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özet: Lüzucî sıkıştırılamaz homogen bir aşışkanln hareket diferensi- 
yel denklemleri lineer olmadığından onların genel çözümlerini bulmak güçtür. 
Bu yüzden çözümü kolaylaştırmak için ekseriya bazı kabuller yapılır. Bizim 
burhda kullanacağımız kabul hareketin kendi kendisi üzerine bindirilebilme 
(self-superposability) veya kısaca ss, özeliğidir. Prof. J. A. Stracg (9). bindi- 
rilebilmenin gerek ve yeter şartını ifade etmiştir : Eğer hareket denklemleri­
nin iki farklı çözümü Uı ve U2 ise bunların toplamının da bir çözüm olması 
için gerek ve yeter şart

U\ X (V X U2) -i- U2 Y, Y. Ui) = '^y.

olup burada x, x, y,z ve i nin keyfî skaler bir fonksiyonu T, ■ ve V = ı

.b-|- i + k dir. İşte bu bindirilebilme şartıdır. Eğer Uı=U2~U alınırsa

U X (7 X U)= VXı 
kendi kendisi üzerine bindirilebilme (ss.) şartı elde edilir, Xı evvelki gibi 
herhangi bir skalerdir.

Bu sonuncu şart kullanıldığı takdirde hareketin vektörln denklemi birisi 
yalnız lineer olmayan terimleri ve öteki yalnız lineer olanları ihtiva eden 
iki denkleme ayrılır. Bu iki denklemin çözümü ise esas denkleminkinden çok 
daha kolaydır.

İştç bu yazıda kullanılan çözüm metodu budur. &ser dört bölüme ayrıl­
mıştır. İlk iki bölümde iki boyutlular ele alınmıştır.

1. The equations of motion.
The equations of motion of a 

geneous fluid in vector form are
viscous incompressible homo-

DU 
Dt

- = F — jv;». (1-1)

^•U=Q,

where U ~ («, v, w) is the velocity vector,

(1-2) 

(x, y, z, t),u = u
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V = V (x, y, K, Z) and w = w{x, y, z, t} the velocity components
at a point M{x,y, z) at time t. F{M, t) the force on unit mass, 
p{M, t) the pressure, p^A/, t) the dencity, t) the coefficient 
of viscosity and

M'V = —
P

is the kinematic coefficient cf visccsily. We assume v, p and v 
to be copstants.

DU -aUBr = 5r + “5r + ''âF + "sr
is the acceleration following' the motion.

^2
------4------- -4'------

are operators.
W shall suppose that F is derived from a potential function 

â, so that

F= —V£2.
£quation (1 • 1) can be written in the form

< U) + vV;t(V X U-^.-

where V X 's the vorticity vector, and

P 2 (1-4)

If we apply the operatör to both sıdes of (1-3) we obtain
ZU 
1>tV X V X [CZ X (V X f/)] + vV X [V X (V X f/;]=0. (1.5)

This equation contains only the kinematic elements of the 
motion, and is called “The kinematic consistency equation”. It 
is the consistency condition of the three scalar equations in 
(1-3); that is, If (1'5) is satisfied U is a solution of (1'3).

Hence the determination of a fluid motion will consist of 
two successive processes; The first is to determine the velocity 
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field by (1-5), and the second is to determine the pressurfe, i.e. 
the function H by (1-4).

The general solution of the equation (1 • 5) is difficult becauSe 
of the non-linear terms, For this reason always some assumption 
are made to simplify the equation. The principal assumption 
which we shall make in this memoir is to use the self-superpo­
sability property of the motion-

Since the equations of motion are not linear their Solutions
are not, in general, superposable

If Uj = (mj, t>ı, U?ı) and (/j = v^, u are any two solu-
tions of the equations of motion of a viscous incompressible
fluid corresponding to given external forces, initial and boun- 
dary conditions, not necessarily the same in both cases, they 
are superposable on each other if and only if

t/, X (V X + X Uı) = \y.. (1-6)
where y- is an arbitrary scalar function of x, y x and Z. This is 
the superposabiiity condition [9] If Ux ~ U-2= U yKe obtain 
the self-superposability condition.

UX (V X U) = (1-7)
where as before means any scalar function From this onwards 
we shall dönote the compound word “self-superposable” simply 
by ss. in ofder to save writing.

If LJ is ss. the middle term in the equation (1-5) disappear

V X [Z/X (V X = 

and the consistency equation reduces to
(1-8)

(1-9)

Hence the use of the self-superposability condition is to re- 
move the non-linear terms from the equations of motion.

Prof. Karape de Feriet [6] has used this fact in a rather 
different way in the case of püre plane motion. Assuming that 
the vorticity is constant along a stream line, i.e. by taking a
relation

(1-10)
between the stream function and vorticity, he has got rid of 
the non-linear terms in the equations of a plane motion, where 
Ç= — V^«}) is the vorticity. ,
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But the relation (1-10) is just the self-superposability condi­
tion in plane We muist note the self superposability condition 
is more general than (1-10). They mean the same thing only in 
the case of plane motion.

The object of this thesis is to find exact Solutions of the 
equations of motion, in various cases, when they are simplified 
by the self-superposability condition. The work is divided into 
four chapters. Each chapter begins by the definition of the par- 
ticular motion to which it refers The coordinate systems which 
will be used are indicated. The forms of the velocity and the 
vorticity components, the self-superposability and the consistency 
equations are shown, the pressure equation is given in each 
System.

After these, first the steady Solutions and then the non-steady 
Solutions of the equations are examined.

CHAPTER I.

Self-superposable Plane Motions

2. Plane motion.
A plane motion is defined as motion in which the stream

lines are plane curves İn planes parallel to a fixed plane, say
and the motion is the same in ali sueh planes. There-

fore the velocity components do not depend on z 
rectang-ular coordinates these are

Hence in

u = u{x, y, t), V = v(x,y, Z), W 0.
The continuity equation (1'2) becomes

^ + |î=0. 
öy (2-1)

This shows that there is 
such that

a stream function 0

V = (2-2)

The vorticity components are
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iQ = O' (2-3)

where

1

Hence vorticity is always normal to the plane of motion.
The ss. condition (1-8) and the conSistency equation (1-9) 

furnish respectively^*'

(*) Letters as suffUes denote differeatiation.

and

D(cp. V^cp)
D{x, y}

(2-4)

vV^(v^4,) - (V’4»)*  := 0 (2-5)

The equation (1-3) shows that H does not depend 

H = H{x, y, t}, 

and is obtained from the equatioBs

on z

= — 4- ’P^-V’cp -4- v(VJ(P)„
<p., + tp.- v^cp - V(VJ<PL, (2-6)

after tp is determined from (2-4) and (2-5).
In plane polar coordinates r, 6 the velocity components

»3 = 0.
are 

(2-6)
The continuity eguation is

+ ^=0

Hence there is a stream function tp = tp(r, 6, <), such that
1 b(p ı)<p

"ör ' (2-7)

The vorticity components are

:ı = o. Ç2-0. 1 
'=3-

r z \ *̂*1iv

»1 == wı('’. 6, <)>

= 0

»2 — 0.

^(/•Pı) 
br

»2 = —

The voıticity vector is always normal to the plane of motion.
The ss. and the consistency equations become respectively
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Ö(<P. V'^<P)
D(r, 0)

= O,

vv;(v^^ıv) - = o,

where V^tp is the Laplacian of tp

(2-8)

(2-9)

'2
r r»
1

Finally, the equation (1‘3) gives for H = H{r, Q,t) the fol- 
lowing two equations ;

Hr = - y H • v^cp + (v;4>)e, i
(2-10)

V

In a real (luid motion both the velocity components and the
pressure must be uniform. Hence if the fluid extends to a re- 
gion where 0 may vary from 0 to 2n this uniformity must be 
secured.

3. Solution of the equations in the steady case.
İn Cartesian coordinates the stream function cp must be a 

solution of the system of equations

£)(x, y) = 0, 'A "(Vj'p) = 0. (3-1)

İn plane polar coordinates the first of these equations must 
be replaced by

11
D(r, 6) — 0, where V^(p = + y T»"

İn perfect fluids v =- 0, and the only condition which will 
be imposed on cp is

v^y=/(<P).

H. Lamb (8.) referring to one of the papers of Stokes is gi- 
ving this as the existence of steady plane motion in a homoge-
neous incompressible non-viscous fluid. İt is in fact the ss con-
dition, and as it is clear from the equations (2-4) and (2 *5),  it is 
One of the conditions of the existence of any ss. plane motion, 
steady or otherwise, in a viscous or non-viscous homogeneous 
incompressible fluid.
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The full solution of the system (3-1) is know [2]. The pos- 
sible Solutions are the following:

1’) Let = K, (3-2)

where K is an arbitrary constant. The vorticity vector which is
always normal to the plane of motion is constant in magnitude. 
The velocity components are harmonics. This class of motions 
includes ali irrotational plane motions, whioh correspond to K=Q.

2'^) Motion in parallel straight lines. If we take the x-axis pa­
rallel to the direction of motion the stream function tp is of the 
form

'{'= »Ky)-
The first of the equations (3-1) is satisfied identically, and 

the second requires

tp"" = 0.
Tpfjl) = Ay^ + By^ + Cy,

are arbitrary constants of integration. The ve-where A, B, C
locity components and the pressure equation are

u = 324^^ 4- 2By -f- C, 0 = 0,

-^4- Ö=- 624vx — 
P

3°) Motion along concentric circles. If we take the origin at 
the centre of the circles the stream function is of the form

<1» == '}'('■)•

The first of the equations (3-1) is satisfied identically, and 
the second requires

, . 2 n-V* ’ + ^4'' = 0.

of which the solution is

(p(r) = Ar^ log r B log r 4" Cr^, (3-4)

where ?!, B, C a.re constants of integration. The uniformity of 
the pressure requires 24 = 0, and therefore the motion reduces 
toone with constant vorticity. The velocity components in pla­
ne polar coordinates are
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»1 = O, »2 = ■— 2Cr-------r

If the fluid contains the origin we must take B = 0 

4”) Radial motion. The stream function is of the form 

+ = '!'(0) 

'î'oo-

The ss. condition requires tpo = « 
tp = C0.

constant, say C. Hence
(3-5)

It follows that = 0, and the solution becomes a special 
case of (3-2). The velocity components are

C
»2 = O-

The motion is irrotational.
Although the more general solution of (2-4) or (2-8) is

(3-6)

where /(tp) ie an arbitrary function of t}), and tp depends both 
on X and g, or in polar coordinates on r and 6, the equation 

— 0 requires 
Vî/ = o,

and this set of equations gives nothing 
(3-3) and (3-4).

new other than (3-2),

M. Kampe de F6riet (6-1) has shown that the Solutions (3-2), 
(3-3) and (3-4) are the only Solutions which satisfy the requi- 
red conditions, i. e. the system of equations (3-1).

