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Ozet : Liizuci, sikigtinlamaz ve homogen bir akigkanin hareket dife-
rensiyel denklemleri lineer degildirler. Bu yiizden onlarin genel ¢dziimlerini
bulmak gok gii¢ ve hattd imkansizdir. Aragtiricilar ya Szel tarzda ¢oziimler
bulmakla iktifa ederler veya ¢oziimii sadelegtirici bazi kabuller yaparlar. Bu
makalenin yazarinin yaptifn sadelestirici kabul akigkan hareketinin kendi ken-
disi fizerine bindirilebilme &zeligidir (ss. gart1). Yazar evvelce yaymmlamig
oldugu bir makalesinde [1] ss. hareketlerden diizlemsel, bir eksene gbre si-
metrik, birinei ve ikinei nevi yan diizlemse!l (pseudo-plane) bareketleri ince-

_lemis, bu yazisinda da birinci nevi, bir eksene gore yari simetrik hareketleri
bulmaga ¢aligmigtir.
*
L *

Summary: The equations of motion of a viscous homogeneous incom-
pressible fluid are not linear. Therefore always some assumptions 2re made
to simplify the solution of the equations. The assumption used in this paper
is the self-superposability (ss.) property of the motion. Pseudo-axisymmetric
ss. motions of the first kind are discussed, both in the steady and non-steady
case.

*
L] ®

1. Introduction - As this paper will be a continuation of a
previous paper of mine [1], I shall summarise some paragraphs
of the first article of that paper in order to explain my aim in
this work. :

The equations of motion of a viscous incompressible hemo-
geneous fluid can be written as

(*) Adres: Dog. Dr. A. N. Ergun. Fen Fakiiltesi — Ankara
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b—LL»U><(\7><U)+vV><(V><U)=—VH (11)

ot
and v.-U=0, (1.2)

where U = (u, v, w) is the velocity vector,

=P 1 |
H—p+2U+Q, (1.3)
v the kinematic coefficient of viscosity, p the density, p the
pressure, Q the force potential (F = — VQ), and
h) ? b
S . 9 v . 1
V=i +]b_y+kbz (1.4)

is a differential operator. We assume p and v to be constants.
If we apply the operator V X to both sides of (1.1) we obtain

\% x%——Vx[U x(VxU)]+vV><[V$<(VxU]=0. (1.5)

This equation is the kinematic consistency equation. It is the
consistency condition of the three scalar equations in (1 1).
Hence the determination of a fluid motion will consist of two
successive processes. The first is to determine the velocity field
by (1.5), and the second is to determine the pressure by (1.1)
and (1.3).

The general solution of (1.5) is difficult because of the
non-linear terms. For this reason always some assumptions is
made to simplify the equation. The principal assumption which
we shall make in this memoir is to use the self-superposability
(ss.) property of the motion.

Since the equations of motion are not linear their solutions
are not, in general, superposable. If U; and U, are any two
solutions of the equations of motion of ‘a viscous incompressible
fluid corresponding to given external forces, initial and boun-
dary conditions, not necessarily the same in both cases, they
are superposable on each other if and only if

Uy X (VX Up) + Uy X (VX Uy) == Vy, (1.6)

where x is an arbitrary scalar function of x,y,z and t. This
is the superposability condition [2]. If U; = U, = U we obtain
the self-superposability condition (or simply ss. condition)

UX(VxU=Vy, 1.7)
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where as before ¥ means any scalar function.
If U is ss. the middle term in (1.5) vanishes, since

VX[UX(VXU]=vXVx=0, (1.8)
and the comsistency equation reduces to
VX%%Xvi[Vx(VxU)]:O. 1.9)

‘Hence the use of ss. condition is to devide the equation into
two parts, which is an obvious simplification. k

The object of this paper is to find exact solutions of the
equations of motion, when they are simplified by the self-super-
posability condition. In the previous paper plane and pseudo-plane
motions and also axisymetric motions were discussed. In this
one pseudo-axisymmetric motions of the first kind are discussed.
Both the steady and noun-steady solutions of the simultaneous
equations are obtained.

