

Konuralp Journal of Mathematics

Research Paper https://dergipark.org.tr/en/pub/konuralpjournalmath e-ISSN: 2147-625X

On Some Operators Generated by G-Method and Stack

Esra Dalan Yıldırım $¹$ </sup>

¹Department of Mathematics, Faculty of Science and Letters, Yaşar University, İzmir, Turkey

Abstract

In this paper, two operators $\varphi^G_{\mathscr{S}}, \Psi^G_{\mathscr{S}}$ are introduced by using *G*-method and stack, and a strong generalized topology $\tau^G_{\mathscr{S}}$ which is finer than *G*- generalized topology is obtained via the operator $\Psi_{\mathscr{S}}^G$. In addition, two new operators $\Gamma_{\mathscr{S}}^G$, Ψ_{Γ}^G are defined and a new strong generalized topology $\sigma_{\mathcal{J}}^G$ is attained by Ψ_{Γ}^G . Basic properties of these operators are investigated and the relationships between these two strong topologies obtained and *G*-generalized topology are examined.

Keywords: stack, G-method, G-closure, strong generalized topology 2010 Mathematics Subject Classification: 54A05, 54A10, 54A20

1. Introduction

The concept of sequential convergence is an substantial research subject in many branches of mathematics. Many types of convergence as a generalization of convergence have been studied by many researchers in different spaces (see $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$ $[1, 7, 17, 18, 21]$). Connor and Grosse-Erdmann [\[2\]](#page-4-5) introduced *G*-methods defined on a linear subspace of the vector space of all real sequences by using linear functional *G*. Also, they defined *G*-convergence and *G*-continuity with the help of *G*-method. Cakallı [\[5,](#page-4-6) [6\]](#page-4-7) defined *G*-sequential compactness, *G*-sequential continuity and *G*-sequential connectedness by extending the concepts to topological groups which satisfy the first axiom of countability. Mucuk and Sahan^{[\[12\]](#page-4-8)} gave a further investigation of *G*-sequential continuity these groups. Recently, Lin and Liu [\[14\]](#page-4-9) introduced *G*-method and *G*-convergence in arbitrary sets and investigated the operators of *G*-hull, *G*-closure, *G*-kernel and *G*-interior. They defined *G*-generalized topology induced by *G*-methods. Thus, they expanded and enhanced some results for *G*-method on first countable topological groups. After than many studies on the *G*-method have done by Liu and the others in the light of the given paper(see [\[8,](#page-4-10) [15,](#page-4-11) [16,](#page-4-12) [20\]](#page-4-13)).

The concept of stack like the concept of sequential convergence play an important role in many branches of mathematics such as topology, logic, measure theory. Grimeisen [\[13\]](#page-4-14) and Thron [\[19\]](#page-4-15) introduced the stack on a set. Later, many researchers as Hosny[\[9\]](#page-4-16), Hosny and Al-Kadi^{[\[10\]](#page-4-17)} and Min and Kim^{[\[11\]](#page-4-18)} have studied on stacks.

In this paper, we introduce two operators $\varphi^G_{\mathscr{S}}, \Psi^G_{\mathscr{S}}$ by using *G*-method and stack. Then, we investigate basic properties of them and generated a strong generalized topology which is finer than *G*-generalized topology via the operator $\Psi_{\mathscr{S}}^G$. Also, we define new two operators $\Gamma_{\mathscr{S}}^G$, Ψ_{Γ}^G and characterize them. Then, we obtain another strong generalized topology with the help of Ψ^{*G*}. In particular, we investigated when these two strong generalized topologies could be equal to *G*-generalized topology. We also gave various counter examples for supporting the study.

2. Preliminaries

Let *X* be a set and *s*(*X*) denotes the set of all *X*-valued sequences, i.e. $\mathbf{x} \in S(X)$ if and only if $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ is a sequence with each $x_n \in X$. If $f: X \to Y$ is a mapping, then $f(x) = \{f(x)\}_{n \in \mathbb{N}}$ for each $x \in s(X)$. If X is a topological space, $c(X)$ denotes the set of all X-valued convergent sequences. Throughout the paper, all topological spaces are assumed to satisfy the *T*2-separation property.

Definition 2.1. *[\[14\]](#page-4-9) Let X be a set .*

- *1. A method on X is a function G :* $c_G(X) \to X$ *defined on a subset* $c_G(X)$ *of s(X)*.
- *2. A sequence* $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ *in X is said to be G-convergent to* $l \in X$ *if* $\mathbf{x} \in c_G(X)$ *and* $G(\mathbf{x}) = l$ *.*

Definition 2.2. *[\[14\]](#page-4-9) Let X be a topological space.*

- *I. A method* $G: c_G(X) \to X$ *is called regular if* $c(X) \subseteq c_G(X)$ *and* $G(x) = \lim x$ *for each* $x \in c(X)$ *.*
- 2. A method $G : c_G(X) \to X$ is called subsequential if, whenever $x \in c_G(X)$ is G-convergent to $l \in X$, then there exists a subsequence $x' \in c(X)$ *of* x *with* $\lim x' = l$.

