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“RESULTS ON SOME PLANE NETS
by

Pervin Yézgan(*)
Ozet

Bu makalede, X-monojenik fonksiyonlardan [I1] (**) bazilarmin reel: ve imaginer
kisimlan keyfi sabitlere esitlenmek suretiyle elde edilen ortogonal diizlemsel aglar ile
iigili iki teorem ispat edildi. Keza hidrodinamik ve elastisitede [l [III] onemli olan
baz1 hususi egriler incelenerek bulunan sonuglar siralanda.

Yazar, tezi veren ve onu degerh tavsiyeleri ile yoneten Prof. S. Siiray’a tegekkiir
etmeyl borg bilir.
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Summary

We have proved two theorems on the orthogonal plane nets
which are derived from some Z-monogenic functions [TT] (***)
by equating the real and imaginary parts of the functions to
arbitrary constants. And we have also studied some special cases
which are important for hydrodynamics and elastisy [I], [III].

The writer is deeply indebted to prof. S. Siiray for his
direction and advices and whishes to take this opportunity to
express her gratitude.

RESULTS ON SOME PLANE NETS

Introduction. It 1s evident that the real and imaginary
parts of an analytic funcition Ugy -+ iVixy of a complex

* Adress: P. Yazgan, Fen Fakiiltesi matematik enstitiisii, ANKARA.
** Kogeli parantez icindeki Romen rakamlan ¢ahgmanin sonundaki literatiire aittir.
*#* The Roman numbers in brackets indicates the bibliography giveﬁ as references
at the end of the paper.
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variable satisfy Cauchy-Riemann partial differential equations
Ux :Vy,Uy:"Vx

and that the family of the curves Ugy = const., V() =
const. form an isometric net.

In various branches of applied mechanics and particularly
in hydrodynamics and elastisy, one frequently comes across
with equations similar to Cauchy-Riemann equations as well
as the Cauchy-Riemann equations themselves.

While trying to find the different solutions for these types
of equations, Lipman Bers and Abe Gelbart have defined a
class of functions, which they called X-monogenic, and have
established their properties by using a method similar to that
in the analytic functions. In their second paper they have built
their theory on analytical basis while in the first they had es-
tablished it from a practical point of view.

What we have done, in this paper, is to bring out some
properties of the plane nets which are derived from some X-
monogenic functions by equating the real and imaginary parts
of these functions to constants.

In the frist part of this paper, by considering an orthogonal
system of co-ordinates U,y = const., V(xy = const., a theorem,
which states the necessary and sufficient conditions for the ex-
pression U,y - iV(x,y) to be a X-monogenic function, has
been established. :

In the second part, a transformation has been defined so
that a net derived from some X-monogenic functions can be
trnasformed into an isometric net by means of it, and the result
has been expressed as a second theorem.

In the third part of this paper a special class of the plane
nets which arise from the movement of a fluid in rotation has
been examined and the results have been classified.

I. As can be seen easily, the necessary and sufficient con-
ditions for a plane net Uygy = const., V(yy = const. to be
an orthogonal net are.



RESULTS ON SOME PLANE NETS 3

(1) : U= 2 (xy) Vy
Uy=-2 (x,y) Vx
where A(x,y) is an arbitrary function. In general, the net
U(x,y)=const. V(x,y)=const., derived from the  equations

(2) o) U= ()Y
0,)(x) Uy = - 1,(y)Vx

which are the fundamental relations in defining Z-monogenic

functions, are not an orthogonal net. This net is orthogonal
if and only if the equations (1) are satisfied, that is

() 6,(x)
(3) = = const.
() o,(x)

We will consider the case in wich the arbitrary constant on the
right hand side is one.

Let us consider the symbolic and auxiliary matrix

| o(x) (y)
4) S =
a(x) (y)
which corresponds to the equations
(5) o(x) Us= =(y) Vy

o(x) Uy=—z(y) Va

These equations are a special form of (2) and satisfy (1). We are

also considering. the net U(x,y) =const., V(x,)=const. derived
from (5). As it is known

(6) ds? = E(U,V)dU? + G(U,V) dV2
represents the -square of the element of arc with respect to
an orthogonal system of co-ordinates U(x,y)=const., V(x,y)
=const. in a plane. We shall now state the following theorem.