2. Definitions - An axisymmetric motion is defined as the
motion which has the following two properties:

(a) Trajectories are situated in planes passing through an
axis (say Oz),

(6) The motion is identical in every such plane.

In cylindrical coordinates the first property is expressed by
writing v, =0, and the second one states that v, and v; do
not depend on 8. Hence the component velocities are

vy =wv, (r, 2, £,), vy, =0, vy = va (r, 2, 1,). (2.1)
This kind of motion is discussed in the first paper [1].

But these two properties may not simultaneously be satisfied.
Then we obtain pseudo axisymmetric motions (*). If for example
(a) is satisfied but (b) is not satisfied, we have pseudo axisym-
metric motions of the first kind. The velocity components are

v, =1, (r, 9, z, #), v, = 0, vg=1wv;3(r,8,2,t), (2.2)
which contains (2.1) as a particular case.

Again if (5) is satisfied, but (a) is not satisfied, we obtain
pseudo axisymmetric motions of the second kind. In this case
the velecity components are of the form

vy=o(r, 2, ), va=u04(r, 2z, t), vy=uwy(r, z, £), (2.3)
which also contains (2.1) as a particular case.
Hence pseudo-axisymmetric motions are more general than

(*) The nomenclature is due to R. Berker [3].
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real axisymmetric motions. In the next three articles we shall
discuss the pseudo-axisymmetric ss. motions of the first kind,
leaving motions of the second kind to a next paper.

3. Pseudo-axisymmetric ss. motions of the first kind.
These are the motions in planes passing through an axis (say,
Oz, in cylindrical coordinate system), but the motion is not
identical in every plane, i.e. it depends on 0, which varies as
we pass from one plane to the other. Hence the velocity com-
ponents are :

v =u,(r, 8 2, 1), v, =0, vy=1uoy(r, 5,2, t). (3.1)
The equation of continuity is

d(roy) | O(rvs)
dor + dz =0

which suggests the existence of a stream function ¢ = ¢ (r,6,2,1),
such that '

(4] ::'r—' z 3 Ug =—=— —(‘pr ’ (3'2)

where . denotes the partial derivative of ¢ with respect to z.
Now ss. condition (1.8) gives three equations

1 2 2 1 J—
5= 2+ 98] —[4- D] —0 |
)
J

|5 2 0] =[o- s —o
or 0

ofo401)
- D(r,2

where the last equation is a Wronski determinant.

=0 , (3.4)

The consistancy equation (1.9) also gives three equations

@+ 5+ 2y |~

20

1

(3.5)
v ’[(DZ,('IJ)z - % q)rz + rig ('I)z -'e - q)zet =0

/[P @O St — Tt |- O =0, 66)
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where

Dip =y, + &, + 4. (3.7)

/ 1 1
D 2(!) :(‘prr + T ('pr + ¢zz+ 75 q)ee * (3'8)
The vorticity components are

B, = —;12—4»0. Ez=rlD2‘l’ , E3=——%¢ze + (39)

The system (3.3) is equivalent to the system

[T}z—((brz""‘pzz)] — 4,‘ . ’% qu): Pz . (3.10)
[2%2‘ (4 + cPﬁ)] — ¢, rig Dyp=P, , (3.11)

and (3.4) is a consequence of these two, where P is an arbitrary
function of 7,0 z and ¢, such that Pzy =P,y = 0, i.e, neither
P, nor P, depends on 6.

- The equations (3.5) cen be integrated once with respect
to 6, which give

i T )

’ 2 4
/| @ = 2o, Tk | = =BG,
where A and B are two arbitrary functions depending only on

r, z and #, but not on 0.

By taking account of the equation (3.6), it can easily be
shown that A and B satisfy the relation

d /A d (B

ST(T)+B?<'F)“O'
Hence there exists an arbitrary function Q of 7. 0, z and £,
such that

Alr=—Q,, Bir=Q;

and the equations above can be written as follows
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[rw + Hwm v |- ha=—rae, 1)

v [(Dz' Vo=t

r2

¢,']—¢,t= /Q,, (3.13)

where Qro = Qz5 = 0.