Email addresses: esra.dalan@yasar.edu.tr (Esra Dalan Yıldırım)

Definition 2.3. *[\[14\]](#page-4-9) Let X be a set, G be a method on X and A* \subseteq *X*.

- *1. A is called a G-closed set of X if whenever* $x \in s(A) \cap c_G(X)$ *, then* $G(x) \in A$ *.* $X \setminus A$ *is a G-open set if A is a G-closed set.*
- 2. The G-closure of A is defined as the intersection of all G-closed sets containing A, and the G-closure of A is denoted by \overline{A}^G . The *G*-interior of A is defined as the union of all G-open sets contained in A, and the G-interior of A is denoted by $A^{\circ G}$.

Lemma 2.4. *[\[14\]](#page-4-9) Let X be a topological space.*

- *1. If G is a regular method on X, then every G-closed set of X is sequentially closed.*
- *2. If G is a subsequential method on X, then every sequentially closed set of X is G-closed.*

Definition 2.5. *[\[14\]](#page-4-9) Let G be a method on a topological space X. X is said to be a G-sequential space if every G-closed set in X is closed.*

Proposition 2.6. *[\[14\]](#page-4-9) Let G be a method on a set X and A* \subseteq *X. Then x* \in \overline{A}^G *if and if every subset U of X with x* \in $U^{\circ G}$ *intersects A.*

Definition 2.7. [\[14\]](#page-4-9) Let X be a set, G be a method on X and $Y \subseteq X$. Put $c_{G|Y}(Y) = \{x \in s(Y) \cap c_G(X) : G(x) \in Y\}$. The function $G|_Y: c_{G|Y}(Y) \to Y$ is called the submethod of G on Y.

Definition 2.8. [\[14\]](#page-4-9) Let G be a method on a set X. The family $\tau_G = \{U \subseteq X : U \text{ is } G\text{-open in } X\}$ is a generalized topology on X and it is *called the G-generalized topology on X.*

Definition 2.9. *[\[13,](#page-4-14) [19\]](#page-4-15)* A collection $\mathscr S$ of the subsets of a set X is called a stack if $A \in \mathscr S$ *whenever* $B \in \mathscr S$ and $B \subseteq A$. A stack is proper if $\emptyset \notin \mathscr{S}$.

Definition 2.10. [\[3,](#page-4-19) [4\]](#page-4-20) Let X be a nonempty set and μ be a collection of subsets of X. μ is called a generalized topology on X if and only if /0 ∈ µ *and* µ *is closed under arbitrary unions. Moreover, if X* ∈ µ *then* µ *is called a strong generalized topology.*

3. The Operator $\varphi^G_{\mathscr{S}}$ S

Definition 3.1. *Let G be a method and* \mathscr{S} *be a stack on a set X. For* $A \subseteq X$ *, we define the following operator:*

 $\varphi_{\mathscr{S}}^G(A) = \{x \in X : A \cap U \in \mathscr{S} \text{ for every } G\text{-open set } U \text{ containing } x\}.$

Proposition 3.2. Let G be a method and \mathscr{S} , \mathscr{S}_1 , \mathscr{S}_2 be three stacks on a set X. For A, $B \subseteq X$, the following statements hold:

- *I*. $A \subseteq B$ implies $\varphi_{\mathscr{S}}^G(A) \subseteq \varphi_{\mathscr{S}}^G(B)$. 2. $\mathscr{S}_1 \subseteq \mathscr{S}_2$ *implies* $\varphi_{\mathscr{S}_1}^G(A) \subseteq \varphi_{\mathscr{S}_2}^G(A)$ *.*
- 3. If $T \notin \mathcal{S}$, then $\varphi_{\mathcal{S}}^G(T) = \emptyset$.

Proof.

- 1. Let $x \notin \varphi_{\mathscr{S}}^G(B)$. Then, there exists a *G*-open set *U* containing *x* such that $B \cap U \notin \mathscr{S}$. Since $A \subseteq B$, we have $A \cap U \notin \mathscr{S}$. Thus, $x \notin \varphi_{\mathscr{S}}^G(A).$
- 2. Assume that $\mathscr{S}_1 \subseteq \mathscr{S}_2$. Let $x \notin \varphi_{\mathscr{S}_2}^G(A)$. Then, there is a *G*-open set *U* containing *x* such that $A \cap U \notin \mathscr{S}_2$. By hypothesis, we get $A \cap U \notin \mathscr{S}_1$. Hence $x \notin \varphi_{\mathscr{S}_1}^G(A)$.
- 3. Since $T \cap U \subseteq T$ and $T \notin \mathcal{S}$ for each *G*-open set *U* containing $x \in X$, we obtain $T \cap U \notin \mathcal{S}$. Thus, $\varphi_{\mathcal{S}}^G(T) = \emptyset$.

