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Ozet: ¢ reel parametresinin fonksiyonu olan
A(t) = a(t) + & aolt)

dual vektorlerine tekabiil eden regle yiizeylerin diferensiyel geometrisi
W. Blaschke tarafindan tetkik edilmigtir. W. Blaschke formiillerile Frenet for-
miilleri arasindaki beazerlikten faydalanan L. Biran regle yiizeylerin egriler
teorisine benzeyen bir tetkikini yapmigtir. Bua g¢aligmada, L. Biran’in ¢aligma-
larindan ilham alinarak W. Blaschke formiillerinde gegen integral invariyant-
lara geometrik bir mana verilmege ¢aligilmigtir,

F ve F* gibi herhangi iki regle yiizeyin sirasile A, ve —A, yéalenmisg
dogrularinin £ nia her degeri igin g¢akigik olmalari gartini kogmak maksadi-

miz) aydinlatmaga yetmektedir. Ayrica F* nin A{ ana dogrusunun daima A,;
in komgu ana dogrusunu kesmesi, F* yiizeylerinin F ye F* nin striksiyon ¢iz-
gisi boyunca tefet olan tors yiizeyleri olmasini temin etmektedir.

*
k ok

Introduction. W. Blaschke [1] (" has made a survey of the
differential geometry of the ruled surfaces corresponding to the
dual vector ‘

A(t) = alt) + = ao(t)

which is a function of the real parameter .
Using the resemblance of the Blaschke and Frenet formulae
L. Biran [2] has made a study of the ruled surfaces similar to

the theory of the space curves. In this paper, inspired by the
studies of L. Biran we have tried to give a geometrical meaning

(1) Numbers in brackets refer to the bibliography at the end of the
paper.
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to the integrals invariants which are involved in the Blaschke
formulae.

1. The ruled surfaces and the Blaschke formulae.

A ruled surface F can be represented by an unit dual vec-
tor which is a function of the real parameter ¢ as

A(t) = alt) + & ai(t)

satisfying the relation A? = 1. It shall be considered that its
successive derivatives with respect to ¢ exists to the highest
order required.

A reference trihedral D attached to the ruled surface F will
be defined as follows.
To the dual vector A(¢) = A,(t) corresponds the first directed

line of D, to the dual vector Ay(t) = \—/—% the second directed

solid line of D, and to the third dual vector A; = A; XA, cor-
responds the third directed solid line of D. Thus from the defi-
nition of D it is easy to derive that the directed solid lines
A, A,, A; of D intersect at a point N and form an orthogonal
right handed system. D is called the Blaschke Trihedral and
the point N is the central point of the surface belonging to the
generator A;. As the directed line A(t) generates the surface F
the point N draws a curve (N) on F which is called the line of

Striction of the ruled surface. If the derivatives of the dual vec-
tors A,(¢) are expressed by means of the vectors A;(¢), equations

A =PA,
@ A= _PA, 4+ QA,
;=—“QA2

are derived. Separating the real and the dual parts of these
equations we get the w. Blaschke Formulae.
where P =\A2=p+ep,

and Q=m;2,-é-é-—)=q+3qo

The resemblance of the Blaschke and the Frenet formulae
are clear, If the parameter ¢ is chosen as the arc-length of the
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curve (N), then P and Q are called the dualistic curvature and
the torsion of the ruled surface F. In his paper L. Biran has
proved that a ruled surface is uniquely determined except as to
position in space when its dualistic curvature' P and its torsion
Q is given as the fuaction of the arc-length of the line of Stric-
tion of ths ruled surface F.

Considering the formulae (1) we can deduce that A, inter-
sects both generators A;, and its consecutive A, - dA,. Thus
A; is in the tangent plane of the ruled surface F at the central
point N. The plane determined by A, and A, is called the cen-
tral plane of the surface at the central point N. A being per-
pendicular at the point N to the tangent plane of the surface
F, isthe normal of the surface at this point. The plane deter-
mined by A,;, A, is called the asymptotic plane of the surface
at the point N.

Let x be the position vector of the central point N. The
tangent vector x’ of the curve (N) being in the tangent plane
of F at the point N, must satisfy the relation

"=uaa 4 Ba,.
It can be easily written
(2) x" =g a; + pyas.
From (2)
3) X" = potgo = 1
can be derived and
4) f% dt =/ x'a; dt
and
(4°) /po dt =/x'a3 dit

can be deduced. The right hand side of (4) is the distance of
the central point, measured along A; from a curve on F which
intersects the generators A, orthogonally. The right hand side
of (4°) is the distance of a point of the same line of Striction
measured on A,; from a curve which intersects A; ortho-

gonally.
Here it might be helpful to suggest that the integrals f g dt

and / p dt need a geometrical interpretation.
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2. Geometrical interpretation of the integrals /q dt and

fqo dt.