Since the equation (3.6) is a consequence of these two last
equations the system of equations (3.10) — (3.13) form the kine-
matic conditions of the motions in question.

As for the dynamical condition, (1.1) gives the following
result after some calculations :

H=Q—P+ 24+ +6)+CO

where C (¢) is an arbitrary function of time. Hence from (1.3)
we find

24 Q=Qlr, 05,0 =Pl 82,0 + S b+ C O G149

where P and Q, as they are defined above, are two arbitrary
functions such that P,, P,, Q,, Q,, do not depend on 9, and
C (t) is arbitrary. H and therefore p is determined only except
for an arbitrary additive function of time.

4. Solution of the equations in the steady case. In cylin-
drical coordinates the stream function ¢ must be a solution of

the system of equations

- . ;
L_Q_r? (('I)r2 "I_ q)zz) ], - ‘l)z . —7_2 ng) = P, s (3.10)
5 0+ 9] = b 7D =P (3.1
' 2 2 ’ S

v L(Da’ $)r 4 5 doo + $,. ] = — rQ, (3.12)
i ’ 2 4 ’

v (D2 q))z)—_r_ q)rz + r—g q)g ]= I'Q, ’ (3'13 )

where P, Q are arbitrary functions of r, 6, z, such that P, P_,
Q, and Q, are independent of 6.



SELF-SUPERPOSABLE FLUID MOTIONS 185

D2¢=q)rr +%"I)r+ q’)zz ’

, 1 1
qu):q}rr +Tq’r+¢u+"§4’00-

In each case we shall first try to satisfy the equation

D (4,75 D%)

—Den 0

(3.4)

b}

which is a direct consequence of (3.10) and (3.11) expressing
P, — Prz = 0.

A. Let { be linear in z.
b=F(r0)z+ G(,b), (4.1)

where F and G are two unknown functions of r and 0 alone.

Now (3.4) gives
GF, + G,) (F,— - F, )

- F[ ZFrrr + Grrr - -f— (ZFrr+Grr) + ":_ST (ZF,. + Gr)] :0!
which must be true for all values of z, hence
F,'(F,, ~1lr )— F (F ~3F +3F ) =0, (42
r r r

1 3 3
Gr (Frr -_’_—Fr)— F((;rrr _TG" + "TGr)

l

0. (43)

Both the equations are satisfied if F =0, i.e.
$=G(r,0).
Then we easily obtain
P,=P =0,
i. e. P is a funetion of 6 only.

Q, =0,
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1 1 1
—Q, = —(Grrr —TG” +‘rTGr + ",z_Gree) 44)

and Q,, — Q,, = 0 requires that
1 1 1
Grrr - r Grr + r2 Gr + Tz—Greﬂ =C (e) r, (4.5)

where C (0) is arbitrary. But Q;e =0 also requires C' =0,
hence C is an absolute constant.
To solve the equation (4.5) we assume the relation

G =1G, , (4.6)
where p is an arbitrary constant. We distinguish three cases.
(/) If p is positive, let u = m> Then (4 6) gives .

G, =Ae™ L Bem9,
where A and B are arbitrary functions of r, and (4.5) requires

r’A" —rA’ 4+ (1 + m?)A =0,

B — rB’ 4+ (1 4+ m?B =0,

and C=o.
These equations have the solutions

A(r) = ayr?*tmi 4 guri-m

B (r) = b,rttmi | byrl—mi |

where a,, b, are arbitrary constants of integration. Hence

— — | m as 2—mi | _mo
¢—G(r,0)_(2+mi,2+e+2—ml_r )e n

by 2+mi by 2-mi| —mo
(2+mi’ tozm e

which can be written as

¢ = 2 o (am emd + Bm e——me) , 4.7)
where «, , B, are arbitrary constants, and
n=2TFmi,

since the equation (4.5) is linear.
(i7) It p is negative, let yt = — m?. Then (4.6) gives
G, = A cos mi + B sin mf, (4.8)
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where A, B are arbitrary fonctions of r. (4.5) requires
A" —rA' 4+ (1 —m)A =0,
r’B"—rB’ 4+ (1—m)B =0,
and C=0.