Proposition 3.3. *Let G be a method and* \mathscr{S} *be a proper stack on a set X. For A* \subset *X, the following statements hold:*

1.
$$
\varphi_{\mathscr{S}}^G(A) \subseteq \overline{A}^G
$$
.
2. $\varphi_{\mathscr{S}}^G(\varphi_{\mathscr{S}}^G(A)) \subseteq \varphi_{\mathscr{S}}^G(A)$.

Proof.

- 1. Let $x \notin \overline{A}^G$. Then, there exists a subset U of X with $x \in U^{\circ G}$ such that $U \cap A = \emptyset \notin \mathscr{S}$. Hence, we get $U^{\circ G} \cap A \notin \mathscr{S}$. Since $U^{\circ G}$ is *G*-open and $x \in U^{\circ G}$, we say $x \notin \varphi_{\mathscr{S}}^G(A)$.
- 2. Suppose that $x \in \varphi^G_{\mathscr{S}}(\varphi^G_{\mathscr{S}}(A))$. Then, we have $\varphi^G_{\mathscr{S}}(A) \cap U \in \mathscr{S}$ for every G-open set U containing x. That is, $\varphi^G_{\mathscr{S}}(A) \cap U \neq \emptyset$. Thus, there exists an element $y \in \varphi^G_{\mathscr{S}}(A) \cap U$. Since U is G-open set containing y and $y \in \varphi^G_{\mathscr{S}}(A)$, we get $A \cap U \in \mathscr{S}$. Hence, $x \in \varphi^G_{\mathscr{S}}(A)$.

The following examples show that the converse implications of Proposition $3.2(1)$ $3.2(1)$ and the equalities in Proposition $3.3(1)$ $3.3(1)$ and (2) are not true in general.

Example 3.4. Let's take the example of the G-method in [[\[14\]](#page-4-9), Example 2.13(1)]. Let *X* be the set of all integers. Put $c_G(X) = s(X)$ and $G: c_G(X) \to X$ is defined by $G(x) = 0$ for each $x = \{x_n\}_{n \in \mathbb{N}} \in c_G(X)$. Let $\mathcal{S} = \{S \subseteq X : 1 \in S\}$ be a stack on X. For $A = \{1,2\}$ and $B = \{3\}$, we have $\varphi_{\mathscr{S}}^G(A) = \{0,1\}$ and $\varphi_{\mathscr{S}}^G(B) = \emptyset$. Also, we get $\overline{A}^G = \{0,1,2\}$.

Example 3.5. *Let's take the example of G-method in [[\[14\]](#page-4-9), Example 7.4(1)]. Let X be the set of all integers with the discrete topology.* Put $c_{G_1}(X) = \{\{x_n\}_{n\in\mathbb{N}} \in S(X)$: there exists $m \in \mathbb{N}$ such that $\{x_n - x_{n-1}\}_{n>m}$ is a constant sequence $\}$. $G_1 : c_{G_1}(X) \to X$ is defined by $G_1(\mathbf{x}) = \lim_{n \to \infty} (x_{n+1} - x_n)$ for each $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}} \in c_{G_1}(X)$. Let $Y = 2\mathbb{N}$ be a space of X with $G_2 = G_1|_Y$ and $\mathscr{S} = \{S \subseteq Y : \{2,4\} \subseteq S\}$ *be a stack on Y. For* $A = \{0, 2, 4\}$ *, we have* $\varphi_{\mathscr{S}}^G(\varphi_{\mathscr{S}}^G(A)) = \emptyset \neq \varphi_{\mathscr{S}}^G(A) = \{0\}$ *.*

 \Box

 \Box

Remark 3.6. Note that $\varphi_{\mathscr{S}}^G(X) \subseteq X$ but the equality is not true in general. Moreover, there is no relationship between $\varphi_{\mathscr{S}}^G(A)$ and A for $A \subseteq X$. We can easily see that in Example [3.4](#page-1-2) because $\varphi_{\mathscr{S}}^G(X) = \{0,1\} \neq X$ and $\varphi_{\mathscr{S}}^G(\{1,2\}) = \{0,1\}$. Also, $\varphi_{\mathscr{S}}^G(\emptyset) = \emptyset$ for a proper stack S *.*

Proposition 3.7. Let G be a method and $\mathscr S$ be a stack on a set X. $\mathscr S$ is the superset of all G-open sets other than empty set if and only if $\varphi^G_{\mathscr{S}}(X) = X.$

Proof. It is clear.