The System (3-1) shows the Solutions given above are valid 
both for viscous and non-viscous fluids.

These are the only plane steady motions of viscous incom­
pressible fluids in which the vorticity is constant along a stream 
line.

4. Solution in the non-steady case.

In Cartesian coordinates the equations to be satisfied are

y) = 0. (2-4)
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= 0, where {2-5)

The vorticity vector being always normal to the pla­
ne of motion, its magnitude changes with time according to the 
diffusion equation.

In plane polar coordinates x, y will be replaced by r, 0 and 
V^tp will be

VjCp = (Prr + -7 'Pflö.

a
The consistency equation (2-5) shows that can not be 

function of t only.
Prof. Kampe de Feriet [7] has studied these equations also. 

Although he has not given the exact fortns of the Solutions, he 
has indicated the possible motions. obtainable. These are (i) 
motions with constant vorticity, (ii) motions on parallel straight 
lines, (İÜ) motions on concentric circles, (iv) motions of the
type

,-ykt 'î'o(^, y\9y t} = e

where 4'o(^>!Z) ’® an arbitrary solution of the equation 

= 0.

We shall set in order the possible Solutions of the equations:
1°) Motions with constant vorticity. There may be motions 

of the fluid ıvhere although the velocity changes with time, the 
vorticity is constant both in magnitude and direction. Hence 
we can write

= K,

where A’ is an absolute constant. The form of tp is 
tp = l/(x, ff, 0 + Ax^ -t- (4 1)

where 2(/î C") == A”, B may be an arbitrary function of t, and
I/(jr,^, f) is an arbitrary harmonic function. The velocity com­
ponents are harmonics.

2°) Motion in parallel straight lines. If we take x-axis paral­
lel to the direction of motion the stream function «p İs of the 
form

(p = tp(^, i).
The ss. condition (2'4) is satisfied identically.
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The consistency equation (2-5) becomes
î>2

(■v’l’py - = O’

— t}), =S a{<)7 + 6(Z), 
where a(Z), b[t) are arbitrary functions of t. 

K particular solution of this equation is 

“İZ® + ^y^ + 7y>
where a, p 
such that

are arbitrary constants, and y is a function of i,

6av — y' = a(<), 
2pv = b{t),

Hence the form of tp is

'{'^iz. i) = ^Xiz. <) + 4-
where t} is an arbitrary solution of 

v4»w — «J**  = 0;

6(Z) is constant.

(4.2)

i. e. the equation of heat fiow in one dimension.
A. particular value of t) is

?! cos {kg -|-

where, A, k, e are real arbitrary constants.
Since the equation is linear and the Solutions

^1 cos(^ı^ + 61) e and /İ2cos(/:2y -f- e8)e“1 2 >
corresponding to different values of the constants A, k and £ 
are both self-superposable on each other, they may be superpo- 
sed. Hence a more general value of V is

z) - 2 ‘=0” 
k

and this is also ss. (9, p. 7).
On the other hand, the equation

(4-3)

V'Pırj, — (p, = O
has a particular solution of the form

which vanishes when g = <x> or t = !X). The same is true for
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and for different values of the constant k these are both ss. 
and superposable on each other. Hence since the equation is 
linear, in the solution (4-2) we can take

(4-4)-
k

The stream lines are straight lines parallel to x axis 
The pressure equation for both cases is

~ -j- o = C + (y' — 6av) X,
P

where C is an arbitrary function of time
3") Motion along concentric circles. If we take the origin at 

the centre of the circles the stream function is of the form

4» = 4» ('•» 0-
The ss. condition (2-4) is satisfied identically. The consis­

tency condition (2’5) becomes
VJ(vV^^4, - I,) = 0.

• V + y 4*3  — 4/, = a(i) log r -h 6(0,

where a(t), b(t) are arbitrary functions of t. 
A particular solution of this equation is

(ar*  + P) log r-b yr’,
where a, y are arbitrary constants, and Ş is a 
such that

function of

4«v — Ş' = a(t), 
4v(a-h y) — 6(0, b(t} is constant.

Hence the form of tp is
(p(r, t} = r(r, 0 + («r’ -f- P) log r -f- Yr^ 

wbere l^(r, t} is an arbitrary solution of

+ y 4'r j — 4^; = 0-

(4-5)

A particular value of 14(r, 0 is

[/iyo(^r) + 5ro(^r)]e~

where ^4, 5*  k are real arbitrary constants; Jg and Yg are Bes-
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sel’s functions of order zero of the first and second kinds res- 
pectively. Since the t^o Solutions

[AJdkrr} + B,Ydk,r)}e and [^27o(Â:2r) + fi^ Kof

corresponding to different values of the constants A, B and k 
are both ss. and superposable on each other they may be su-
perposed at any rate. Hence a more general value of V is

Hg <) = 2 [^₺7o(^r) + B, Y,{kr}\e 
k

-vk^t
(4-6)

and this is also ss.
Again an other form of V is [10]

Hr, <) = + fi log 1 g ( ) + SC,mâ (4-7)S

provided k is not zero or a negative integer, where A, B, m 
are arbitrary constants, m 1, g =: — r*/4vf,

F fb . k g , ^(^ + 1) g’ ,
— 1 + —r n ------ ÖT— ^{4----- -1 ! 1 ! 2f

and

<^-=14 + Â+m—1 1 2
1

+■•■+
1 2 2

m
^(J₺4- n...(^ + nî —1)

İf k is zero or a negative integer the series Fi\{k, l;g) termina-
tes, otherwise it is an infinite 
ali values of g.

series which is convergent for

The stream lines are concentric circles with their centres
on the z-axis. The pressure equation is

-^ + Q=: f+ (Ş' — 4av)6 + C
P J

where C is an arbitrary function of time. The uniformity of the 
pressure, in a region where 0 may vary from 0 to 2n, requires 
P' — 4av = 0, i.e. P(Z) = 4«vZ 4- a constant.

4°) Radial motion. The stream function is of the form
= ^(0.0;
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Now the ss. condition requires tpgg = 0, and since tpg 0 
it follows that

and
tb (ö, Z) = a(Z) 0 4- 

= 0.
(4-8)

Hence this reduces to the cıse 1°) with K ~ 0. The motion 
İs irrotational. This shows that the vorticity can not depend on 
0 and t only, i. e. the constant vorticity lines can not be con- 
current straight lines.

5°) Motions of the type
Z) = e’’*'

where k is a parameter. The eqüations (2-4) and (2-5) are sa­
tisfied if

-Â4)o = O.

If * 0, put k = — Then a solution of the equation
Vjtpo + — 0 is

(pQ =[ A cos (Xx -|- e) + B cos (Xy -f- 8), 
y, t) ~ [24 cos(Ajc 4- e) B cosÇ^y -f- S)] i (4-9)

and

Have we the right to superpose the motions of the (4'9)
in order to obtain 
motion be ss. ?

more general Solutions? Will the resulting

If we indicate the two different values of t}' by and 1^2 
corresponding to different values of the constants ^4, B, "k, e and 
8, we shall have

V’ıpı = —
-

These show that both ıpı and 1^)2 are ss.. In order that ıpıH-^ 
may be ss. ıpı must be superposable on ıp2 (9. p, 15). But this
is only true if Xj = Hence a more general form of ip is 

ıp(x,5',Z) — -h Bmcos(}.y + 5„)]. (4 • 10)
m •

a
If k >■ 0, put k s=! in the egüation Vı'H’o — ^''1’# ~ Then 

solution is
— ?îcA(Xx -I- e) -H Bch{\y -f- 8), 

ip = [/I cA(X^ + s) + Bchi^y + 8)] (4-11)
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and Vjll) =
Similarly a more general solution is obtained by summation 

ıp(x,y <} = [/î„cZ.(Xx -p £„) + B,ch{ly + 6„)], (4-12)
n

if the series iş convergent.

Both fer the Solutions (4-10) and (4'12) the function

9 ş (ip® 4- ip’) is given by 
p

H = ~W,

whıere k = — X’ in the first and k = 7} in the second.
Ali motions obtained in in this chapter have a common pro-

perty. The vorticity is constant on each stream line. This re-
sults from the equation (2-4), i.e. it is a consequence of the
ss. condition.
Vjip depend on the

It States that either = /('’p)» or both ip and
same space variable. Therefore on each

stream line, where ip is constant, V’ıp, that is the vorticity is 
constant. This is true only in the case of ss. plane motions.

CHAPTER II.

Axially Simmetric Ss. Motions in Planes 
Passing Through OZ.

5. The stream line.s are contained in planes passing through 
OZ, and it is supposed that the motion in each öf these i^nes 
is the same ; therefore the velocity components are independent 
of 6. In cylindrical coordinates these components are

®ı = oı(r, z, t), 02 = 0, 03= 2, i)- (5-1)

The continuity equation is

+br
= 0.

Hence there is a stream function ip = ıp(r, z, t) such that
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1 bıp 1 
r <)r

(5-2)»3 =

The vorticity components are

where

11 = 0, İ2 = y T^aip, ?3 = 0, (5-3)

r»

Hence vorticity is aiways normal to the plane of motion.
The ss. condition (1-8) and the consistency equation (1-9) 

become respectively

£>(r, z)
= 0,

— (jOaip), = 0.
Equation (1-3) shoıvs that H does not depend on 3,

(5-4)

(5-5)

H = H(r, i, i), 
and is determined by the equations

1 1 V \r + 7» 'D2'V + — )

J ıpri 4- ~ (Dglp), .

After İp is determined by the system (5-4) and (5'5), // will 
be determined by (S-6).

If the motion is steady the equation (5-5) becomes

(5-7)

6. Solution of the equations in the steady case.
In cylindrical coordinates the stream function ip must be a 

solution of the system of equations (5 •4), (5'7)

D{r, 2) = 0, (5-4)

1 ■öıp
r t)r ^2*

1

{^•^}

— 0

D2(P2'»I’) = o,
ıvhere
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The first requires

where /(ip) is an

1 î»ıp
T brr t)r

(6-1)

arbitrary function of ıl>. Now (5-7) furnishes

+ '4’?) + + y 't’r + = 0,

or, taking account of the equation (6-1) this becomes
1 4-^/W+ V)+//'+73^r-/' - 0. (6-2)

n I 1 î»'»!»

3

4

İn particular, if /(ip) is constant the equation is satisfied, and 
(6-1) becomes

02'4’ = Cr^, (6-3)

where C is an arbitrary constant.
D. Crudeli has studied the Solutions of this equation [3,4,5].