After solving and replacing their values in (4.8), we can
show that the expression for ¢ = G (r, 0) can be written

¢ = N (%, cos mo + B, sinmf) | (4.9)
where n=2Xm.
(iii) When p =0 ,
G, =A04+B,

A, B being arbitrary functions of r, (4.5) furnishes the equations
PA — A+ A=0, "
raB" — rB" 4+ B = Cr?,

and C is an arbitrary constant.

After solving we obtain

A(r) = (a, log r + az) r
B(r) = (b, log r -+ bs) r - %Cr:‘.
Hence, after integrating once with respect to r, we find
4=G (r, 8)=r (& log r +8) 0-+(1 log r + 8) r*+ -11—6Cr‘ . (4.10)

where @ 8, v, 3 are arbitrary constants.

The solutions (4.7) and (4.9) are just R. Berker’s solutions
(16.23) and (16.24) with k& = 0. [3]. This shows that those solu-
tions are self-superposable when & =0. But (4.10) looks to be
more general than his (16.25).

For the solutions (4.7), , (4.9) and (4.10) the pressure is
given by '

§+sz=_vcz+1<(e),

where K(8) is an arbitrary function of 6. The solutions (4.7) ,
(4.9) and (4.10) represent flows parallel to the axis of z.
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It F==0, the equation (4.2) can be written in the form

Frrr_lFrr_,_*l_Fr

Ch

F,, —F g
whlch after integrating with respect to r gives

F,, —-—r—F,— h(0).rF=9, (4.11)
where 4 (0) is arbitrary.

Inserting F,, —ITF, from (4.11), (4.3) becomes
Grrr_icrr +(12 _hrz)Gr =0. (4'12)
r r

If we change the independent variable by r2=p . the equa-
tion (4.11) transforms into

1 |
Fpo— 7 RO F=0. (4.13)

Now there are three cases as 4 (0) is zero, positive or
negative.

(i) h(6) = 0. Then

where A(8) and B(8) are arbitrary functions of 6 to be deter-
mined by the remaining conditions (3.10) — (3.13").

As for the equation (4.12) for G, let
'G,.=rf(r.9) ’
then (4.12) becomes
frr__i'fr - h(ﬂ)r2f=0 )

i. e. just the same equation as (4.11). Hence we can take
f(r, 8) = k(6).F(r, 0) ,
where &(0) is now arbitrary.

Now from G, =rf , we have
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G, = rkF
= k(Ar® + Br) by (4.14) ,

G(r, 6) = k (% Arit % BrZ) ,

neglecting an arbitrary function of 6, since ¢ is determined
only except for an arbitrary additive function of 0. But as A B
and k are arbitrary functions of 0, we can assume

kA = C(8), kB = D(9),

C and D being the new arbitrary functions of 8, and write
‘ _lepuplpa
G(r,e)(— y Cr —|—4 Dr2.
Hence (4.1) becomes
= (Ar 4+ B)z + 5 Cr+ %Drz , (4.16)

where all the coefficients are functions of 0, to be determined.

Now let us satisfy the equations (3.10) — (3.13), and deter-
mine the coefficients as functions of §. After some calculations
we obtain

P,=4A%2 -+ 2(AD — BC),

2
P,=A3r——§3—,
r
—~Q,=v(C”+4C +712‘D”)’
4B v
Q, = 3

where dashes refer to diferentiation with respect to 6.

P., = P,, is always satisfied, since we have first satisfied (3.4).

Q,, = Q,, requires D" =0, (4.17)
P, —0 . AA =0, (4.18)
and (AD — BC) =0  @19)

P,, = 0 requires AA’= BB’ =0, (4.20)

Q=0 , D'—C +4C =0, (4.21)

Q=0 ., B'=0. (4.22)
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The conditions (4.18), (4.20) and (4.22) are satisfied if A, B

are numerical constants, say
A=aq, B=5s.
(4.17) gives D =¢b + ¢,, k
(4.21) gives C=acos20 | Bsin20 4 d,
and the last one (4.19) requires
ac — 2b (f cos 26 — « sin 20) =0, (4.23)

where all the coefficients a, b,c,d,a, B are absolute cons-
tants.