Lemma 3.8. Let G be a method, $\mathscr S$ be a proper stack on a set X and $A \subseteq X$. If $A \cap U \notin \mathscr S$ for some G-open set U containing x, then $\varphi_{\mathscr{S}}^G(A) \cap U \notin \mathscr{S}$ *. Moreover,* $\varphi_{\mathscr{S}}^G(A) \cap U = \emptyset$ *.*

Proof. Let *U* be a *G*-open set containing *x* such that $A \cap U \notin \mathcal{S}$. Assume that $\varphi_{\mathcal{S}}^G(A) \cap U \in \mathcal{S}$. From here, $\varphi_{\mathcal{S}}^G(A) \cap U \neq \emptyset$. Then, there exists an element $y \in \varphi_{\mathscr{S}}^G(A) \cap U$. Since $y \in \varphi_{\mathscr{S}}^G(A)$ and *U* is *G*-open containing *y*, we have $A \cap U \in \mathscr{S}$. This contradicts our hypothesis. Thus, $\varphi_{\mathscr{S}}^G(A) \cap U \notin \mathscr{S}$. Similarly, it is shown that $\varphi_{\mathscr{S}}^G(A) \cap U = \emptyset$. \Box

Proposition 3.9. *Let G be a method and* $\mathscr S$ *be a proper stack on a set X. For A* \subseteq *X, the following statements hold:*

- *I.* $\varphi_{\mathscr{S}}^G(A)$ *is G-closed.*
- 2. *If A* is *G*-closed then $\varphi_{\mathscr{S}}^G(A) \subseteq A$.

Proof.

- 1. Let $x \notin \varphi_{\mathscr{S}}^G(A)$. Then, there exists a *G*-open set *U* containing *x* such that $A \cap U \notin \mathscr{S}$. From Lemma [3.8,](#page-2-0) we have $\varphi_{\mathscr{S}}^G(A) \cap U = \emptyset$. Since U is G-open, we get $x \notin \overline{\phi_{\mathscr{S}}^G(A)}^G$. This implies that $\overline{\phi_{\mathscr{S}}^G(A)}^G \subseteq \phi_{\mathscr{S}}^G(A)$. Thus, we get $\phi_{\mathscr{S}}^G(A) = \overline{\phi_{\mathscr{S}}^G(A)}^G$. That is, $\phi_{\mathscr{S}}^G(A)$ is *G*-closed.
- 2. Assume that A is G-closed and $x \notin A$. Then, $X \setminus A$ is G-open set containing x. Since $(X \setminus A) \cap A = \emptyset \notin \mathscr{S}$, we have $x \notin \varphi^G_{\mathscr{S}}(A)$.

Proposition 3.10. Let G be a method and $\mathscr S$ be a proper stack on a set X. For $A\subseteq X$, $\varphi^G_{\mathscr S}(A\cup\varphi^G_{\mathscr S}(A))=\varphi^G_{\mathscr S}(A)$.

Proof. By Proposition [3.2\(](#page-1-0)1), we have $\varphi_{\mathscr{S}}^G(A) \subseteq \varphi_{\mathscr{S}}^G(A \cup \varphi_{\mathscr{S}}^G(A))$. Let's show that the converse inclusion and $x \notin \varphi_{\mathscr{S}}^G(A)$. Then, there exists a G-open set U containing x such that $A \cap U \notin \mathscr{S}$. By Lemma [3.8,](#page-2-0) we get $\varphi_{\mathscr{S}}^G(A) \cap U = \emptyset$. Then, $(A \cup \varphi_{\mathscr{S}}^G(A)) \cap U = A \cap U \notin \mathscr{S}$. Thus, $x \notin \varphi_{\mathscr{S}}^G(A \cup \varphi_{\mathscr{S}}^G(A)).$ \Box

Theorem 3.11. Let G be a method and $\mathcal S$ be a proper stack on a set X.

$$
A \subseteq \varphi_{\mathscr{S}}^G(A) \text{ if and only if } \varphi_{\mathscr{S}}^G(A) = \overline{A}^G.
$$

Proof. Assume that $A \subseteq \varphi^G_{\mathscr{S}}(A)$. Since $\varphi^G_{\mathscr{S}}(A)$ is G-closed, we have $\overline{A}^G \subseteq \varphi^G_{\mathscr{S}}(A)$. Also, $\varphi^G_{\mathscr{S}}(A) \subseteq \overline{A}^G$ from Proposition [3.3\(](#page-1-1)1). Thus, $\overline{A}^G = \varphi_{\mathscr{S}}^G(A)$. The converse implication is clear from the definition of \overline{A}^G . \Box

Definition 3.12. Let G be a method and \mathscr{S} be a stack on a set X. For $A \subseteq X$, we define the following operator:

$$
\Psi_{\mathscr{S}}^G(A) = A \cup \varphi_{\mathscr{S}}^G(A).
$$

Proposition 3.13. *Let G be a method and* \mathcal{S} *be a stack on a set X. For* $A, B \subseteq X$ *, the following statements hold:*

- *I*. $A \subseteq B$ implies $\Psi_{\mathscr{S}}^G(A) \subseteq \Psi_{\mathscr{S}}^G(B)$.
- 2. $A \subseteq \Psi_{\mathscr{L}}^G(A)$.
- 3. $\Psi_{\mathscr{S}}^G(A \cap B) \subseteq \Psi_{\mathscr{S}}^G(A) \cap \Psi_{\mathscr{S}}^G(B)$ and $\Psi_{\mathscr{S}}^G(A) \cup \Psi_{\mathscr{S}}^G(B) \subseteq \Psi_{\mathscr{S}}^G(A \cup B)$.