The fonowing formal Solutions can be obtained easily ;

'P = + E + Ek} {okZ + ,

k

(6-4)

where and Kj are Bessel’s functions of order unity, and tpj 
is a particular solution of (6-3). U. Crudeli gives for ıpı

1
8

where E is an arbitrary constant.
If /(ip) is not constant, the equatlon (6-2) is integrable önly if

and

V + '4’? = '•’g('M’) 

p = /»(it»).

(6-5)

(6-6)

where g('>p) and /ı(ap) 
is written

are functioPs of ip. Now the equation (6'2)

rs + ff' + hr=Q.
By eliminating ip, and ıp^ between the equations (ö-l), (6-5) 

and (6 • 6) we obtain the follovving relations :
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+ 4gA'- 2hg')

The seCond shows that, either g —

(6-7) 
(6 8)

h = 0, or tj) is a function
of r only. The first possibility is excluded, because then the
equation (6-7) requires / = 0, and 
not a constant. Hence

we had assumed that f is

16 g.

This gives the well-known solution on straight lines parallel
to OZ, i.e. Poiseuille motion. The stream function is of the form

(p (r) = ?lr^og r -i- Br^ + Cr^, 

where A, B, C ere arbitrary constants.
The velocity parallel to OZ is

03 = - SAlog.r —ABr^ ^ {A + 2C).

The pressure equatİ0n is

(6-9)

^^4.Q=-16Bvz^İ(/14-2G)!. l Î 

—
If the region in which the motion is takİng place includes 

the 2-aXİs, we must take .<4 = 0 in order to prevent the velo­
city from being infinite on the axis.

Thus, the only ss. steady motions in plaues passing through
ÖZ are (6•9) and the motions represented by the Solutions of 
the equation (6-S).

8. Solutioib in the non-jıteady case.

We shall use cylindrical coordinates. The equations to be 
satisfied are (5 •4) and {5’5}

^ (4». p

D{r,2)
SS 0, (5-4)

vZ)a(£>2<{-) - = 0, (5-5)

where Dj'P = (pfr “ y 'J'r + '{'««•

Let -i D2<{) = s (r, z, t).
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The equation (5-4) suggests that it can I 
cular if

1°) s is a function of r and t only,
5 iş a function of z and t only, and

3°) s is a function of t}), i.e. s =/(t}»).
We shall discuss each in turn.

be satisfied in parti-

in general if

1’) s =
1_ D2([> İs a function of r and t only. The equation

(5 •4) requires
'Î'^-Sr = 0;

hence either s, = 0, or tf», = 0.
If s; 0, s may depend only on t. Let

5 = İD2«J, = a(0,

772'Î'=
Now (5-5) requires a'= 0. Hence we obtain the equation

02'1'’= ar* (7-1)
Mihere a is an arbitrary absolute constant. The equations (5 •4) 
and (5- 5) are satisfiâd. We obtain the Solutions, similar to (6-4)

z, t) = + 2 + B,) (C,z + D,},
k

= + Bk YAkr)}\Cke'‘^
k

(7-2)

where the Capital letters B, C, D denote arbitrary func-
tions of t, and tpı is a
vıe can take for ıpı fhe expression

'î'ı = 4-ar^ +
O

particular solution of (7 • l)i For example

where b may be an arbitrary function of t.
ıf = 0, then = tp(r, <), and inserting

bı^ = r^s
into the equation (5-5) we obtain

v{rs„ + 3s,) — rsj — 0.
By the method of separation of the variables we find a finite 
solution when r = 0, i.e.
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r)(/r I B0)r^, {7-^

where A, k nre real arbitrary constants, and B{İ) is an arbitrary
function bf time.

For different values of the constants A, k and the function 
B(Z) the Solutions obtained are both ss. and superposable on 
each other. This can easily be tested by the formula (1.6).Hen­
ce a more general solution is

k

'Ik^ty rdr rUkr)dr + B,(t)rn. (7-3')

2°) s es -l. D^-p is a. function of z and t only. The equation

(5’4) reguires
= 0;

hence either s^; 0, or (p, == 0.
H «« = 0, s depends on t only. We have discussed this ca*

se in 1°).
If = 0, then tp = 4'(«»0> and the relation

is possible only if (p„ = 0, s »= 0. Hence this is a particular
case of (7-1) with a = 0. There is no new solution of the equâ-
tions in this case.

3°) In general, s must be a function of tp, say

s pD,<p=/(<P).
Since we have discussed the cases aVhere s =

(7.4) 

s (r,<) and
s = s (z,t) in the previous paragraphs, it is reasonable to assume 
here that both and are different from zero. (5.4) is satisfied 
identically, and (5.5) furnishes

/‘'('î»; + €) + f ('P- + 7 «J», - V 4^)« 0.2 21 (7.5)

We can satisfy this in three different ways;
(0 f = -'• /('{*)  = ® constant, s&y a. Hence

O2<J' = ör*,
and we are led to the eguation (7.1) of No: 1).
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3 1
(ii)/'=^0, but r==0 and <!»„+ y + =

This reduces to an impossibility. For, we have

r = o.
/' = c,
f=Cif + D,

where C, D are arbitrâry constants, and this last equation gives

İ-r, - 7 4»r + '<!'« - r’ (Gtp + D) = o by (7.A),

in addition to
3 1

’l'rr + y i», + — Y 'l'f

H7.6)

= 0.
3

By subtracting the first from the second we find
4 v(j)^ r(j>, + vr’{Ctp + D) = 0,

a linear partial differeıltial equation of the first order to determine 
İp as a function of r, z and Z. The general solution is

1+ D = <P (x, + i r2)
2

or
Ctp + D = cp(z,

where a = 4vt + ■— r^, and ly is an arbitrary function. If we

insert this into the eqüations (7.6), we find that both are satis*  
fiede if C 1 and

1
»•’Taa — + 16 = 0.

But this is not integrable, since the coefficients are not functions
of a or z.

(İÜ) Neither f nor f*  is zero.

The equation (7.5) indicates that contains the factor v. Let

where k is an arbitrary constant. Hence

İTZ T4

tpf = ,
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and
tp = cp(r,z) 

^2 4*  — çp ,

(7.7)

where ç'(r,z) is an arbitrary function of r and z, and neither cp^ 
nor is zero.

Inserting these into the equations (5.4) and (5.5) we obtain

Dİ^) = 0, 

— k.Dz^ =

The first requires
1
— ^2^) = F(^), (7.8)

where F is an arbitrary function, and according to the equation 
(U) we have

s

The second requires

= /(tp) == e'’*'  F.

+ 4- ~ cp, -+- — kF=^Q.

Since f =f=Q, it follows that F'=f=Q and F’=/=Q. Hence 
this is integrable only if the coefficients are functions of cp, say

^r+ ‘î’r=«^

?rr + y Tr + ?« = h,

where g and A are functions of cp. And we have the equation 
(7.8) at our disposal. Subtracting the equations

Trr + y Tr + = A.

1
Vrr —~^r+ = r^F

4
yte obtain = h-r^F, i,^.çç^ = -L{h-r^F)
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1
16 (4A — 12r3 h + hh' — r^Fh' — r^ hF' + r® FF'}.

And {rom

= g" — «Pr we find

12 
%=g■2 _

16 r^(^h-r^F}K

Differentiating both sides withrespect to z 
find

and dividing by2^^.

1
16 P(h — F^F)(h’-PF).

Hence

^2T = 'P,r —y ^r+=gg'- '•^7="=r»F by

2gg' — 3r*  F = Q.

(7.8)

Under the assumptions we have made this is impossible. For 
this equation is valid only if F—g' = 0, or <p is a function of 
r only. But we have excluded both cases by assuming F' 0, 
(p, 0 and 0.

It seems that, there is no ss. non-steady solution in plane*
passing through OZ (symmetrical about OZ) other than of the 
forms tp=’l>(r,Z), 1^® solution of =
though (p = (z,<) leads to a particular solution of the last one.
These possible Solutions are given by (7.2), (7.3), and (7.3').

If (]> = (p(r,^) the stream lines are straight lines parallel to
1

OZ, and since r = constant on a stream line, —vor- r
ticity is constant also. It is always normal to the plane of mo­
tion. Hence in this case only constant vorticity lines are coin- 
cident with the stream lines.
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Three-dimensional Ss- Motions

8. Ss- pseudo-plane motions of the first kind-

A plane motion is defined by the following two conditions:
(i) The stream lines are contained in planes parallel to a 

fixed plane, say XO Y; this means

w ss 0.
(ii) The motion is the same in ali such planes, that is, the

velocity components are independent of 2.
But these two conditions may not be satisfied simultaneousiy. 

We may consider the motions which satisfy only one of the 
conditions, but not the other. Thus we obtain two classes of 
motions, each containing the plane motion as a particular case.

The first class of motions satisfy only the first condition, 
but not the second. Hence w = 0, but u and v may depend on 
z. The second class of motions satisfy only the second condi­
tion, but not the first. Hence the velocity components are inde­
pendent of z, but w =/= 0.

R. Berker [2] calis these two classes of motions “pseudo- 
plane motions*,,  of the first and of the second kind respectively.

İn this chapter we shall discuss the ss. pseudo-plane moti­
ons of the first kind, leaving the other to the next chapter.

For these motions the velocity components are of the form

“ = u (x, g, z, (}, o = o (x, g, 0» w = 0.
The continuity condition is

^+-^=o- 
öx ou

hence there is a stream function (x, g, z, t) such that
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V = — t)x
(8.1)

and <p is determined except (or an arbitrary additive function 
of z and t.

The vorticity components are

;>»({) 
î)Xc)Z 'ög'öz

^’t}»
<3x’

The 55. condition (1.8) gives three equations:

.2
(8.2)

£>(^>Vı4^) 
D(x,t^) = 0.

2

The consistency equation (1.9) also gives three equations:

v(VİtP)„-<l-„,=--O, 

V (VÎ«P)..-0. 

vv^ı(v:tp)-(v;<p),=o

(8.3)

where Vj and V’ are the operators
.2 ^2

V negy — , . -4— ----  >

<)z2

The first set of equations is eqaivalent to the system
3

(8.4)

f
since the third is a consequence of these, where Q is an arbit­
rary function of x, y, z and i, such that Q„ = = 0; i.e. 
neither Qx nor Qy depends on z.
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- The seçond set of three equations is eguivalent to

V V’tp r—tp, = <) + Ö (2> 0 I

V’ F
(8.5)

where the function Ğ(z, 0 is entirely arbitrary.