The relation (4.23) may be satisfied in one of the following
four ways

(@) a=b=0,
(2) a=“=p=0!
@) e=b=0,

@4 c=a=p=0,
To these correspond the following solutions

o= 71‘l~r‘ (x cos 20 + B sin 26 + d) -I-%l'2 (cb+¢c). (429

This represents a one dimensional streaming parallel to z-axis.
If the region of motion contains some part of the axis, the
uniformity of the velocity requires ¢ = 0. Similar restrictions
exist in the above solutions (4.7) and (4.10).

2 a=a=B=0.

o= bz + %dr‘ + % (e + c,). (4.25)

This is a two dimensional motion in planes passing through
@z. The axis is a line source or sink as b>0o0r b<<0. It is
general than R. Berker’s solution (16.25) when & — 0, [3].

3) c=b=0.
oo =ar?z + %r‘ (« cos 20 + B sin 20 4- d) %c,rz. (4.26)

A two dimensional motion in planes passing through Oz
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- The motion on the axis is entirely axial.

(4) c=a—=p=0.

= (ar® 4 b)z + ——dr + —l-c‘r2 (4.27)

This is a two dimensional rotational motion which does not
depend on §. at all. Hence it is an axisymmetric ss. motion.

In all cases above the vorticity vector lies in. planes per-
pendicular to the axis, since ¢,, and therefore & = 0. The

pressure is given by
p + Q = 2v (a — 2dz) — _az(,.z + 42?) —éz—
—2¢g[a (9 + ¢;) — b (« cos 20 B sin 29 -|- d)]+ K(8), (4.28)

where K(0) is arbitrary. For example in the first case (1)

%+9=—4dvz+K(0).

(i) A(®)> 0.
Letjl— h(0) = A2, then the solution of (4.13) is

F(p,0) = A e’ 4 B e—2e,
or F(r,0) = Aeh? f Be—M? ,

where A, B are arbitrary functions of 8, and A is either a
constant or an arbitrary function of 0.

Now by (4.15) we have
| G, = k(). rF
= kr(Ae)"2 + Be —3%),

G(r, 0) = % k(B).(A eAr? — Be—Hr)
or, since k(9) is arbitrary, we can take
Glr, 0) = g (C e — D™

Hence the stream function (4.1) becomes
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¢ =(Aer? + Bem M)z + %(C eM? — De M) | (4.29)

where all the coefficients are arbitrary functions of 6, to be
determined by the equations (3.10) - (3.13). After some lengthy
calculations we obtain P,, P,, Q, and Q,, but unfortunately no
values of A, B, C and D different from zero, can be found
satisfying all the conditions, even in case when A(8) = a cons-
tant, Hence my conclusion is that no ss. motions of this type
exist, at least in the case when A(8) is a constant.

B. Let ¢ be linear in r.

b = F(z, 0)r + G(z, 0). (4.30)
The equation (3.4)requires

F (G s ) —(F.+ G,) (% F—F.,—%G..)=0,
which furnishes
F szz + Fzez =0,

F VGzzg + Fzsz _I_ 2Fszz = 0 !
2F F,—G,G,, =0, (431)
F G =0

The last shows that either F = 0 or G,=0.

(i) If F=0, the first two equatiohs in (4.31) are satisfied,
and the third requires G,, == 0 . Hence

b= G(2,0) = A(®)z + B(6),
i.e. ¢ is linear in z, and this is included in (4.1).

(i) It G, =0, the third equation in (4.31) shows that F,

* is also zero. Hence ¢ = ¢ (r,8), and we obtain the case §4A.
(4.3).