Proof.

- 1. It is clear from the Proposition [3.2\(](#page-1-0)1).
- 2. It is obvious.
- 3. The proofs are obvious from Proposition [3.2\(](#page-1-0)1).

Proposition 3.14. Let G be a method and $\mathscr S$ be a proper stack on a set X. For $A \subseteq X$, $\Psi_{\mathscr S}^G(\Psi_{\mathscr S}^G(A)) = \Psi_{\mathscr S}^G(A)$.

Proof. $\Psi_{\mathscr{S}}^G(\Psi_{\mathscr{S}}^G(A)) = \Psi_{\mathscr{S}}^G(A \cup \phi_{\mathscr{S}}^G(A)) = (A \cup \phi_{\mathscr{S}}^G(A)) \cup \phi_{\mathscr{S}}^G(A \cup \phi_{\mathscr{S}}^G(A)).$ From Proposition [3.10,](#page-2-1) we have $\Psi_{\mathscr{S}}^G(\Psi_{\mathscr{S}}^G(A)) = A \cup \phi_{\mathscr{S}}^G(A) =$ $\Psi_{\mathscr{S}}^G(A).$ \Box

The following examples show that the equalities in Proposition [3.13](#page-2-2) are not true in general.

Example 3.15. Consider Example [3.5.](#page-1-3) For $A = \{2\}$ and $B = \{4\}$, we have $\varphi_{\mathscr{S}}^G(A) = \varnothing = \varphi_{\mathscr{S}}^G(B)$ and $\varphi_{\mathscr{S}}^G(A \cup B) = \{0\}$. Thus, $\Psi_{\mathscr{S}}^G(A) \cup \varnothing$ $\Psi_{\mathscr{S}}^G(B) = \{2,4\} \neq \Psi_{\mathscr{S}}^G(A \cup B) = \{0,2,4\}.$

 \Box

 \Box

 \Box

Example 3.16. Let $X = \{a,b,c,d\}$ and $\mathcal{S} = \{\{a,c\},\{a,b,c\},\{a,c,d\},\{a,b,d\},\{c,d\},\{b,c,d\},X\}$ be a stack on X. Put $c_G(X) = s(X)$ and $G: c_G(X) \to X$ is defined by $G(x) = d$ for each $x \in c_G(X)$. For $A = \{a, c\}$ and $B = \{c, d\}$, we have $\varphi_{\mathscr{S}}^G(A) = \{d\} = \varphi_{\mathscr{S}}^G(B)$. Hence, $\Psi_{\mathscr{S}}^G(A) \cap \Psi_{\mathscr{S}}^G(B) = \{c,d\} \neq \Psi_{\mathscr{S}}^G(A \cap B) = \{c\}.$

Remark 3.17. *Note that* $\Psi_{\mathscr{S}}^G(X) = X$ *. Also, for a proper stack,* $\Psi_{\mathscr{S}}^G(\emptyset) = \emptyset$ *since* $\varphi_{\mathscr{S}}^G(\emptyset) = \emptyset$ *.*

Theorem 3.18. Let G be a method and $\mathscr S$ be a proper stack on a set X.

$$
\tau_{\mathcal{S}}^G = \{ H \subseteq X : \Psi_{\mathcal{S}}^G(X \backslash H) = X \backslash H \}
$$

is a strong generalized topology on X with $\tau_G \subseteq \tau_{\mathscr{S}}^G.$

Proof. From Remark [3.17,](#page-3-0) we have $\emptyset, X \in \tau_{\mathscr{S}}^G$. Let $H_i \in \tau_{\mathscr{S}}^G$ for $i \in I$. $\Psi_{\mathscr{S}}^G(X \cup_{i \in I} H_i) = (X \setminus \cup_{i \in I} H_i) \cup \phi_{\mathscr{S}}^G(X \setminus \cup_{i \in I} H_i) = X \setminus \cup_{i \in I} H_i$ since $\varphi_{\mathscr{S}}^G(X\setminus \cup_{i\in I} H_i) \subseteq \varphi_{\mathscr{S}}^G(X\setminus H_i) \subseteq X\setminus H_i$. From here, $\cup_{i\in I} H_i \in \tau_{\mathscr{S}}^G$. Thus, $\tau_{\mathscr{S}}^G$ is a strong generalized topology on X. Also, let $U \in \tau_G$. Then, $X \setminus U$ is G-closed. From Proposition [3.9\(](#page-2-3)2), $\varphi^G_{\mathscr{S}}(X \setminus U) \subseteq X \setminus U$. Thus, $\Psi^G_{\mathscr{S}}(X \setminus U) = X \setminus U$. That is, $U \in \tau^G_{\mathscr{S}}$ and $\tau_G \subseteq \tau^G_{\mathscr{S}}$.