Thus the Systems (8.4) and (8.5) are equivalent respectively
to the Systems (8.2) and (8.3), and are therefore the kinematic 
conditions of the problem.

As for the dynamical condition, (1.3) shows that

h=p-q+4(4’'+4;).
and Q does not depend on z, where Q is defined by the equ- 
ations (8.4), and P is the harmonic conjugate of F given in 
(8.5). Hence the pressure equation is

4- s = P{x,y, t) — Q(x,y,t}, 
P

(8.6)

i.e. the — + Ö does not depend on z. The function H, and 

therefore p, is determined only except for an arbitrary additive 
function of t-

9. Solution in the steady case.
The ss. condition is given by the equations

(9.1)

(9.2)

and the consistency equation is
V2tp=.F(x,t/) + G(z), (9.3)

where Q is an arbitrary function of x,y and V,F=0. The cqu- 
ation (8.6) becomes

(9.4)
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If we chöose V’4 as in (9.3), the'equations tö be satisfied 
are (9.1) and (9.2), and in ali cases Q,g = reguires

D(’p. V14>) 
D(x,y)

= 0. (9.5)

We shall consider the following cases:

(1) ¥14 == a function of 2 oply, say Vj (p = h (z);

(2) V|({) = a function of x and z, or y and z only, say 
Vıt}' = A(x,2);

(3) Vj({ı = a function of tp» ®ay Vj«p = A((p).

T^ obtain a solution we shall start from the equation (9.5) 
and satisfy it in the ways indicated above. Then we shall de­
termine the unknown function A by (9.3) and tp by (9.1) and (9.2).

(1) Let VjCp be a function of z only, say v:<p=a(2).

cp = A (z) + <P„ = F(z.y)G (z).

V’ F = O requires

(^) = 02 4" 6, 

where o, b are arbitrary constants. Then
(.^»i^) + G (2) —az—b.

Integrating twice with respect to, z, we find

F{x,y)-\-zA{x,g) + B(x, y) + JJ(G —

(9.6)

02 — b) dz*.

can discard the last term by taking

G (z) = az + b, 

since t]> is determined except for an arbitary additive function 
of. 2. Hence

(p = Z® F(x, y)-\-z A (x,y) B (z, y). (9,7)

Vı<P = 4 V1F+ 2-Vı/Î + \\B = az + b.
2

This reguires
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(9.8)

since Vj F = 0.
With these values of A F and F, (]> satisfies the equations 

(9.3) and (9.5) There remains only to satisfy (9.1) and (9.2). 
They furnish

F^^-VF^^ = c„

Fx Ax + FgAg — aF= Cp 

F^B^ + F,B, + X -t- A\ - 2a/î - 

Bx + >lj, Fj, — aB — M

bF = Ca,
(9.9)

where c’s are arbitrary constants of integration.

The equations (9.8) and (9.9), together with VjF^ O, de­
termine A, B and F.

If Cı 0, Ca 0 they are

F= ajt 4- p g, where a® 4" P’ = Cj,

A = («X 4- («X -1- Pi,),C j (9.10)

ZCı Cj

and c’s are always related by c^ = Ca (cj C3 — c; 
their values are.

, whatever 2' '

4- Q = V (Px — a.g} 4- (ax 4- p^) 4- Ç, 
P C2

where C is an arbitrary constant.
İf Cı =jf= 0, C2 = 0, then €4=8 0. and F, >1 and B are

= b,

F==«jr + Ptf» where a’ -j- P^cı,

(9.11)

b
2cı

(ax 4- Py)2 + («Jc+Ps').
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In this case the pressure equation is

4- Q = V (Px — ®!z) + («^ 4" Piz) 4" an arb. constant.
P C1

If Cı = 0. then 4- = 0 shows that F is constant; but
we can take this constant to be equal to zero, since otherwise
it will give a term depending on z only in the expression of tj'-
Hence = 0, and the system (9.9) reduces to 

A^ A^ — 2a,(4 = C3

A^B^ + — aB — bA = c^,

where c^, are now arbitrary.
A solution of this system is

(9.12)

A 2İ? ~~k'

B 6
2k^

{y + + (ı/+Xx),
{9.13}

where X, k are arbitrary constants, such that = 1 -f- 1^, and 
C3 0' W Cg = 0) Cı must also be zero, The pressure equation is

—H S2 == an arbitrary costant.

In every case we obtain tp by inserting the values F, A and 
B into the expression (9.7).

(2) Let Vjtp be a function of x and z only, say

V:4, = /,(x.z).

The equation (9.5) shows that tp^^ = 0. Then
V’tp = A(x,z) 4- =F{x,g} 4- G{z}

requires Fg = 0. Now \[F=O furnishes

F(x) = ax 4- P,
and 4" ^»e --  0> (9.14)

vvhere a,,p are arbitrary constants.
After determining a solution of (9.14), (p is obtained by in- 

tegrating the equation



SfiLF-SÜPERPÖSABLE FLUİD MOTİONS 11?-

'!'xx ~ h.
with the conditipn

<l’x« + 'l'xx = ax 4*  P + G {z).

The equatioris (9.1) and (9.2) are always satisfied, whatever
the value of tp (x, 2) is; and the stream lines in
z = const. are the straight lines = copstant. 

The pressure equation is

planes

——)- Q =: — '^a.y -}- C,

where C is an arbitrary constant.

For example, if h is of the form

A(x,2)=%4-Z, 

where X = X (x), Z^Z {z}, (9.14) requires

X" + r 0

' Z" — — Z" = di const., say 2a.
Hence — az^ + 6x 4*  c, Z= — 02^ 4- 612 4" cp Now 

4xx = ax^ + bx + (c + Cı) — 02^ + ijz,

4 (X, 2) = -^ (“ 02’4^ fr|2 4" C M-Cl) +• Xx4 (2),
12 O 2,

where A(z) is yet arbitrary. This gives

4^ — ax^ + xA".
(P =4„ +•(})„ = (4’ + l^ x 4- (C + C,) 6iZ.

Comparing this with (9.15) we find 
_ ; Z’ + 6 = a

ç

— 02*̂  4' b^z 4“ cı = G (z).

The first of these furnishes

^4 (2) =s -^ (« — 6) 2’ + zn« + n.

Hence (|> becomes
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cp(x. z) = ax*  + -j- bx^ + y x’ (— az^ + AjZ + Ş -f- c,)

14- X -y (« — b) z” + mz 4- (9.16)n2
where A, b^, Cy, m, n arbitrary constants. 

The pressure equation is

-^ + Ö^C—v«^, 

wbere C is an arbitrary constant.
İf we assume the form A=>¥Z, (9.14) reqUires

X' <■ Z" ■
X Z ’

where X is an arbitrary constant. İn a similar way we obtain 
the Solutions

4» = a cA (mx + s). cos(ı»!r 4- 5) + 1
2

«2^ + Az + cj, if X=m’,

4> = a,cos (mx4-s).cA(mz4-6) , iî X=a —m^,

i(p (cz4-t/)4-x —oc2®+-ft(^^6arf)|:*+cız+c22
if X=0,

where the coefficients are arbitrary parameters.
It can easily be proved by the eguations (1.6) and (1.7) that 

when tpx = 0 or = 0 or more generally when <p*/4'jr  — a cons- 
tant, Uck^ when the stream lines in planes z =s= constant are pa*  
rallel straight lines apd tpj corresponding to difberent values
of the arbitrary parameterş are both and superposable on
each other hence if the differeptial equation foF»4*  ü linear and 
homogeneous these Solutions can be added.

Thus instead of the Solutions obtained above we can take 
the following more general expressions:
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14. = 2 «mcA(nJX + sJ.ebs(mz+SJ-|-xf-;^a„2*-^6„i4-e,
m

m

»^1 — a
.2 'Om cos (m^+e J • eh (znz-r 5„) 4- x ‘m2®+₺m2 + Cm

4»--= 2 (C„2+ C) +-^ [“amC^Z^-f- A (a,
m (

'm

+ Cim Z + Csm] i '

(3) More generally, let

v:4- = A(4i), (9,18)
where h (cjı) is 
(9.3), i.e.

an arbitrary function of 4. Then the equation

V»(}, = A + (x 4- G (2)

reX)uire8

Vı (V»4.) = V2 (Vı 4-) = V2 h ^Q,

and
(V’4')x, = (V’4)s« Ö.

= 2
m

m

I

Hence
(9^

and
A" 4»*  4'< + h’ 4);,, + th.'xgee

h" «Pj, 4»^ 4- 'P,r +

= 0
=-0

<9.?p)

We shall consider the follovving cases:

(i) h' ~ 0, 4>i«« = 0. That is Vı4» = C and

■ 4» F + z (x, y) + B (x.^^).

714» = G requires

Vı F o, 

v’m=^o, 
VtB=C.
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This is a particular case of (1) with o 
and İJ9.8)

— 0, 6 = C 5 see (9.7)

(iî) A' — 0, = 0. Then A = Ctp + D, and

Both the equations (9.19) and (9.20) are satisfied. We have

( + C4» = — D.

'^e can take D = 0, since its contribution to is only to add 
an arbitrary constant.

İf C>0, let C — k^. Then a solution; of
(9.21)

is . 4» = A (x, y) coa kz 4- B {.x,y) sin Az.

VjtJ> = C requires

Vı/1=AM l 

\\B^k'^B )

The equations (9.1) and (9.2) furnish

(9.22)

= c,

(9.23)

where c,. c», C3 ire arbitrary constants of integ^ration.

The Systems (9.22) and (9.23) determine A and B. From 
(9.22) we find particular Solutions

A = o, ch {J<.x 4- £,) + 02 cA (Ai, + £2),

B = A, cA (Ax 4-S,) 4-62 cA (Ai^ ■+-82),
where o,, by b^, 6,, e». 5ı> §2 are arbitrary parameters.

4- D4-'{'«

4>« + ^^’î' = o

= 0

İnserting these into the system (9.23) we obtain the retations

0,0.2 = = aib2 = a^b^ 0,

-A»(oHa:) = Cn 

-A» (61+ a:) = C2,

— A*  [ajAı cA (sı — 5,) + a^b^ch (e, — Sg)] = C3 .
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The last three determine the values of Cj, c^, C3. The first set 
of relations is satisfied if «2—^2—Q, or if Cj = bı ~ 0. Hence 
we have the Solutions

Ç) (x, z) = a, ch (kx-\- S]) cos Az-f-Aj ch {kx^ SJ sin Az 
t}» (il, z) = a^ch cos kz-^-b^ ch (A^ + 82) sin Az (8.24)

Since the stream lines are parallel straight lines and the
equation = 0 ’S linear we can take the more general
expressions 

(p(x, z) = 2^ [öl/ cA (AjcH- Eji) cos cA (Ax+Sif) sin Az]
t

z) = 2 [a2( cA (^İ1+£2/) cos Az-]-A2,- ch (Ai/ + 82/) sin A»]

The pressure equation in both cases is

If c

■— 4 = an arbitrary constant.