Theorem. If the curves U(x,y) =const.,V(x,y) =const.
form an orthogonal net the necessary and suffient condition
for U(x,y) + 1V (x,¥) to be a Z-monogenic function of the form
{4) is ~ ' ~

»?

E
) (log —) =0
. Ox0y G
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Proof. The necessity of the condition can easily be verified.
In fact, if U(x,y) +i V(x,y) is a £ -monogenic function of the
form (4), it is obvious that the net U(x,y) = const., V(x,y)
==const. is orthogonal, that is the element of arc can be expressed
in the form (6) and that (7) is satisfied. We shall now prove,
the sufficiency of the condition. If

bZ

E
(log —) = O
dx Oy G

E A (x)

G By

then

. Since A (x) and B (y) are both positive

we can substitute ¢? (x) and 12 (x) for A (x) and B(y) respectively
where ¢ and tare arbitrary functions of their own arguments. If
.we substitute ¢ (x,y) for E then

= (y)
G = ¢* (x,y)
o® (x)
Thus
¢ (xy)
@) ds? = e [0 (x) dU2 + 2 (y) dV?]

Substituting dU = Uy dx + Uy dy and dV=V.dx+V, dy in (8)
weget

¢* (x,y) 2 2
(9) ds* = dx? + dy? = ——— {[6* (x)Ux + 7¥(y)V«] dx?

o*(x)
+ [ (®) Uz + 2 () V3] dy?
420 (U, + 72 (y) ViV dxdy)
Equating the coeficients of dx2 and dy? in both sides of this
equality we get

2 2 o (x)
(10) @ () Us + ©(3) Vi =
¢ (xy)
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2 2 o* (x)
1) o2 (x) Us + 72 (y) Vy + :
. 9* (xy)
(12) . 62 (X) Ux Uy + T2 (y) VxVy = O
By calculating the value of V: from (12) we have
o” (x) U.Uy
7 (y) Vy

Substituting thisvalue of V. in (10) weobtain

Vi = -

» 2 -2 w2 Vf’
U2V, +020y) = —m—
¢ (xy)
which is
(13) o? (x) Us = 12 (y) Vi (by using (11) )
In a similar manner we can get
(14) @ (x) Uy = 7 (y) Vi

from (10), (11) and (12). The conditions on U(x,y) and V(x,y)
to satisfy (13) and (14) are

(15) , ox) Us = (y) Vy
o(x) U, = -={y) Vs
(16) o(x) Ux = -1y) Vy

ox) Uy = 71 (y) Vx

But the above conditions also express the fact that U(x,y)+
i V(x,y) is a £ -monogenic function of the variables (x+iy) and
(x-iy) respectively. This completes the proof. From the above
proceedings: we obtain the relation

dsu s (%) du
17 = .
dsv z (y) dav
where dsu and dsv are the elements of arc of the curves U(x,y)
= const., V(x,y) = const. respectively.

*
* *
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2. Although the net whose U(x,y) = const., V(x,y) =const.
curves derived from the equations
(18) s, (x) Us = 7, (y) Vy
5 (x) U, =, (y) Ve
is not, in general, an orthogonal net, the net derived from the
equations
o () Us = = (y) Vs
(19) 1 1
Uy = Vx
s (x) (y)

which corresponds to the matrix

' ox) oy |
(20) 1 I }.
I

| :(x_) (y)

can be transformed into an orthogonal net by a suitable trans-
transformation. This is the subject of the following theorem.

Theorem. £ = £ (x),, = n (y) and 7 (y), o(x) all being

different form zero and infitly, the transformations

dE 1 dr 1
(21) = s =
& o) dy < (y
transform the net U(x,y) = const., V(x,y) = const. derived

from (19) into an isometric net in the £, v plane and conver
sely any isometric net in the Z, v plane can be transformed into
the net U(x,y) = const. V(x,y) = const. in the x,y plane where
U (x,y) and V(x,y) satisfiy the equations (19).