Example 3.19. Consider Example [3.4,](#page-1-2) we obtain $\tau_{\mathscr{S}}^G = \{X\} \cup \{U \subseteq X : 0 \notin U\} \cup \{H \subseteq X : 1 \in H\}$ such that $\tau_G \subseteq \tau_{\mathscr{S}}^G$.

The following example shows that $\tau_{\mathscr{S}}^G$ is not a topology in general.

Example 3.20. Let $X = \{a,b,c,d\}$ and $\mathcal{S} = \{\{a,c\}, \{a,b,c\}, \{a,c,d\}, X\}$ be a stack on X. Consider the G-method in Example [3.16.](#page-3-1) For $A = \{a, d\}$ *and* $B = \{c, d\}$ *, we have* $A, B \in \tau_{\mathscr{S}}^G$ *but* $A \cap B \notin \tau_{\mathscr{S}}^G$ *.*

Theorem 3.21. Let G be a method and $\mathscr S$ be a proper stack on a set X. For $H \in \tau_{\mathscr S}^G$, $H = \cup(V\setminus T)$ for G-open set V and $T \notin \mathscr S$.

Proof. Firstly, we must show that $V \setminus T \in \tau_{\mathscr{S}}^G$ for G-open set V and $T \notin \mathscr{S}$. For this, let's prove $\varphi_{\mathscr{S}}^G(X \setminus (V \setminus T)) \subseteq (X \setminus (V \setminus T))$. Let $x \in \varphi^G_{\mathscr{S}}((X \setminus V) \cup T)$. Then, for each G-open set U containing x such that $((X \setminus V) \cup T) \cap U = ((X \setminus V) \cap U) \cup (T \cap U) \in \mathscr{S}$. If $(X \setminus V) \cap U = \emptyset$ then $T \cap U \in \mathscr{S}$. That is, $T \in \mathscr{S}$. This is a contradiction. In that case, $(X \setminus V) \cap U \neq \emptyset$. Since *U* is *G*-open, $x \in U = U^{\circ G}$. From here, $x \in \overline{(X \setminus V)}^G = (X \setminus V) \subseteq (X \setminus V) \cup T$. Thus, $V \setminus T \in \tau_{\mathscr{S}}^G$ for G-open set V and $T \notin \mathscr{S}$. Let $x \in H \in \tau_{\mathscr{S}}^G$. Then, $x \notin \varphi_{\mathscr{S}}^G(X \setminus H)$ and there exists *G*-open set *V* containing *x* such that $V \cap (X \setminus H) \notin \mathcal{S}$. Say $T = V \cap (X \setminus H)$. Then, $x \in V \setminus T \subseteq H$.

Corollary 3.22. Let G be a method and $\mathscr{S} = \mathscr{P}(X) \setminus \{0\}$ be a stack on a set X. Then, $\tau_G = \tau_{\mathscr{S}}^G$.

Corollary 3.23. Let G be a method and $\mathscr S$ be a proper stack on a topological space (X, τ) .

- *1.* If G is a subsequential method, then every sequentially closed set is $\tau_{\mathscr{S}}^G$ -closed. In addition, if X is first countable space, then every *closed set is* τ^{*G*}_{*S*}-*closed.*
- 2. If G is regular method and $\mathscr{S} = \mathscr{P}(X)\setminus\{\emptyset\}$, then every $\tau_{\mathscr{S}}^G$ -closed is sequentially closed. In addition, if X is first countable space, *then every* $\tau_{\mathscr{S}}^G$ -closed set is closed .
- *3.* If G is regular subsequential method and $\mathscr{S} = \mathscr{P}(X)\setminus\{0\}$, then sequentially closed sets coincide with $\tau_{\mathscr{S}}^G$ -closed sets. In addition, if X *is first countable space then closed sets coincide with* $\tau_{\mathscr{S}}^G$ *-closed sets.*

4. The Operator Γ *G* S

Definition 4.1. *Let G be a method and* $\mathscr P$ *be a stack on a set X. For A* \subset *X, we define the following operator:*

 $\Gamma_{\mathscr{S}}^G(A) = \{x \in X : A \cap \overline{U}^G \in \mathscr{S} \text{ for each G-open set U containing x}\}.$

Lemma 4.2. Let G be a method and $\mathscr S$ be a stack on a set X. For $A \subseteq X$, $\varphi_{\mathscr S}^G(A) \subseteq \Gamma_{\mathscr S}^G(A)$.