0, let C — — in 4 = 0, then

.•. (J) =s /l(af, y)e*'^  4 B{x,
V*<p  = 0 requires

VM-)-AM=01 
k^B = 0.)

The equations (9.1) and (9.2) furnish

+ 4% M- = Cı
4. 4 k^B^ C2.)

(9-25)

(9.26)

(9.27)

(9.28)

where Cj, C2 are arbitrary constants.
The Systems (9.27) and (9.28) determine A and B. From 

(9.27) we find
■^(.^ı ü) = «1 cos (Ax + sJ 4 ajcos(Ai; 4 ep 

y} = bı cos (Ax 4 Sj) 4 b2cos(ky 4 ^2^,
where a s, b's, and S's are arbitrary constants.

Inserting these into the system (9.28) we obtain the relations

a,Ö2 = A1A2 = Oi
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The last two determine Cj and Cj. The first is satisfied if

or 
or 
or

®ı ~ = 0,
“â — = 0 >
aı — b.2 = Q ,
O2 — b^ — 0 •

Thuş we obtain the Solutions

«) = a2cos{ky + £2)6*"'  4 6jCos(Â^ -|- 5a)e-
4(^, z) -= aıcos{kx + + 6ıCos(Â:x -k Sj)e~*®

4)(x,^,z) = a^coslky 4- £2)**̂  4“ 6ıCos(Â:x 4- Sj)e“*®
^(x,y,z} = aiCoa{kx -f- ejle**'  -f- 62Cos(Â:i? 4- 82'6“*̂®.  1

These are also ss. and superposable on each other for different 
values of the constants, except k. For we had previously poin- 
ted out that two Solutions tpı and 4*2  satisfing the relation
V jtp = A<|( are superposable on each other only if X is the same
in both. Thus instead of the solutipnns (9.29) we can take the 
folloving more general ones :

2) = İS [<»2iCOs(Â5r + -Y b.2icoa{ky + S2<)e~*̂].

4»(x,z) = 2i[aiiCos(^x 4 e,,)e*̂ ‘’ + bı,cos{kx + 8ti)e~* ’'],

+ bxiCos{kx + 8£i)e *”],
(9.30

2 [aıiCOs(Â:>f + -p- fi^iCOstÂ:^ + ^2,>“*'']

The more important Solutions are the last two ; because they
contain both x and ı/, as well as z. Therefore u and v are dif­
ferent from zero. İn the last one for exampte

ız = — ke ia.s’nC^’Z + S,,), 
i

2 ansin(^x + En);

and the pressure e<lüâtion is

— + ö = Cı — aiiCos(^x + eii).'^b.i,cos{ky + §2j),
P..

where Cj is an arbitrary constant.

İf C = 0 in 4'22 "H C(}'— 0, we obtain a particular case of 
(1), with F = a = b = 0.

ü =

P
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(îii) Neither A" nor A' is zero
Multiplying the firşt of the equations (9.20) by (pj, and the 

second by—tp*  and adding. we find

,, £>(tp^, tp) 
D{x,y)

^('P«c. 1). = 0.

This requires — « function of cp, say

4'.=/('P)- (9.31)

where (') means 
is satisfied if

a differentiation with respect to tp. Now (9.20)

2h'f + f{PY^c, 
where c is a contant of integration.

The equation (9.19) becomes

(9.32)

A"(<î-^ + +p} + h\h + fn
which shows that (p\ (p^^ must be a function of (p also, say

Hence
’J'*x  + «P*?  = f(’P)- (9.33)

+ P} + h'{h + ff'} = 0. (9.34)

+ D{x, g)

2

We have yet to satisfy the equattons (9.2). Since 0,
we obtain

where a is
Pg' — 2h}^a, 

a constant of integration.

(9.35)

Hence we have the following simultaneous equations : 
A’(g-|-n + A'(A 4-//') -= 0,

fig — 2h)=i a

(9.34)
(9.32)
(9.35)

to determine A, g, and / as functions of (p.
If a = 0, either / = 0 or g'=^ 2A. The first possibility ma-

kes = 0. i. e. (p — (p(x, y). The last two equatiöns are satis­
fied, and the first becomes -

.-. == 0.
h’g “}- hfı 0, .

where V^^îP = A(<p).
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Then tjj satisfies the equations (3.1). Hence this determines ali 
ss. steady plane motions studied in section 3.

Now take the other possibility :
2h ^g'.

By eliminating A from (9.34) v/e find

2g/" + /'g'-/g’ = 0,
which is satisfied by 

where 6 is an arbitrary positive constant different from

(9.36)
zero.

For, if b = 0, then g = -j" — 0> ' ®’ both u = tpj, = 0,
and w = — Hence from (9.36) and 2A = g' we find

(9.31)

Now if we use the relations (9 36) and (9.37), then both the
equations (9.32) and (9.34) are satisfied by

(9.38)
where 2zn — c/(4 4- 1), it is arbitrary since c and b is arbitrary-
(9.38) determines / as a function of (p.

m can not be zero. For otherwise we should have

{h''=^h' = Q by (9.37).

which is not true, since at the beginning we have assumed 
h’ 0. The equation (9.39) can be yrritten in the form

Since tp is absent, put f' = p and /" = p^, then we have

Pp dp -t- pydf = mdf

or

* “ 1 “ T

By integrating again w& obtain 

(2zn/ — 3n{2mf + = Smtp + l. (9.39)
where n, l arbitrary constants.

Differentiate both sides with respect to and put = f- 
Mier rearranging the terms we find
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2m{2mf + df = dx,

or by integrating

2(2nV'+n)’^^ = 2 + ^(x,ir),
where A(x,g) is an arbitrary function of x and ı/,

Now by eliminating + n)*'^  betvveşen this and (9-39) 
obtain

2zn<{)==^(s + ?I)3-(z7^), 

the arbitrary additive constant l is neglected. Hence 

2m- == 4 + [t "
= 4₺(^ + ^) by (9.37),

(9.40)

requires

== 0, 

+ A\ b

These show that A is of the form = ax + Şy + Y where 
a*  + P? = i. Hence (9,40) becomes

2m<p = T 
12 («.« + PlZ + « + 7)® — «(»a: 4- + z + y). (9.40)

The stream lines in planes z — constant are straight lines
parallel to ax Şt/ = constant. The vorticity components are

+ Piz + « + r),

'Ç SSB ----- b
4m («a: ^1/ + z 4- y}-

Hence vprticity is constant on each stream line. 
Finally the pressure equation is

7 + 4^ ~

where C is an arbitrary constant.

10. Solution in the non-steady case.
The ss. condition is given by the equations



126 A. N. ERGUN

y (-P^ +<P%)x-<!>x-V’4' = Q..

and the consistency equation is

vV^tp — = F(x, y, t) -j- G(2, t).

(8.4)

(8.5)
where Q(x, y, i) is an arbitrary function of x,y and VJF=0, 
and G(2^, t) is arbitrary.

The pressure equation is

+ y = P(x, y, t) — Q(x, y, t), 
r

(8.7)

where P is the harmonic conjugate of F given in (8.5), and (3 
is defined by (8.4).

İf we choose as in (8.5), the remaining equation8 to be
satisfied are (8.4), and in âll cases requires

D(x, y) = 0. (9.5)

We shall consider the foilowing cases :
(1) = a function of z and t only, say = h(z, t) ;
(2) = a function of x, z and t at most, i.e. V^(p=A(x,z,<);
(3) = a function of (p, i. e. VJtp = A((p).
To obtain a solution we shall start 'from the equation (9.5)

and satisfy it in the ways indicated above. Then we shall de­
termine the unknown function h by (8.5) and tp by (8.4).

(1) Let V’<j» be a function of z and t only, say V^tpasAfz, t).
Applying the operatör VJ to both sides of (8.5) we find

vV^A - (10.1)
.•. 'fh.•gz — ht = Q,

This is the diffusion equation in one dimension. Its solution 
depends on the boundary conditions of the problem. If we as- 
sume, for example, that VJcp = h, i e. the component of vor­
ticity in the direction of z-axis is constant when /->cowe take

h(2, t) =■ e a cos(X« + s) + » (10.1)

where a, b, e are arbitrary constants. Note that by (10.1) h.
çap not be a function of f only. Now the equation
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F{x, y, ti 4- G(2, t) 
can be written as

V'pîz — 4»f = F + G •— vh.
We can take

G(z, t) t) sss vae ''^^* cös(A2 4*  e) 4- v6.

since G(4f, Z) is arbitrary. Hence

• — (P, = F{X, y, t}.

A solution of this equation is

<l> = e,-vX2< y) cos (Xz 4- s) -b ^(x, y, t), (10.3)

where ^(jr, is arbitrary, and tp is a particular solution, i. e.

V!P« — = — T( = F{x,y, t).

Now + £) 4-

VM = a, 1 ’

o cos(Xz -1- s) 4- 
\^tp = b.1^

by (10.2).
(10.4)

—

The ss. condition (8.4) furnishes

4- — 2aA = c„ )
AAyCPj, — flcp — 6A := C2((), )

(10.5)

where Cj is an arbitrary absolute constant, and C2(t) is arbitrary. 
The equations (10.4) and (10.5) determine A(x, y) and tp(x,y,t).

These equations are just the same as those in (9.8) and (9.12).
The only difference is that in (9.12) Cg and were absolute 
constants, but in (10.5) Cg iş replaced by Cj which is an abso­
lute constant again, and is replaced by Cgft), an arbitrary
function of time. Hence in a similar we obtain the Solutions

\Zcj
K>

where a, & are are arbitrary constants, such that lA = 1 4~ a^, 
and Cı 0. İf Cı = 0, ögft) must also be zero. Hence 4 *ş
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Vc]
■2k^ cos(X -(- e)

+ {y + {y + ^x). (10.6)

a

k

The stream lines are straight lines parallel to y 4*  = cons­
tant. The pressure equation is

P
P

C2_ 
^V^C,

c*

(2) Vj4'= a function of x,z and Z only, say VJıJ) = A(x, x, Z).
(9.5) shows that 4'9 = 0, then according to the equation

— 4**  = F(x, ı^, Z) 4” G(2, Z),
Fg = 0. Now the equation (10.1) requires

V (h^^ + A,^) — h, ~ 0.
A solution which is constant when t -> 00 is

A = [a cos(Xx 4' e) 6cos(Xx -f 8)] + 2c, 
where a, b, c. E, 5, A are arbitrary real constants. Hence in- 
tegrating the equation V’cp — 4*»^  
we obtain

— h twice with respect to x,

= e cos(Xx + e) + -i 6x2cos(Xx + 8) 4- cx’

+ x^(x, 0 4- x(x, i). (10.7)
This makes

vV^tp ~ tp, = v6e—vA2icos(Ax 4- 8) 4*  2vc 4*  (^4», — 4<) x
+ (vXaa —X*)»

which must be of the form F(x, Z) 4" G(*,  0- This is
.(10.7'1

I pos-
sible only if —4, and v^az — X*  a*"®  functions of / only, say

V^Paz — T*  = Ct(Z) 
— X« = C2(<).