Proof. By applying the transformations (21) to the system
(19) we get

dé dy
= < () Vi—
dx dy

o (x) Ug
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(22) 1 dy 1 d&
Uy =-—V
olx)  dy Wy dx
and by substituting (21) in (22) it yields
Ue = Vy
Uv) = - Vg
These equations show that the curves U( &, 7n) = const.
and V( £, n) = const. form an isometric net. Conversely, if the
et UEy ) = const, V(£,)= const is isometric the elements
of arc is ’

ds2 = A (U,V) (dU2 + dV?)

which implies.that the functions U (§ v) and V (£,1) must satisfy
either ;

U, =V
£ )
or U=V
U, =-V
£ ]
U =V,
7 g

Application of the inverse tranformations to the above result in

o (x) Us = 7 (y) Vy

1 1
—_— Uy =~ Vi
7 (x) T (y)

and

cx) U = -1 (y) Vy

1

— Uy =7y Vs

s (x)

respectively. The net which is obtained from these equations is
the net mentioned in the theorem.

The method is llustrated by the following example.
Example. Let us consider the matrix
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1y
X = x
1
x
y2
o x
where o(x)= ,7(y) = y?, the transformations are { = s
x 2
1
N= ~ ——. The integration constants have been omitted. Since
Yy

they 6nly result in the translation the co-ordinates which does
not effect the results. By these transformations the domain in
%, y plane bounded by the curves

1

x4+ y=1y =x, x = (fig. 1)
4

is transformed onto the domain in £, v plane bounded by the
curves

4 y
A

~>

Fis. 1
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1 1 1
n=+ — s =+ —, &= (fig. 2)
V128 v/ 28 32 .

AN

Now, to every net U(x,y) = const., V(x,y) = const. inside the
the domain ECD derived from (19) an isometric net can be made
to correspond inside the domain E’C’D’. For example consider
x4 1 x?
Uy) =— - —  V(xy) = -
y* y
These functions satisfy the equations (19). The net dervived
from these functions is
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: x4 1
U (XvY) = -
4

= k or —_—_—
y Ve

x2

V(XvY) = -

= k or x? = - ky

y

The variation of the curves U(x,y) = k for y> O is as follows

LA

»x
dy — or Kk 2.,
dx * e ?
Bl _=» + oo foo SO J
an
L |- oo G o Loo
o
d—z + o - gor k
e v =~

the curves V (x,y) =k are parabolas. If we trace thefamily of curves

Ux,y)= const., V(x,y)= const. together we get the net corres-
ponding to them (fig. 3).

xV

Fig. 3



RESULTS ON SOME PLANE NETS 11

On the other hand if the transformations £ =

is applied to these functions we obtain

U(E, 7)) = &
V(& n) = 2&n
Thus the curves U(£,) = £ - v = const., V({,n) = 2 &y
= const. represent two families of ortogonal hyperbolas. (fig.4)

and the functions U(§,n)= £2—? and V(&) = 2 &y satisfy the

equation

U, =V
£ 1)
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After the transformations (21) have been applied to the
X -monogenic functions of z= x-+iy, X being

| o(x) =(y)
1 1
o(x) w(y) |

tehese functions arise as analitic fonctions of { = £+ in. In fact,
the existence of the X — derivative implies that the paritial deri-
vaties U_, V

S g

Riemann equations. Hﬁnce the function U (§, v) + iV (€, n)
is an analytic function of { = £ + i .

. Un, Vv; are continious. They satisfy Cauchy-

*
* %

3. An interesting case which has a significance in physics
is the case in which the net U(x,y) = const., V(x,y) = const. is
orthgonal and the equations

o; (x) Ux = 7(y) Vy
o, (x) Uy =-1(y) Vx

are of thefollowing special form

1
U, = v,
y

(23) 1
U = - — V,
v ;

In this case, as known, the curves U(x,y)= const., V(x,y) = const.
represent equipotantial lines and stream lines of the symetrical mo-
vements of afluid referred to an axis. Therefore study of the pro-
perties of the curves has a special importance. But such an exa-
mination represent great difficulty not only in the generol
case but also in the special case (23). However, we have consi-
dered two kinds of formal powers of these functions and we have
established some properties of the curves U(x,y) = const.,
V(x,y) = const. The formal powers considered are
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1.n—l

Zr=U + iV = r* P, (cosO) + i y’2 P, (cosh)

n-+1

r—n—2

Zen) = U* 4+ iV* = r= P, (cosd) ~i y2 P, (cost)

n

where the variables are polar co-ordinates and P, and P.’ are the
Legendere’s polinomial of the nth degree and. its derivative res-
pectively. From U(r,0) = k it follows that

L
(24) k
rg = —
Pn(cos 6) |

and

dry 1 k 1 “sin O P, (cos 6)
(25) =— ()"

do n P, P. (cos 0)

From V(r, §) = 1 it follows taht

1

— =T
1 (n+1) ‘
26 o=
sin? 0 Pq(cos)
and o — —_
1
— —p nt+l
dr, . i 1 (n+1) sin 0 Pa
x(27) = —-n

do gin2 0 P, A (sin? OP./)+1

If the angles between the radius vectors and the tangents to
the curves U= k and V = 1 are « and B respectively then



145 P. YAZGAN

n P, sin O Py’
(28) Tan o0 = —————, (29) Tan B = - ———
sin 0 Py nP,

where k, 1 are arbitrary constants.