To the ruled surface F generated by the unit dual vector
A*(t*) =a* + e q,
we can apply all the results of 1 putting a star sign on the

letters: used,

The generators A, and A! which generate the surfaces F
and F* are functions of the parameters ¢ and #* which are the
arc-lengths of the line of Strictions (N) and .(N*) respectively.

Let us put forward this problem:

A ruled surface F is given by its curvature P(f) and its tor-
sion Q(¢). Find the function ¢* = t*(t) so that A; — — Aj for
every value of .

The condition we put for the generators corresponding to
the unit dual vectors A; and —A} to coincide, makes it neces

sary for the unit dual vectors A,, A;, A}, A} to be parallel
to the same plane.

If @ is the dual angie in between A} and A, the relations

(5) A; AT = cos @
(6) A¥ — A -cos @ + Aysin®
(7 AY = — Ay cos @ + A;-sin @

can immediately be written. If we differentiate both sides of (6)
with respect to ¢ considering (1) we have

P* #*" A} —= —P-Sin® A; (2~ Q) cos ® A,—(2'— Q) Sin © A,.
Using the condition

A =—A;
®) —Q=0
9) P*t*' =P sin ®.
From (8)

(10) % =/q dt

n 0= [ qu dt
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are derived. Differentiating (7) on both sides with respect to ¢,
using (1) we have

—Q*t* A} — P cos® A +(D'— Q) sin ® Ay +(®'—Q) cos D A,.
Considering the condition
Ai=—A;
we derive
(12) Q*¢'* =P cos @
besides (8) and {9).

We can verify the results by the help of (8), (9) and (12)
differentiating the condition

A =—A;.
Taking the reel parts of (6) and (7) we have
(13) a} = aysin ¢ -} agcos @
(14) a¥ = — a, cos 9+agsin ¢
and the dual parts of (9) and (12) we have
(15) Po t'* =p @) cos ¢+ p sin @
(16) gy t'* = —p ¢, sin ¢ -+ p, cos ¢.

The position vector of N* being x
x*=(q5 ai +p; 45 ) ¢
17 x*=— p @y a,+ pe as
can be derived. From (17) considering (3) we have
= ol )t > = [ e )

with these, the invariants P*¥ and Q* the curvature and the tor-
sion belonging to the ruled surface F*, can be found as

«_ P sin @
(%o + po)"
«_ Pcos®

(P2 95+ po)"™
Thus if the ruled surface F is given then F* can be deter-
mined uniquely except as to position in space,
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Considering (5) the shortest distance between the generators
A} and A;is nothing else but the distance of the central points
situated on the coinciding generators of the surfaces F and F*

With this we have given a new meaning to the integral

Py :_/'qo dt.

Again from (5) it can be deduced that the asymptotic plane
of F* at the point N makes the angle ¢ with the central plane
of F at the point N.

Thus, beeause of (10) the integral
¢ = f g dt

also gets a geometrical meaning.

We are now putting forward a second condition to be ful-
filled for the problem in 2. This condition which must be satis-
fiedt too is

D (A7, A) =0.

This means that generator A} intersects the consecutive ge-
nerator A, of A,.

With this new supposition let us consider the properties of
the ruled surface F* Because of

Al = - A;
the new condition becomes
(19) D (A} - A¥)=0

but since
AY = (—P* A} + Q* AY) ¥
(19) becomes

(20) D(P*#*)= 0.

From (9), (20) becomes

(21) D (P sin @) = 0.
Now we can deduce the following proporties
a) AjA =0

b) D(A; -A)=0
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c) D A¥-A¥)=0
d) A xA* = A} XA}

(a) is clear from (6). (b) is the last condition supposed. (a)
and (b) express that the generator A} is in the tangent plane
of F at the point N*, From (21) and (8), (c) can easily be seen.
This shows us that the consecutive generators of F intersect.
So the ruled surface F* is a torse. By (8) and (21), (d) can be
verified. This last properly shows that the ruled surfaces F and
F* have the same tangent plane at the point N*. Thus the ruled
surface F* is a torse which is tangent to the ruled surface F
along the line of Striction (N*).
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