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On the Librational Orbits in the Elliptic Restricted
Three Body Problem

ZEKI TUFEKCIOGLU

Depariment of Astronomy, University of Ankare, Ankara Turkey*.
(Received April 1, 1969)

Motion near the Lagrangean triangular points has been investigated by Rabe 1961,
and Long periodic orbits have been established numerically in the circular case. i.e. when
the two primaries revolve around the common center of mass in circular orbits. Following
the same procedure as Rabe, Goodrich found short periodic orbits in the same case 1965.
We showed, 1967, that one of the Rabes initial Conditions also gives periodic orbit in the
elliptic case. On the other hand Szebehely treated the elliptic case analytically. There are
agreements between our numerical and Szebehely’s analytical results.

The restricted problem of three bodies studies the motion of
an infinitesimal particle moving under the influence of two finite
point masses. It is assumed that the two bodies move about their
center of mass in concentrie circles and their orbits are undistur-

bed by the infinitesimal third body.
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Let x, ¥ be the coordinates of the third body; r,, r; its distances
from the primaries; m,, m, the masses of the primaries; [ the dis-

tance between them; n the mean motion of the primaries and ¢ the
time. We put

X y m; m,
—=&—=17; = U, =1—up;
l ) m1+m2 m1+m2
r, T
— =0, — =y, and i =71
) )

We now have &, 5y dimensionless coordinates of the third body;

01, 02 its dimensionles distances from the primaries. u, 1 —u
dimensionless masses of the primaries and 7 the dimensionless time.

nal

Fig. 2

The equations of motion of the third body in this uniformly

rotating synodical dimensionless &-—p Cartesian rectangular
coordinates system are

E—2yp = .Q§ (1)
it2=0
where
1—u u 1
Q=— + — + — &+
@ 0z 2

and the. shows derivatives with respect to 7.
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We know that equations (1) have the well-known Jacobi
integral k

£+ pp=20—C (2)

where C is the Jacobi constant.

Now let us suppose that the primaries revolve around their
center of mass in elliptic orbits. Taking the true anomaly 0 of the
primaries as the independent variable it can be shown, ref. 2, that
the equations of motion of the third body are of the following form
(now nonuniformly rotating coordinate system)

1
&2y = ——— 0 3)
1+ecos@
1
7]!1 + 25« [, Qn
l+ecos

’

where Q is the same function as before. The ' shows derivative
with respect to § and e is the common eccentricity of the elliptic
orbits. The integral of equations (3) that corresponds to the Jacobi
integral in circular case has now the following form.

20 Qsin b
'+t = —————C—2e J——————dﬂ 4)
1+ecosb (1+e cos 6)*

Note that if we put e = 0 in the the equations (3) and (4) we get
equations (1) and (2). So 0 corresponds to 7 in circular case. Note
also that the distance between the primaries in circular case is
fixed, but in elliptic case it is not. In fact if we show it now with
r we have
a (1—e?)
e

1+ecos@

where a is the semi major axis of the elliptic orbit of the smaller
primary about the other.
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We will now see Rabe’s application of the circular case to
the Sun-Jupiter system. He takes the Sun and Jupiter as the two
primaries and the Trojan moving about the Lagrangean triangular
point L, as the third infinitesimal body. Jupiter describes a cir-
cular orbit relative to the Sun. The radius of this orbit is adopted
as the unit of distance, the Sun’s mass as the unit of mass. The
unit of time is chosen such that the gravitational constant becomes
unity, After a transformation of the {&—y system to x —y system
centered at Jupiter, rotating with uniform angular velocity with

1)

J 3

Fig. 3

X

the Sun fixed on the positive x axis, equations (1) of the third
small body become

. 1 1
x—2Ny=(x—1)1——)+ Mx(1 — —)
13 023
()
.. . 1 1
y+2Nx=  yl— —)+My(l —-—)
13 023

where IV is the mean motion of Jupiter and M is the mass of Jupi-
ter. The. shows derivative with respect to the time . For
numerical integration of equations (5) Rabe uses a method due
to Steffenson 1956. He assumes that the solution can be represen-
ted as power series in the following manner
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(6)

where i, is the starting time and a, , b, are constants. a,, b, are the
position components at time ¢,. Derivating equations (6) once we
see that a,, b, are the velocity components at time t,. These four
constants are identified as the four constants of integration. If
we know the initial position and velocity we put (6) into (5) and
get the recursion formnlas necessary to find az, b2 ; as, b ;... To find
the right initial conditions to get a periodic orbit around L; Rabe
supposes that the Trojan gets its maximum velocity relative to
Jupiter at the time of the closest anproach to the libration point
L; and this point is on the line connecting L; to the Sun. This con-
dition gives quadratic equations the small root of which is a
good approximation for initial conditions to get a periodic or-
bit of long period ~ 147.4 years around L;. Rabe suggests that
the other root can approximate the short periodic orbits ~ 11.9
years around L. '

On the other hand, following Rabe’s way Goodrich 1965
found short period orbits around L;. In fig. 4 wee see a long and
short period orbit for the same initial position but different initial
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velocity. The time unit being ~ 1.89 years. These results are al-
ready expected from the linearized theory of the circular case see
for instance ref. 6.