C. Let ¢ be of the form
$ =F(r,z). h (0) .

Then we have

Dyb = h(F,, - —I;F, + F,,): A D,F,
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and the equation (3.4) gives
F.(DsF), — F.(D,F), + 2 F,-DF =0.

This is satisfied particularly by (i) F, =0, (ii) D,F=Cr2,

where C is an arbitrary constant.

In case (i) F,=0, and ¢ becomes a function of r and 0
alone, i.e

¢=F(r)'b(6)=¢(r’ 9) ’
and this form is included in (4.3).
(i) If DoF = Cr? then Dy = h D,F = ACr?, and we find

2
P. — 0 (F? + F%), — ACF. |

1 1 ‘
P = A% |1 F2+ 2 — F
r 2 [rz ( T Fz)]r. bC "

Now P, =P 4 = 0 requires 4’ =0, i.e. h(8) = a constant.
We also find out that all the other conditions Qs =Q, =0,
‘Q,; —Q,, =0 are satisfied if A’ —0. In this case ¢ does not
- depend on 0, and we obtain the well known solutions of

ng) = Crz 3

first given by U. Crudeli [4].

To resume our results, we can say that (4.7), (4.9) and (4.10)
are the only solutions of the steady case in the form $ = Glr, 9),
and (4.24) (4.25) and (4.26) in the form ¢ = F(r, 9)z -+ G(r, 6).
As far as I know, the solutions (4.10), (4.24), (4.25) and (4,26)

are new.

5. Solution of the equations in the non.steady case.

In cylindrical coordinates the stream function ¢ is a solution
of the simultaneous equations (3.10) — (3.13).

First suppose that ¢ is of the form

b=T-9(0,2),

where T is a function of ¢ alone. The equations (3.10) and (3.11)
become
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1 5
[2’.2 (CP + ?2)] - ;I ch'DzCP == Pz/TZ ’ (5'1)
1
. [72— () + C¢Jﬁ)]r — 7 %Dy =P[T?, (-2)
and the equations (3.12) and (3.13) take the form
2 2 /
[(D CP)r 3 Pog +'r—Cp,"]T—(Pr'T =—TQ,, (5'3)
2 4 ’
L(D CP) ‘Prz +r_z ¢, ]T —CPZ'T= rQr1 (5'4)
Q_y = 0 requires
v , 2 2 1 ,
T[(chp)r +:{_CP00 +_;—cpzz]e 'T—T ?re 'T :0’
, 2 2
] T V[(DZCP),. +;,?<P00+ _;cpzzJ

T Pro
where k is a constant. Hence

%= constant=—vik? say,

T~e—vk2t ,

. 2
and (Dz (p)r 3 P00 + (pzz + k P, = A(r Z)
Similarly Q,; =0 requires
2 4
(D:9). —— 9 + 5 9. + Klo. =B(r, 2),

where A and B are arbitrary functions of r and z. But (5.3)
and (5.4) show that

vAT = —rQ, -and BT =1Q,.
That is

(Dz (P)r <P00+ cpzz _l— kch == TQ / (5'5)

(D), — = cp,z + :17 9, + k¥, = rQ,T. (5.6)
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The equations (5.1), (5.2), (5.5) and (5.6) are four equations to

determine @, P and Q corresponding to (3 10) — (3.13’) in the
steady case. They are not independent since P,, = P,, requires

,l, Dy =f'(9) ,

and then (5.1) and (5.2) give

o (71 @) — f(g) = PT*

Thus we have four equations to determine four unknown func-

tions ¢, P, Q, and f.

As in the steady case we shall consider the different forms of ¢

A. Let ¢ be linear in z.
¢ = F(r, 8)z 4+ G(r, 9) .

F and G satisfy the ebuations (4 2) and (4,3), and both are
satisfied if F' =0, i.e,

¢ = G(‘r, 9) .
Then we can easily obtain
Pz = Pr =0 )
i.e. P is a function of § and # only.
Qr = 0 s
- Qz =¥r (Grrr Grr + G + Gree + kQG ) (5'7)
Now Q,, — Q,, = 0 requires
Gro—= G+ 5 G, + 4 Gy + BG, =ClO)r,  (58)

where C(0) is arbitrary. But Q,4==0 also requires C'=0,
hence C is an absolute constant.
To solve the equation (5.8) we assume

Gr()ﬁ =u Gr ’ (59

where P is an arbitrary constant.
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(i) If p is positive, let p = m? Then (5.9) gives
G, =Aem™  Bem0,
where A, B are arbitrary functions of r, and (5.8) requires
rA" — rA" 4+ (1 + m® + k**)A =0,
PB" — rB + (1 4 m? 4 &2r%)B = 0,
and C=0.