From (24) and (26) it can be seen that the curves U = k
are symmetrical with respect to Ox and Oy axes for the even
values of n and V = 1 are symmetrical with respect to Ox
and Oy axes for the odd values of. n.

The curves U =k and V =1 are symmetrical with respect
to the Ox axis for odd and even values of n respectively. The
curves which correspond to the negative values of constans are
symmetries of the curves which are obtained for the pozitive
values of constants.

The curves U=k, V= 1 have noasymptotes passing through
the origin. For the odd values of n, Oy axis is always one of

the asymptotes of the curves U = k and Ox axis is that of the
curves V = 1.

Combining the formulae (24), (25), (26), (27) we observe
that the vertices of the curves U = k are on the asymptotes
of V = k and vice versa.

From (28) and (29) we also observe that for fixed n and 8
the values of tan « and tan $ remain unchanged. Hence the

curves U = k and V = 1 are homothetic with respect to the
1 1
kT [~ - niT
origin with the homothety ratios | — and |
_k, _| [
respectively.

The element of arc in the U,V plane, where U = U(r, 0),
V=V (r, 6) is
1
ds?> = (r?sin? O dU? 4 dV?)
e (02 P2 4 sin2 O P12):

and
E
— =’ sin? O = y?

G
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For V= const. we have

r sin 0 dU
dSU = g 1 /2
i (n? P2 + sin? 0 Ps?)
For U = const. we have
dav
dSV = 1/2
(0?2 P2 4+ sin? 0§ P.?)
Hence
dsv 1 av
dsy y dU

Starting from Z(™®) ve have the curves U*= k and V*= 1.
We shall give similar results for thesefcurves For the curves

U* =k
2
= Pa{cos 0) 'J ntl
(30) ro* = / - |
x|
and .
drg*® 1 -k -+l
(31) = - P, (cos 0) sinb
do (n+1)k \ P.cos 0 B
- - 4

For the curves V* = 1

, 1
sin20P, ) Y

(32) I'V* = [———————
n+1l
and
n—1
drv* m n4l 7=
(33) = (@m+1l) [ ——— sin 6 P ,,
: do |_ sin2 8 Pn _

If y, 0 are the angles betveen the radius vectors and the tangents
to the curves U* = k, V* = 1 respectively. Then -
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(n+1) Pa
(34:) tany = - ———————

sin 6 Py

sin 6 P,
(35) tan § = —————

(n+1) P,

the curves U* =k and V* =1 are symmtrical with respect to Ox and
Oy axes for the even and odd values of nrespectively. The curves
U*= k and V*= 1 are symmetrical with respect to Ox axis for
the odd and even values of n respectively. The curves which
corrspond to the negative values of k and 1 are the symmetries
of the curves obtained with respect to oy axis for the positive
values of k and 1. The curves U*=k, V¥ = 1 are closed curves.
They pass through the origin n times. The straight line 6 =
const. which makes ry* =0 pass through the vertices of the cur-
ves V*= 1 and vice versa. From (34 and (35) it follows that the
the curves U*=k and V*=1 are homothetic with respect to the
origin with the homotyhety ratio
k, B2 L =

(=) wa ()

respectively. For the curves U=const., V=const., =const., U*=
const.,, V¥ = const. which pass through the same point, there
are the relations

1 1

k, 1

2

n
tang. tand =
n+1
n+1
tanf. tany = =
n

which express that the product of these tangents at a point
is independent from the co-ordinates of the point. On the other
hand, if we make following substitutions
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Arg 70 = 0, Arg Z(™ = O*

and consider the relations

Y V*
tan ® = ——, tan @* = ——
U U*
then
n-+1

tan O*. Cotg ® =
n
that is at any point, Arg Z™ : Arg Z® is independent of the co-
ordinates of the point.
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