(108)

Hence 4 is defined by the equations (10.7) and (10.8). The
stream lines of the motion are always straight lines parallel to
y-axis, whatever the value of z,Z). Note that wbep one of 
the variables x and j|) is absent in the stream function the ss. 
çonditionş (8.4) and (9.51 ^^e satisfied automatically. Then, there; 
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remains to satisfy the consistency equation (8.5) which becoffles 
if for extmple «pg = 0,

+ 4’«) - tp, = /=’(x. o + G(*,  f).
where V’F — 0.1

Applying the operatör V’ to both sides,, we find

— ht = Q, where h\

first soive this last eguation şuitably.To determine «fi we
and then integrate the equation t}*x,  = h twice vith respect to
X. This procedure brings some new arbitrary functions to the 
expression of tp. They must be determined by taking accounk 
of the form

*(4*̂ ,  + '{'«) — /p*  = P{x, <) G{z,t}.
Now the pressure equation for the solution (10.7) is given by

where P is the harmonic conjugate of /*,  and Q is determiped 
by (8.4). (10 7 ) and (10.8) show that F = Ci(t)x-f-Caff). Then
P =s — Cj(<)^, and Q = Q(t) is arbitrary. Hence

P + £2 = - eı(Z)p — Q(f). 
P

(3} Let be a function of tp'
(10.9)

The equation (9.5) is satisfied, and (10.1) furnishes
+ tjjV +- tp»^) -|- — ({»,) == 0. (10.10)

This can be satisfied in different ways. We shall consider 
ali possibilities :

(i) h' = 0. Then A = C =: u constant. Hence this
becomes a particular case of (1) with a=0, b^C.

(ii) h’ 0, — (p, = 0 Then h' C and 

where C is an arbitrary parameter We have neglected 
(10.11) 
an ar-

bitrary additive constant of integration, since its eontributidO'tö
(p wili be only to add an arbitrary function of z. Now
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- (p, = v(Ctp + 4»^J — tp, 
■ v'pgg — (p, = — vCtp.

s= 0;

Let 4*  ='î'o'7*,  where tpo ’s a function of x,y, z and T is a 
function ot t only. Then this becomes

= a constant — — vX’ say.

have assumed the constant to be negative. The cases 
where it is positive or zero can be investigated simiIarly.Hence

and 4'0 will be determined by
(10.12)

'î'o.g + (C + X^) 4-0 - 0. (10.13)

Now there are three possibilities: C + X? may be positive, 
negative or zero.

a) If C + X» 0, let C -4- X^ = Then (10.13) gives [1]
tpo = 24(x, j^) cos mx + B{x,y) sinme,

and V'tpo = furnishes

(10.14)

The ss. condition (8 4) gives other three equations :

= cı
+ B\ - CB» = C2; 

AxB^ + AgBg— CABsscy
(10.15)

C itself may be positive. negative and zero If C 0 let
C — k*,  then the equation (10.14) and (10.15) become just the
same as the equations (8 22) and (9.23). İn a similar way we
find the Solutions:

4'(i(x, z) = aıcA()tx + ej cos mz 4“ bıch{kx Sı)sin mx, 
4'o(y» -f" £2) cos mz b^ch{ky + 62) sin mt,

V f 'Pflgg I r* \U ■^ 7
_ r 

T

}

V‘/1 = C/I11
V’B = ÇB.I

corresponding to (9.24), or

m24-6ımcA(^x+S,Jsinmz]e"

4){x,x,ıf)=2I‘’'2’"®^(^l> + e»m)cos mz-)-^2„c^(^|r^-82m)sin mz]« 
m

VX2<

(10.16)
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corresponding to (9.25), where X® 
A’. Then 21 and fl satisfy the SystemsH C 0, let C

{9,21) and (9.27), and we find the Solutions

^{x^z,t) => 2[a, „cos(^x 4 eı„)cos znx+6, „cos(04-4im)s' ” »»«k 
m

’^{!l>*>t)^^[(>i>^^os{kg+s2^„)cos  mz + b^^o^kg-) 82m)s«n "iz]e
(10.17)

m \ i

where X’ For these two sets of Solutions the pres­
sure is given by

4- = arbitrary function of t.

İf C = 0, we find the case (i), since then A' 0

b) If C + 0, let C + ,2 Then C must always
be negative. Take C — — — k^^ The eguation (10.13)
for !po becomes

«Po®* - m«({/o = 0,
.•. % = i4(x,ii) s'"®-f-B(x,ı/)e”’"*.

>1 and B are the the Solutions of the equations (9.27) and 
(9.28). Corresponding to (9.30) we obtain the Solutions:

t>(y ,s,t) +₺2„cos(Âir+e—
m .

9

m
4>(x,^,s,t) =^[a2„cos(Ay+e2„)€'”®-l A)mCOs(Ax4-5ı„)e-”'‘’]e“''^’' 

m

(10.18)

tp(x,ı;,z,f) =2i[a,„cos(Ax-t-e, + fegmCosj^ii+Sz Je"'
m

where Z® = k?— m*.
c) If C + X’= 0, then C — Z*  and (10.13) gives

'l'o — ■4(* ’, il)s! + B{x,y), 
= (/4«-f-5)

— A(}(2 requires
VA = - ,1

1 tss - \^B ,
and ss. condition (8.4) gives
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+ + XM2=c,.
“1“ 4“ C|,

where Cı, are arbitrary parameters. From the first set of equa- 
tions we find particular Solutions of the form

y) = aıCos(Xx + Ej) + Ojcosf),!/ Cj), 
= 6ıÇos(Xjf -4- 51) + 62COs(Xi? 4- §2), s

where a, b, E, 5 are constants of integration. Now the second 
şet requlres

0102 =» 0,
n^ı^2 “t* 
x*(a^+<»:)

SBS 0, 
— Cı

Â’[o,iıcos(eı — Sj) + O262cos(e2 — §2)] Cs
The last two determine the constants Cp C2; the first two are 
satisfied if either

or 
or

«2 “ = 0» 
flı = ₺! = 0, 
Oj = O) — 0.

The last possibility can not be’accepted, because then (p can 
not depend on z. The first and the second furnish the Solutions

({; = [aıCos(Ax + ejz -f" b^cos{)^x + 5ı)]e 
tp — [«2Cos(Xif + £2)« -(- A4Cos(Xy -}■-

(10.19)

■ Since the stream lines are parallel straight lines and since 
the equation (10.13) is linear and homogeöeous, we can take 
as the more general Solutions

4» = Ş[aıx cos(Xjc + eıx) z -}- b^-), cos{\x 5ıx)] e ,

St®25^ cos(Xp + 6|x)z + ₺2Xeos(Xrz + ,
X

The pressure equation is

(10.20)

— + £2 = an arbitrary function of Z.
P

(İÜ) In the equation (10.10) assume that neither h’ nor h' is 
zero. The equation is integrable if and only if

♦*,  + = g(^) > (10.21)
and vV*(p  — (pı =

where g and p are arbitrary functionâ of
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No w (8.5) reguires V’p 0. Psi
sss

= 0, i. e 

0.
0.

, + p'<i>S^ = 0,

(10-23)

(10.24)

(8.4) requires (2xz -— — o, i. e.

+ (J'Ç) + ph

y (g’ - 2h') 1 = o

y ;(g’ — 2h'} 4- i (g'-*-2A)4^j,^ —
(10.25) 

= o.[

In additiön to these we have the equation (lO.İÖ), which 
now becomes

a7«o, (10.26)
From (10.24) we find

= 0P ■ (10.27)

by multiplying the first equatioh by 4's the second by — ıf»*  and 
adding. By the same W8y from (10 25) we öbtâin • *

1
2 (g' - -(J, £>(4>».4>) 

İ2(x,y2
= 0. (10.28)

Both the equations (10.27) and (10.28) are satisfied if is a 
function of tp, Let ; ’ " i

‘ 4.= AH
Then (10.23) may be wrîtt^n in the form

P’(g — P} -V p'h
The equatîons (10.24) are satisfied if

p7 + pY'

(10.29)

(10.30)

0,
P'f — c (10.31)

where c ia a constant of integration.
The equations (10.25) require 

y (g — 2h')f+ ^(g

{g’-2k}f-2Pf (10.32)
where c/is a constant of integration.
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In addition to these we can find other two equation s: The 
firaJt' of which is obtained by applying the operatör to both 
sides of (10.29).

sss vy.
¥fh- (10.33)

The second additional equations from (10.22). It can be writ- 
ten in the form

(|ı^ = v(V^(p — p\, 
tp, = y,(h + ff — fij (10.34)

by (10.9) and (10.29). 
Now from we find

(h + ff~f^f=sf{h-}.ff-py, 

or by integrating önce
f^ + ff'—p = af, 

where a is an arbitrary constant. Thus (10.34) becoıhes

(10.35)

(pe = yaf. (1034')
Hence we have the (ollowing similtaneous eguations

and

h^g-^h^p^si, 
p"{g-

p'f = c.
{g ~ 2hyf 2Pf' c„ 

(f-/^)r + rA-/A'-o. 
h—p + ff ss af.

(10.30)
(10.31)
(10.32)
(10.33)
(10.35)

to determine the fünctions p, g, h and f in terms of <}*•  Only 
four of these equations are independent.

Solution : Eliminate g — /*  betveen the equations (10.30) 
and (10.33). We firid

fh} - fph 
h'

By using (10.31) this becomes
■7 f

fh f
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- h^bff, 

vvhere 6 is ân arbitrary constant.

(10.36)

Inserting: the value of h from (10.36) and thâ values of p', 
p" from (10.31) into the equation (10.30), we obtj»in

{g-f^f’-bff'^Q.

f since otherwise h becomes zero, hence
g = (6 + l}p,

where b is different from —1, for if 6—— 1, g 

(10.37)

<P^4 4'^ +
tp/ ~ o, and <p becomes only a function of which can not be 
the stream function of any motion.

