(38’ + syz) = g (q)))
) Viq) == ‘-]),,(s + Syz) + Lps ls - K’
The last equation is satisfied if
Vis =0,
5,2+ 8,2 = G(s). .
Kampé de Fériet (6,) has shown that G(s) is of the form
G(s) = s,2 + 5,2 = a%e*.

where a, k are arbitrary constants.

Now a can not be zero, since this requires s, =s, = 0. If
a #=0, k=0, then s + 5,2 = a? shows that sisa linear func-
tion of x and y. But by a suitable transformation we can always
express the solution in the form

s =ax.

Hence ¢ is a function of x and #, and we find the solution
(11.15) if a = 1.

Now g) =2 + 2 = (Kx + I)?
= 2K if m(t) = 132K, (11.19)
and vh() = IKI.’ LS (2K¢)”’,

which shows that I’ = a constant, say vA i.e. I(f) = vAt. Thus
(1. 18) becomes

2K%-f" + [K? — M2K )] f = Ke.



SELF-SUPERPOSABLE FLUID MOTIONS 145

The solution of this equation is

(21<\p)”2
f= w—‘——‘(QKtP”“'FnK K + ny,

or by putting the value of 2K¢ from (11.19) we find

nk? Kz(K x+Vat)

W= —-—(Kx + v + +ny, (11.20)

where n, n, arbitrary constants. Hence the velocity components
are

u=20, i
v=—Kx — VAt :
11.12)
2 2(Ka-Fvhe) (
W—--'~(Iﬁ+m)—l—'i[i K +n.)
If a== 0, k=<0 in the equation
5,2 + 5,2 = a%e*,
we find (See 6)
2 k
s= — Tlogr——T10g|a2 ‘,
where r2 = x2 | y2 In this case the equation
q)ss(s + S.'Iz) + ws 1s - K
becomes
a’eks-,, = K
oy =K ehep oyt t
. np—we + () s + cx(t),
or ¢=»‘11—Kr2—?-“—',:—“)1 ’“"'r+c(t). (11.22)

The equation (11.18) furnishes

VIO 4 (0K — )f = c(t). (11.23)
It is integrable if

4! = g(d),
r & Vh(q)),
and c(t) = ve.

From (11.22) we find
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1 2Ke, 41
bl=gkrt——rtama
= K if c\(f) = c(t) = 0.
Then ¢, =0, i.e. A($) = 0. Hence (11,23) becomes
Ky-f + Kf =ec,

. q)_f;z%‘p_i_m,

f=g b+ mlog ¢+m,
or inserting the value of ¢ =% Kr? we. obtain

w=f(¢)=% r*+ 2m log r 4+ m log§~+ n, (11.24)

where m, n are arbitrary constants, .
Now the velocity components cylindrical coordinates are

v, =0, ]

vy = — l Kr, }

! ” |

}

Tcr’-{—?mlogr—l—mlog 3 +n

(11.25)

And finally ,
P =1 papo
. + Q= 3 K%? 4 cz,

where %K”'r2 is the same as the value of 2 4+ Qin the case

of pure plane motion, i.e. when v; = 0.
- The solution (11.25) represents a steady ss. motion of an
incompressible viscous fluid in a finite region which excludes

the z-axis, If the region includes the z-axis we must take m =0
in the solution.

2°) Let ¢ be the function (3.3): ‘
¢ = Ay® 4+ By?* + Cy, (3.3
where 4, B, C are constants.

(11, 3) shows that w is independent of x. if w,=0, then
11.5 becomes
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vw,, = ¢, where c is constant
This gives  w(y)=Ag+By+C,,
where A,,B,,C, are arbitrary constants, such that 24;v =¢.
The velocity components and the pressure equation are respectively
u = 34yt 4 2By + C,
v=0, ' (11.26)
w=Ay' + By +C;;

and
% + Q = 6A4vx + cz.
If w,=£0, the equation (11.5) becomes

vw,, — w, = c(t).
A solution of this equation is
w(y,t) = V() + b(@),
where b°(¢) = — c(t), and V is any solution of the homogeneous
equation vw,, — w, = 0. Two different values of V were given
by (4.3) and (4.4) formerly. Hence we have the solution
u = 34y +4 2By + C, .
v=0, (11. 7)
w = V(yt) + b(t);

and ‘-’:- + Q=64vx — b(t)z.

The stream lines of the motions represented by (11.26) and
(11.27) are parallel straight lines in planes parallel to XOZ.
Their slope w/u is a function of y. These are in fact pseudo-
plane motions of the first kind, since the stream lines are plane
curves.

3°) Let ¢ be the function (3.4): ,
$=Ar? logr + B log r + Cr® ; - (3.4)
where A4, B, C are arbitrary constants.