Now the question is do we still have periodic orbits around
L; when we take elliptic orbit for Jupiter around the Sun. We will
first give Szebehely’s analytical treatment. The equations of motion
of the third body in elliptic case i.e. equations (3) are given in ref.
2 and are fully derived in ref. 7. Suppose %, y, are the particular
solution at L;. Introducing x = x, + &, y =y, + 5 the varia-
tional equations of (3) becomes, neglecting the second and higher
order terms in Taylor expansion, of the following form.

1
8 — 2 = [@ex{ ¥) &+ Por(x yp]
1+ecos @
(7
1 .
N+ 28 = ———— [Qyx(x0, ¥0) & + Lyy(xs, yol1]
1-+ecosf
where ,
3 9
,Qxx = — ny = —
4 4
and

Qxy = Qyx = 34/3 (1—2p) /4

Equations (7) describe the small amplitude motion of the infini-
simal body around L, and are a system of linear differential equa-
tions with variable coefficients. The solution proposed by Szebe-
bely is a power series in the eccentricity i.e.

oo s
£ = 2 £(0)e
n=0 .

(8)

0
n= 2 n0)e
n=0

The zeroth order solution in the eccentricity becomes identical
with the one known for the circular case where we have two types
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of periodic orbits long period (librational) orbits of period 147.4
years and short period orbits of period 11.9 years as mentioned
before. Introducing the first and higher order solutions Szebehely
gets additional frequences. He proves that for special u values it
is possible to find periodic orbits also in elliptic case. The short
period terms in the solution show up in form of loops superposed
on the smooth librational orbits. These loops diminish with dec-
reasing eccentricity of Jupiters orbit. '

Now we turn our attention to the numerical solutions of
equation (3). We first make a transformation of coordinates from
the center of mass to Jupiter as origin. Equations (3) will be now
of the following form.

. AT | , 1 1
K — 2Ny = [(x—1) (1 — —)+Ma(l — —)]
1+4e cos Nt 0.3 023
&)
. . 1 1 1
y + 2Nx = ———— [y(1 — —)+My(l — —)]
1+4ecos NVt 0.3 023

where N = 4/I4+M, Nt =0 and the . shows derivatives with
respect to the time &.

To integrate equations (9) we used the Runge-Kutta fourth
order numerical integration method taking e = 0.04833499 and
M = 0.00095478. We took Rabe’s initial values to start the in-
tegration. After making differential corrections the following
initial condition gave us a periodic orbit of period 78.1913713 in
elliptic case:

x, = 0.495, 1y, = 0.874685658, x, = 0.013114103,
¥, = 0.007433322

for detail see ref. 7. This orbit is shown in fig. 5. The short period
terms show up as loops superposed on the orbit as Szebehely re-
marked. Then Changing e from 0 to 1 we found that these loops
get more and bigger for e’s getting close to 1, and diminich
when e goes to 0 which also confirms with Szebehely’s results.
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As a result of both analytical and numerical treatments men-
tioned above we conclude that there are periodic orbits around
the Lagrangean triangular points even when we take elliptic orbit

for Jupiter.
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OZET

Lagrange iiggensel noktalar: etrafindaki hareket 1961 de Rabe tarafindan incelen-

mis ve dairesel halde, yani iki esas cisim kiitle merkezleri etrafinda ¢emberler ¢izdigi

zaman, uzun periyodlu yoriingelerin varh niimerik olarak 1spatlanmigiir. Aym metodla
Goodrich 1965°te kisa periyodlu yodriingeler elde etmistir.

1967 de, biz Rabe’nin ilk sartlarindan birinin eliptik halde de periyodik yoriinge

verdigini gosterdik. Szebehely ise eliptik hali analitik olarak inceledi. Bu yazida bizim
niimerik nzticelerimizle Szebehely’in analitik neticeleri arasindaki uygunluklar: gistere-
cefiz.
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