These values of h and g satisfy the equations (10 30), (10.33) 
and (10 82), and show that C| = 0. (10.35) determines p as a 
function of

P = (6 + - of. (10.38)

There remains only tö satisfy (10.26) and (10.31). They fur­
nish respectively

(₺ + i)/(/r+ (/Y[(6 + 1)/' -«] - o, 
[(6 + l){/»)*'-2a/)]/  = 2c, (10.39)

where the first equation is a consequence of the second one.
We first try tp solve (10.39), which determines /=!pa as a 

function of (p. Then the equations (10.36), (10 37) and (10.37) 
and (10.38) give the values of h, g and p in terms of (p*  Finally
tp will be determined as a functipn of x, y, 
the definitions of h, g, p a,ad f.

z and Z, by using

Neither 6 nor b -f- 1 is zero. For b = Q makes A = 0, and 
6 4" 1 = 0 makes g — 0, but both are impoşsible since h" 
and tp is not 
positive,

a function of t only. İn fact b -j- 1 is alvr^s

If 0 3=0, the equatiön (10.34') shows that tp< == 0. This gi­
ves the steady case, which has been discussed in section 9. 
Hence a must also be different from zero,

c is arbitrary. It may be or may not be zero. We shall çon- 
sider the eşse c = 0 later on.

The equation (10.39 can be vritten in the form

«pa»» --- = S, (10.40)
since tpa = f, 4taa = ff', and tpa«» = fif/Yt where k == al(b -|- 1),
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and <= c/(6 + 1). By integrating three times with respect tö 
z, vte find

±'î' 24 e*®  + + C — 22 (10.01i

where /l, B, C are functions öf x, and t.
The equation (10.34') requires

Af = vaÂ24, -

C, sst

vos _ 
~~k~
vaB.

C — Cg + 'taB/ — ;

where Ag, Bg, Cg depend only on x and y 
The equations (10-36) and (10.37) furnish

(10.42)

and

i b}âAo,\
0,

V*C/= '~k'^

= W>l’o.
fcsylo,
6â:24o5,

(10.43)

B^X Cox + B^g Cf,g =

o» —

Os

R

k?' 
bB*,.

’o» (10.44)

'fc,

A
B = Bfl — 'ict.

1

.^*0» + ■^’o»

These two sets of eguatiops determine 24o, Bo and Cg com|)- 
letely. Before solving them vre must consider the Cases c = 0 

respectively.
If c = 0, then s = 0. Now the equations

and
V|Bo = O 

+ B\y = 0
show that Bo îs a constant, say
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Then the temaining equations becomâ

V/Co = ö,
>0ı

The secOnd and the last one show that Go is linear ih x 
and Let

Co (x,ı/) = a X -i- Şy , 
where a® -)• Now the equation AgxC„^ +
gives

■<4o = <P (Şa: — a.y}. exp ~ (ax + P^r) j, I m I

where <p is an arbitrary functioui bu A^ox + 71%^ = bk^Ao
requires ç = constant, say n. Hence

Â:
?îo =n. exp —(ax + .m

With these values of Ao, Bq, and Co all the equations are
satisfied when c = 0. Hence, by neglecting the terms wbich 
depend only on t and w find

n Tit
’l = 7yexp —(ax + Şu + mz + V a/nf) (10.45)m

where k ~ al(b -j- 1), and m, n &re arbitrary constants, such
that If m 5s= 0, then Bg = 0, Co = a const. and 

At = nı- exp [/(aıx + Şıi^)],
where apP,,/, nı are parameters, such that P -|- Pı^) = bk"^. 
Hence

+ V OÂf]. (10.46)

If c 0, then s 0. By a similar way we obtain the values

\k^ 1?lo = n. exp — Y («X + Py) ,

Bo = cf.x-\- Ptf, 
k
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from the system (10.43) and (10.44) where a, P, n are arbitrary 
constant such that = bs^lk^, and an arbitrary additive
constant in the expression of Cg has been neglected. Hence is

n k'^
^=172 — V (z + V at}k^ s

k
+ (ax + Py) s — (ax + Pı/) (ax + — 2v cf), (1047)

terms depending only on < and t have been neglected
' The stream lines in planes z = constant for the Solutions
(10.45), (10.46) and (10 47) are straight lines (parallel to
= constant), Finally the pressure equation for (10.46) is or to 
“1*  + Pı!/const.

P
P

and for the otherş it is

a — Pıx) + m {i).+ Q

4- ö = V o (ay — px) 4^ nı (/), 
■ P

where m (i) is arbitrary.



CHAPTER IV.

Three dimensional Ss Motions (Continued)

11. Ss. pseudo.plane motions of the second kind.
In pseudo-plane motions of the kind the velocity compo*  

nents are of the form

a be d (x, y, 0, V = V (x, y, /), w#= w (x, y, 0.

i. e. they do not depend on z. 

The continuity equation is
7>u
t)x = 0.

Hence there is a velocity potential (p y> 0 such that

(11.1)w = — 'Vx ,« = 'l’ff ,
and (p is determined except for an 
of t.

The vorticity components are

arbitrary additive function

l = a)g, »
Ss. condition (1.8) give two equations:

,2
.x>(».v;4>)

D (x,y)

D (4> > «>) 
D{x,y)

= 0,

= 0.

(11.2)

(11.3)

The consistency eguation (1.9) gives other two equations: 
vV:(V^cp)-(V;tP), = O, 

V — Wt =^c (t),

(11.4)

(11.5)

where is Laplacian differential operatör in two-dimensions and 
c (<) is an arbitrary function of time.
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Equations (11.2) and (11.4) show that is the stream func­
tion of a ss, plane motion (See the equations 2.4 and 2.5).

After determiningf tp from (11.2) and (11.4), the equations
(11.3) and (11.5) determine 

The quantity
w.

2H == + Q + + w2)
P

is determined by the equation (1.3)) which is equivalent to the 
system

= — V (Vıtl;)j, + ww^,
— V (Vjcp)^ + wwg,

= —Wf + V V^m + —<[gW^—c{t}, by (11.3) and
(11.5).

The first three terms in the expressions of and are
the same as those of the expressions H^, Hg in (2.6). Hence 
if Hı is the corresponding value of H in the case of püre plane 
motion we obtain the relations

and

4-
= + WWg,

//. = c{<).

H = H,+ 4- c (Z) 2;

+ Q = c (Z) 2 + cp (x, y, ty, (11.6)

2

where cp <x, y, t) = Hı — -f- v^) is not anything else than 

~ -f- Q in the case of püre plane motion. 
P

İn cylindrical coordinates the velocity components of 
pseudö-plane mOtion of the second kind are of the form

a

»1 = Vı (r, 6, <),
i.e. they do not depend

»a = v-i (r, 0, /), 
on 2. ■

The continuity eguation is

t)r + 0.DO

»3 = »3 ('■,6.<).
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Hence there is a stream function ip (r, ö, /) such that
1 , 

^1 = 7- To. »2 = — 4»,, (11.7)

and (p is determined except for an arbitrary additive function of t. 
The vorticity components are

1 <>a3
T D0 ’ Dr ’ Ç3---

where V?Wrr + y4’r + p'}'0O.

Ss. condition (1.8) gives two equations:
r>(4>,Vı4>) 

£»(r.e)

D ('^>»3)

= 0, (11.8)

= 0. (11.9)

The consistency eguation (1.9) also gives two equations:

vV^V?|) - (V^cp\ = 0, 
vV^Oa — Wsr = Cı (/), 

where cı (<) is arbitrary. And finally

ö = Cı (f)« -b cp, (r, 0, t), 
r

(11.10)

(11.11)

(11.12)

where cpj is the value of Q in the case of püre plane motion.

Prof. Ratip Berker says [2] that the motions of this class 
seems to be the result of a superposition of

r) a linear flow in straight lines parallel to OZ, i.e. (0,0, ıv) on 
2°) a püre plane motion in planes parallel to XOY, i.e. (u,o,0). 
R. Berker’s equations for pseudo-plane motions of the second

kind are [See the equations (32.1) and (32.2) of 
memoir]

the same

D((p, Aa;};)
VA4+ — (A2«P)7 = 0, (A)

D (ıp, w) 
D (x,y)

— u)'f — K (<), (B)^^2 +

R. Berker has not consider.ed the
tions (A) and (B) are more general than ours.

as. property. Therefore his equa-
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where Aj and A4 are the operators

7)2
A4 — A2 ■ A2-

The equation (A) shows that (p is the stream function of a
püre plane motion in plane parallel to XOY plane. in order that 
(0,0,ıv) may represent an actual motion it must satisfy the equa- 
tions of motion, which requires

vA2O> — w't = K {t}. (C)
and after that the as. condition

D((p, w) 
D {x,y}

(D)= 0

is satisfied automatically. Hence in order that R. Berker's guess 
may be true the equation (B) must be separable into (C) and (D).

As for our own equations, (11.2) and (11.4) show that (p is 
the stream function of a ss. plane motion in planes parallel to 
X0Y plane. (11.5) indicates that (0,0,w) satisfies the equation 
of motion, it is the same as (C). And lastly (11.3) shows that 
the motion (0,0,0») is superposable on (H,t»,0) the plane motion 
of which the stream function is tp. (11.3) is just the equation 
(D) above; it is the ss. condition.

The equations (11.2) - (11.5) show that if c(t} = 0 equations 
(11.3) and (11.5) are satisfied by

w — k • Vıtp, (11.13)
where k is a contant. İf c(Z) 0, then the solution takes the form

(11.14)

where i'(/) = — c(0, and since c(Z) is arbitrary /(<) is also arbi­
trary. Nevertheless we can find other expressions for tu, by 
solving tha equations (11.3) and (11.5) directiy.

Solution: İn order to find ss. pseudo-plane motions of the 
second kind we have to solve the system of equations (11.2) — 
(11.5). As we have stated before 4' is determined from the equa- 
tions (11.2) and (11.4); it is the stream function of a ss. plane 
motion. After (p is determined the equations (11.3) and (11.5) 
determine o». İf both (p and w are independent of time the resul­
ting motion is steady; otherwise it is non-steady.
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İn chapter 1. we have shown ali ss. plane motions steady or 
not. By using them we can construçt a ss. pseude-plane motion 
of the second kind corresponding to each one. We shall give 
some examples;

1°) Let Vj tp = where K is an absolute constant.
The equations (İL?) and(114)are satisfied whether tp is inde- 

pendent of Z or not. İf one of the variables x and y is absent 
in the expression of (p« the equation (11.3) shows that the same 
variable is absent in the expression of O). For example if 'Ps=O, 
then Wy=0, and (1İ.5) furnishes

IV, = c(Z).
A particular solution of this equation is

ıP = e a cos (lx + e) + 6 (t)>
or a more general solution is

İÜ — 2 e~ cos (Xx + 
X

where Â, are arbitrary parameters and 6'(<) =3 —c(t).
Since tpj, = 0, Vjtp = tp,, = K,

(11.15)

where 1(<) and 7n(t) are arbitrary. Hence the velocity compo- 
nents are

« = 0, 
o = — Kx — l(t), 

= cos (Xx + -f- 6(f).
X

The pressure equation (11.6) becomes

(11.16)

P 
P

Ö s —— b (i)2 “1“ /*(Z)^.