Proof. Let $x \in \varphi^G_{\mathscr{S}}(A)$. Then, for each G-open set U containing x, we have $A \cap U \in \mathscr{S}$. Since $A \cap U \subseteq A \cap \overline{U}^G$, we have $A \cap \overline{U}^G \in \mathscr{S}$. Thus, $x \in \Gamma_{\mathscr{S}}^G(A).$ П

The equality in Lemma [4.2](#page-3-2) may not be hold in general.

Example 4.3. *Consider Example [3.16.](#page-3-1) For* $A = \{c, d\}$ *, we have* $\varphi_{\mathscr{S}}^G(A) = \{d\} \neq \Gamma_{\mathscr{S}}^G(A) = \{c, d\}$.

Proposition 4.4. *Let G be a method and* $\mathscr{S}, \mathscr{S}_1, \mathscr{S}_2$ *be three stacks on a set X. For A,B* \subseteq *X, the following statements hold:*

- *I*. *A* \subseteq *B* implies $\Gamma_{\mathscr{S}}^G(A) \subseteq \Gamma_{\mathscr{S}}^G(B)$.
- 2. $\mathscr{S}_1 \subseteq \mathscr{S}_2$ *implies* $\Gamma_{\mathscr{S}_1}^G(A) \subseteq \Gamma_{\mathscr{S}_2}^G(A)$ *.*
- 3. If $T \notin \mathcal{S}$, then $\Gamma_{\mathcal{S}}^G(T) = \emptyset$.

Proof.

- 1. Let $x \notin \Gamma_{\mathscr{S}}^G(B)$. Then, there exists a G-open set U containing x such that $B \cap \overline{U}^G \notin \mathscr{S}$. Since $A \cap \overline{U}^G \subseteq B \cap \overline{U}^G$, we have $A \cap \overline{U}^G \notin \mathscr{S}$. Thsu, $x \notin \Gamma_{\mathscr{S}}^G(A)$.
- 2. Assume that $\mathscr{S}_1 \subseteq \mathscr{S}_2$. Let $x \notin \Gamma_{\mathscr{S}_2}^G(A)$. Then, there is a *G*-open set *U* containing *x* such that $A \cap \overline{U}^G \notin \mathscr{S}_2$. By hypothesis, we get $A \cap \overline{U}^G \notin \mathscr{S}_1$. Hence $x \notin \Gamma_{\mathscr{S}_1}^G(A)$.
- 3. Since $T \notin \mathscr{S}$ and $T \cap \overline{U}^G \subseteq T$ for each G-open set U containing $x \in X$, we have $T \cap \overline{U}^G \notin \mathscr{S}$. Thus, $x \notin \Gamma_{\mathscr{S}}^G(T)$ i.e. $\Gamma_{\mathscr{S}}^G(T) = \emptyset$.

The following example shows that the converse implication of Proposition [4.4\(](#page-3-3)1) is not true in general.

Example 4.5. Consider Example [3.16.](#page-3-1) For $A = \{a, c\}$ and $B = \{c, d\}$, we have $\Gamma_{\mathscr{S}}^G(A) = \{d\} \subseteq \Gamma_{\mathscr{S}}^G(B) = \{c, d\}$ but $A \nsubseteq B$.

Remark 4.6. *Note that, there is no relationship between* $\Gamma_{\mathscr{S}}^G(A)$ *and A. For instance, if we take the stack* $\mathscr{S} = \{S \subseteq X : 0 \in S\}$ *in Example* [3.4,](#page-1-2) we have $\Gamma^G_{\mathscr{S}}(A) = X$ and $\Gamma^G_{\mathscr{S}}(B) = \emptyset$ for $A = \{0,1\}$ and $B = \{2\}$. Moreover, $\Gamma^G_{\mathscr{S}}(X) \subseteq X$ but the equality is not true in general. We can *see that in Example* [3.4,](#page-1-2) *since* $\Gamma_{\mathscr{S}}^G(X) = \{0,1\} \neq X$. Also, for a proper stack, $\Gamma_{\mathscr{S}}^G(\emptyset) = \emptyset$.

Lemma 4.7. Let G be a method and $\mathscr S$ be a proper stack on a set X and let A \subseteq X. If A $\cap\overline{U}^G\notin\mathscr S$ for some G-open set U containing x, $then \Gamma_{\mathscr{S}}^G(A) \cap U \notin \mathscr{S}$ *. Moreover,* $\Gamma_{\mathscr{S}}^G(A) \cap U = \emptyset$ *.*

Proof. Let *U* be a *G*-open set containing *x* such that $A \cap \overline{U}^G \notin \mathscr{S}$. Assume that $\Gamma_{\mathscr{S}}^G(A) \cap U \in \mathscr{S}$. From here, $\Gamma_{\mathscr{S}}^G(A) \cap U \neq \emptyset$. Then, there exists an element $y \in U$ and $y \in \Gamma_{\mathscr{S}}^G(A)$. From here, $A \cap \overline{U}^G \in \mathscr{S}$. This is a contradiction. Hence, $\Gamma_{\mathscr{S}}^G(A) \cap U \notin \mathscr{S}$. Analogously, $\Gamma_{\mathscr{S}}^G(A) \cap U = \emptyset.$

Proposition 4.8. Let G be a method and \mathscr{S} be a proper stack on a set X. For $A \subseteq X$, $\Gamma_{\mathscr{S}}^G(A)$ is G-closed.