(11.9) shows that v, is independent of 6. If v;, =0, then the
equation (11.11) becomes

1
v(03" +T~v3r)=cli
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where ¢; is a constant. This gives
03:A172+Bl log r+CI,

where 4, B,, C, are arbitrary constants, such that 44,y = ¢
Hence the velocity components and the pressure equation in
cylindrical coordinates are respectively

v, =0,
v, = — 24r log r-—B% —(A+20)r, (11 28)
v, = Air* 4 B, log r + C,.

If v,, == 0, then the equation (11.11) becomes

v (03,, + %03, ) — vy, = ¢4(f).
A solution of this equation is
vy =V (r,t) + b(¢),
where b’(f) = — ¢,(f), and V is any solution of the homogeneous
equation ‘v(vg,, + %— vs,) — v5;, = 0. Two different values of V

were given by (4.6) and (4.7 ) formerly. Hence we have the
solution

v = 0: ]
|
vy =—24r log r =5 (A1 20)r, { )
Ug == V(f,t) + b(t); ]
and

% + Q=g (r,0) — b(t) 2,

where ¢ is the value of —’;— 4+ Qin the case of pure plane mo-

tion i.e. when v; = 0.

Then stream lines of the motions represented by (11.28) and
(11.29) are spirals traced on coaxial circular cylinders with their
axes coinciding with OZ. The solutions (11.26) and (11.28) are
contained among R. Berker’s solutions [2, p. 84].

4°) Let ¢ be the function (4.2):
Wg,t) = V(g,t) + ey® + By? + vy, “4.2)
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where «, § are arbitrary constants, v is an. arbitrary function of
L and V(r t) is any solution of

Wy — V,=0.

, Now taking the value of V from (4.3) and using the form
(11 13) we find

w= K-V = K(VV + 6ay -+ 28)
= — K- D kA, cos (ky + &) e VR 2K (3ay -+ B)» -
< : 2

where K is an arbitrary constant. Hence we have the solution

u= — 3 kA, sin (ky +ee "H+ 3ay? +2y+1(6), ]
v =0, : L§(11.30)
w = — K- 2, k24, cos (ky+e,)e ¥t 42K 30y +8); |

k u |

and.. :
Eto=@—6m)x+CO,

where C(¢) is arbitrary. The stream lines of the motion (11.30)

are parallel straight lines in planes parallel to XOZ. Their slope

w/u is a functon of y and ¢. Hence this is also a pseudo-plane

of the first kind since the stream lines are plane curves.

5°) Let ¢ be the function (4.5): .
(r.t)y=V(rt) + (ar* + p) log r +yr*,  (4.5)
where a, y are constants. 3 is an arbitrary function of time, and
V(r) is any solution of

V(q)rr + "'1:_ 4’,-) - !Pt =.0-

Taking V from (4.6) and using the form (11.14), ie."
vy = w=K-Vid+1i¢),

. ive dbtaﬁn the solution
0, =0, ]
vy = LK ASitkr)+Be Y (kr)]e™ vk _2ar log r — E —-(a+av)r !(11 31)
vy=—K- 2 KA, Jokr)+ B, Y (kr)]e— Vi 4-4aK log r-I-l(t), , }
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“and ’;— + Q=q(r,8,t) —U'(t) 2;

where J,, Y, are Bessel’s functions of the first and second kind

respectively of order n, I'(f)= —c,(t) and @, is the value of p/p1Q

in the case of pure plane motion. If in (11 31) we take a=y=0

we obtain R. Berker’s solution (32.9) as a particular case (2).
The stream line of the motion (11.31) are spirals traced on

coaxial circular cylinders having their axes coincident with OZ.
6°) Let ¢ be the solution (4.10): '

b(x yot) = e~ VVE. Y [Ap cos (Ax+e,)+ B, cos (Ay+3,)] . (4.10)
o Vg =,
Now using the form (11.13), we find
w=K-Vi = — Ky, |
= — K)%e™ Y. 3[4, cos (Ax +¢,) + B, cos (Ay + 5,) ].

Hence we obtain the motion of which the velocity compo-
nents are

u= — Ae— 2% B, sin Ay +3,), )
v = )\e_v)\’t'ZAm sin (lx+ em)a }I(11.32)
w = — Kie = YA. 3 1A cos (Ax+¢,)+B,, cos (Ag+3,) 1. }

The vorticity components become

E=— K)\u, = =— Kk, Z;=—-%w.
Hence if K= — 1/A the solution (11.32) satisfies the relation

VX U= U,

where U is the velocity vector. This states that at every point
of the fluid the vorticity vector has the same direction as the
velocity vector and is proportional to it, i.e. equal wvorticity
lines are coincident with the stream lines. Motions of this type
were first studied by Beltrami (1889), then by M. Caldonazzo
(1926), V. Trkal (1926), and R. Ballabh (1,1940) gave general
expressions for u, v, w satisfying the relation V X U =AU,
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Finally, the function H=ZF + Q + (u? 4 v? + w?)  for
(11.32) is given by
R S PeP
H = 5 A2

which is the same as the value of H in the case of pure plane
motion (4.10). '
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