İf both tp, 0 and tpj, 0 the equation (11,3) is satisfied by

«’ = A4'), 
where / (tp) is arbitrary. Then (11.5) furnishes 

v/"(tP? + tp/) -1- f[yK - tp,) 3== c{/).

(11.17)

(11.18)
This is integrable*  if
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and = vA (tjj),
and this implies that c(/) is a constant, say vc. 

Now we have the simultaneous equations

V^ı<P = i<.

'î'*  = vA (({))
to determine ip, After (p is determined (11.17) and (11 18) give h'. 

Let tp — 'P where s = s (x,y). Then
+ I,*  = + V) = s ('}').

4- V) + — K.

The last equation is satisfied if

s. 2
V^ = 0, 

+ s? = G(s).

Kampe de Feriet (6,) has shown that G(») is of the form 

= a’e*’G{s) = + sy»
where a, k are arbitrary constants.

Now a can not be zero, since this requires ~ Sg = 0. If 
a =f= 0, k — 0, then shows that s is a linear func­
tion of X and y. But by a suitable transformation we can always 
ezpress the solution in the form

s = ax.
Hence cp is a function of x and t, and we find the solution 
(11.15) if a = 1.

Now

= 2/C(j) if zn(0 = 1'I2K, (11.19)

and ıvvA(4,) = ^^ = xV + = (2A:c{,)>/» ,
K~ K

which shows that V = a constant, say vÂ i.e. l(f) — ı'kt. Thus 
(11.18) becomes

f + [/C» - f Kc.
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The solution of this equation is

c nK^
/= w = -e A A, + ”1,

or by putting the value of from (11.19) we find

W = -±(^Kx+ 
A

X

+ n, , (11.20)

where n, n, arbitrary constants. Hence the velocity components 
are

u=- 0.
V = — Kx — vX

n?® = _±(/Cx + vxo-F
1 

tıK^
+ «1 •

(11.12)

X e

l

If a 0, 0 in the eguation
+ S, = aV®

vfe find (See 6)
1s = 2 , 1 , |aÂ:|
k

where -j- İn this case the equation

'ks(sA" + 5^2) ip,. VıS = K
becomes

a V® • = ÂT

or

e”*® + Cı(0 s + C2(0 ,

2cı«) 
k log lo^l 

2 r + C2 (f) . (11.22)

The equation (11.18) furnishes
vr.4'/ + (v^-<{-j/'=c«). (11.23)

İt is integrable if

and
From (11.22) we find

tj), =vA(tp), 

c(t) = vc.
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or

2A'ci 
k

= /ftp if C,(0 = C2(t) = 0.

Then tp, — 0, i.e. A(tp) = 0. Hence (11,23) becomes
K<S,-r + Kf = c.

'P+m log tp +zn,

ınserting the value of tp = Kr"^ y/e obtain

va =/(tp) = r’ + 2m Tog r 4- m log

where m, n are arbitrary constants.
Now the velocity components cylindrical coordinates

(11.24)

are
»ı ~ 0,

t»2 =
-^Kr.

(11.25)

4»,’ = 4 —
4 Â» r» ’

1

K1 K
»3 = cr’ -j~ 2m log r + m log + n

And finally
•J

1P
P

+ Q = cz,
5

1 Dwhere is the same as the value of — + Q in the
« P

of püre plane motion, i.e. when = 0.

case

The solution (11.25) represents a steady ss. motion of an
incompressible viscous fluid in a finite region which excludes 
the 2-axis. İf the region inciudes the z-axis we must take m = 0 
in the solution.

2’) Let tp be the function (3.3):
tp := _f_ gyi Qy

where A, C are constants.
(11.3) shows that w is independent of

11.5 becomes

(3.3)

'. İf Wt = 0, then
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= c. where c is constant

This gives w(^) = + Byy + Cı,

where 24ı,fîı,Cı are arbitrary constants, such that 2/4ıV = c
The velocity components and the pressure equation are 

u = 3/lt/*  4" 2fi^ + C, l 
® = 0, ?
w = ?lıir’ + Bıy 4- C, ; )

respectively

(11.26)

and

-B- ö ~ 6/Iva: 4- c«.
P

If 0, the equation (11.5) becomes
— tUf — c(0.

A solution of this equation is

= + ₺(<).
where b’ijt) = — aud V is any solution of the horaogeneous 
equation — U’t = 0. Two different values of V were given 
by (4.3) and (4.4) formeriy. Hence we have the solution

and

u = 3?1^2 4- 2By + c, }
V = Q, >
ro = 4-6(<); j

~ 4- Ö = 624vx — b'{t}z.

(11. 7)

P
The stream lines of the motions represented by (11,26) and 

(11.27) are parallel straight lines in planes parallel to X0Z.
Their slope lü/u is a function of y. These are in fact pseudo-
plane motions of the first kind, since the stream lines are plane 
curves.

3°) Let be the function (3.4):

= ?4r*  log r -f- B log r + Cr^ , (3.4)

where A,B, C are arbitrary constants.
(11.9) shows that is independent of 0. If 1/31 = 0, then the 

equation (11.11) becomes

= Cı ,V V^rr 4- — Vgr
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where cj is a constant. This gives

»3 — Aır^ + Bi log r -J- Cı,
where ^41, Cı are arbitrary constants, such that 4?4ıV = C]
Hence the velocity components and the pressure equation in
cylindrical coordinates are respectively

*'1 == 0,

V2 = ~ lAr log r — — — (24 + 2C)r,

<»3 = A»"’ + log r + Cp
W »31 0, then the equation (11.11) becomes

V f»3rr + ] — »31 = Cı(t).

(11 28)

A solution of this equation is
1,3 = R (r,t) + 6(t),

where b'(t) — Cı(t), and R is any solution of the homogeneous

equation v(ü3„ + üsJ — v^f = 0. Two different values of R 

were given by (4.6) and (4.7 ) formeriy. Hence 
solution

we have the

«1 sas 0, 1
»2 “ ~ 2.z4r log r — ---- (^4 + 2C) r,

I
(11.29)

»s = ('■,0 + A(<):
and

J
P------p S = (pı (r 9) — b'{{\ z, 
9

where çp is the value of — ö in the case of püre plane mo- 
p

tion i.e. when Vj = 0.
Then stream lines of the motions represented by (11.28) and 

(11.29) are spirals traced on coaxial circular cylinders with their 
axes coinciding with OZ. The Solutions (11.26) and (11.28) are 
contained among R. Berker’s Solutions [2, p. 84].

4°) Let cp be the function (4.2):

+ Piz’ + yız. (4.2)
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where a, Ş are arbitrary constants, y ’S. art arbitrary function of 
Z, and V(r^t) is any solution of

V Vya — 14 0.
Now taking the value of V from (4.3) and using the form 

(11.13) we find

w = ^. Vı(P = A’(VıV^ + 6a^ + 2P)

k^Ak cos {ky 2K{3tky + P), ’
k

where K is an arbitrary constant. Hence we have the solution

u = — 2 kA^ sin {ky + e*)e 3a.yt 4-23i;-|-y(Z), 
k

Kİ 1.30)u = 0,
w — — K- 2 k^Ak cos {ky-\-s.k}e ^^^'f4-2Ar(3aj;4- P); 

k
and

— -(“ Q = (y' — X + C'(<)>

where C(Z) is arbitrary. The stream lines of the motion (11.30) 
are parallel straight lines in planes parallel to X0Z. Their slöpe 
ıv/u is a functon of y and t. Hence this is also a pşeudo-plane
of the first kind since the stream lines are plane 

5°) Let (p be the function (4.5):
curves.

(Kr,Z) = + (ar^ + P) log r + yr’, (4.5)
where a, y are constants. Ş is an arbitrary function of time, and 

is any solution of
1.

'î'r) — I» = 0.

Taking from (4.6) and using the form (11.14), i e. ‘

V, = lV=:^ +/(<),.

we obtain the solution

®ı = o,
v, = lLk[AJAkr)+B,Y,{kr}]e 

k

Vİ2f S 
—2«.r log r---- — —’(a-4-2y)r (11.31)

»3 = - K-2 ro(^r)]e- log r+/(0r
k
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and

vfhere 7„, r„

— + 2 ~ <p,(r,e,Z) —/'(O «;
p

are Bessel’s functions of the first and second kind
respectively of order n, l\t)= —c,(t) and <Pı is the value of p/p-|-Q 
in the case of püre plane motion. İf in (11 31). we take a=Y=0
we obtain R. Berker’s solution (32.9) as a particular case (2).

The stream line of the motion (11.31) are spirals traced on 
coaxial circular cylinders having their axes coincident with OZ.

h°) Let be the solution (4.10):

4(xı^,0 = e ''’‘’'-2MmCos(Âx-+-eJ+J9„ cos(Xız+8J] . (4.10) 
m

/. V^<p = -x^<p.

Now using the form (11,13), we find 

w = K‘ VıCp = —
= — ÂTA’e . 2 cos (Xx + E„) + cos (ly -h 5m) ]• 

m

Hence we obtain the motion of which the velocity compo­
nents are

u = ~\e sin (X^4-8„),
m

v — le vxa<.^^^sin(Xx4-e„), 
m

w = — cos (Xx-l-e„)+fl,„ cos (X^+8J ],
m

The vorticity components become

(11.32)

Ç = — K\^u, 1Ç =T\TS^ — K\'^V, -jy İV.K

Hence if K= — Ijl the solution (11.32) satisfies the relation 

V X U=\U,

where U is the velocity vector. This states that at every point
of the fluid the vorticity vector has the same direction as the
velocity vector and is proportional to it, i.e. equal vorticity 
lines are coincident with the stream lines Motions of this type 
were first studied by Beltrami (1889), then by M. Caldonazzo 
(1926), V. Trkal (1926), and R. Ballabh (1,1940) gave general 
expressions for u, o, w satisfying the relation V X U =
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Finally, the function // = — -|- Q + H*
P

+ w^) for

(11,32) is given by

H = - y ÂV ,

which is the same as the value of H in tha case of püre plane 
motion (4.10).
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