If we write A =ra, where o is a function of r, we see
that both A and B satisfy the equation

ra 4 ro’ 4 (k2% + m?) @ = 0,

whose solution is expressed in terms of Bessel’s functions of
imaginary order :

a= 1 A o Juilkr) + e ilkr)
LB = d,J,ulkr) + Y pulhr)
Henece
b= TG, = e vk {’[CJJmi(k’)+02Ymi(k’)]eme +
rld, Jnikr)+dyY (kY™ (5.10)
1

vi=0v;=0, vy=— - Y, .

(ii) If p is negative, let 4 = — m® Then (5.9) gives

G, = A cos m§ + Bsinmb,
where A, B are arbitrary functions of r, and (5.8) requires
PA"— A+ (L —m 4 kD A=0,
rPB" —rB" (1l —m?+ k%) B =0,
and C=0.

Again by writing A = ra we prove that A and B satisfy
the equation J

ra’ 4 ra’ 4 (k2r2 — m?) a=0,
w= LA =] (ke) + eaY,, k),

LB — 4], kr) + .Y, (k).
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Hence
$, = TG, = e~ Ykt {r(cr)m + c2Y,,) cos mb +
r(di )+ dyY,,) sin mf }, (5.11)
vy =0y =0, ‘032—7’-1’r-

(iii) If p =0, (5.9) gives
G, = Ae8 + B,
where A, B are arbitrary functions of r, and (5.8) requires
rPA" —rA"+ (14 k) A =0,
r*B" —rB" + (1 + k%) B =Cr3.
The substitution A = ra transforms the first equation into
r’e’ + ra” 4 k%l = 0.
Hence
A=ra= reiJo (kr) 4 &2, (kr)] ,
B = r[di], (kr) + d,Y, (kr) 4B (7)] ,
where f(r) is a particular solution of
r2a” +ra’ + k%% = Cr?,
(r) =Clk*=a constant.

Hence
b, = TG, = e™"¥*¢ {r [c, ]y (kr) + ;Y (kr)] O +
r[diJo (kr) + dyYo (kr) + C/kZ]} . (5.12)

~ In all three cases above the pressure is given by

: % +Q=—vCz-e™* + K@) © (5.13)

If F=~0, we obtain as in § 4.A (i)
¢ =(Art 4 B)z + £ Cri+ % Drt, (5.14)

where A, B, C, D are arbitrary functions of 6.
Now the equations (5.1) and (5.2) give

4A2z -+ 2(AD — BC) =P,/T?,
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B2

Ar — = =P,T*.

P o=P,,=0 require A’ =B’ =0, and
(AD — BCy = 0.
Thus A =a, B = b, and aD’' — C’ = 0.

The equations (5.5) and (5.6) show that C =0, D =0.
Hence we obtain finally

b= [(ar® +8) z + % dr?] eV, (5.15)

where a, b, d are constants, and the solution does not depend
on 0.

The pressure is given by
—’; + Q= [Qva -+ vk? (% ar? 4+ b log r — az®— dz)]-e""" f
1 2.2 bz 2,2 -2Vk t
—(—Q—ar+2—r,—|—?az + 2adz| e + K (6, o).

The solutions (5.10), (5.11), (5.12) and (5.15) are some cases
of the solutions of the equations of motion in the non-steady
case, in the form ¢ = T-¢ (r, 8, 2). They are not the only so- -
lutions, since one may replace the condition (5.9) by any other,
and also the expression for ¢ may not be linear in z.
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