Proof. Let $x \notin \Gamma_{\mathscr{S}}^G(A)$. Then, there exists a G-open set U containing x such that $A \cap \overline{U}^G \notin \mathscr{S}$. From Lemma [4.7,](#page-4-21) we have $\Gamma_{\mathscr{S}}^G(A) \cap U = \emptyset$. Since $x \in U = U^{\circ G}$, we get $x \notin \overline{\Gamma_{\mathscr{S}}^G(A)}^G$. Thus, $\overline{\Gamma_{\mathscr{S}}^G(A)}^G \subseteq \Gamma_{\mathscr{S}}^G(A)$. That is, $\Gamma_{\mathscr{S}}^G(A)$ is *G*-closed. \Box

Remark 4.9. Note that $\Gamma^G_{\mathscr{S}}(A) \cup \Gamma^G_{\mathscr{S}}(B) \subseteq \Gamma^G_{\mathscr{S}}(A \cup B)$ and $\Gamma^G_{\mathscr{S}}(A \cap B) \subseteq \Gamma^G_{\mathscr{S}}(A) \cap \Gamma^G_{\mathscr{S}}(B)$ from Proposition [4.4\(](#page-3-3)1). But the equalities may not be hold in general. Consider Example [3.16.](#page-3-1) For $A = \{c\}$ and $B = \{d\}$, we have $\Gamma^G_{\mathscr{S}}(A) \cup \Gamma^G_{\mathscr{S}}(B) = \emptyset \neq \Gamma^G_{\mathscr{S}}(A \cup B) = \{c, d\}$. Also, for $A = \{a, c\}$ and $B = \{c, d\}$, we have $\Gamma_{\mathscr{S}}^G(A) \cap \Gamma_{\mathscr{S}}^G(B) = \{d\} \neq \Gamma_{\mathscr{S}}^G(A \cap B) = \emptyset$.

Definition 4.10. *Let G be a method and* $\mathcal S$ *be a stack on a set X. For A* \subseteq *X*, we define the following operator:

$$
\Psi_{\Gamma}^G(A) = X \backslash \Gamma_{\mathscr{S}}^G(X \backslash A).
$$

Proposition 4.11. Let G be a method and $\mathscr S$ be a stack on a set X. For $A, B \subseteq X$, $A \subseteq B$ implies $\Psi_{\Gamma}^G(A) \subseteq \Psi_{\Gamma}^G(B)$.

Proof. It is clear from Proposition [4.4\(](#page-3-3)1).

Proposition 4.12. Let G be a method and $\mathscr S$ be a proper stack on a set X. For $A\subseteq X$, $\Psi_{\Gamma}^G(A)$ is G-open.

Proof. By Proposition [4.8,](#page-4-22) it is obvious.

Theorem 4.13. Let G be a method and \mathcal{S} be a proper stack on a set X.

$$
\sigma_{\mathscr{S}}^G = \{ H \subseteq X : H \subseteq \Psi_{\Gamma}^G(H) \}
$$

is a strong generalized topology on X with $\sigma_{\mathscr{S}}^G \subseteq \tau_{\mathscr{S}}^G.$

Proof. Since $\Psi_{\Gamma}^{G}(X) = X \setminus \Gamma_{\mathcal{S}}^{G}(X \setminus X) = X \setminus \Gamma_{\mathcal{S}}^{G}(0) = X \setminus 0 = X$ and $0 \subseteq \Psi_{\Gamma}^{G}(0)$, we have $X, 0 \in \sigma_{\mathcal{S}}^{G}$. Let $H_i \in \sigma_{\mathcal{S}}^{G}$ for $i \in I$. From Proposition [4.11](#page-4-23) and our hypothesis, $H_i \subseteq \Psi_{\Gamma}^G(H_i) \subseteq \Psi_{\Gamma}^G(\cup_{i \in I} H_i)$ for every $i \in I$. Hence, $\cup_{i \in I} H_i \subseteq \Psi_{\Gamma}^G(\cup_{i \in I} H_i)$. Thus, $\cup_{i \in I} H_i \in \sigma_{\mathscr{S}}^G$. This shows that $\sigma_{\mathscr{S}}^G$ is a strong generalized topology. Also, by Lemma [4.2,](#page-3-2) we have $\sigma_{\mathscr{S}}^G \subseteq \tau_{\mathscr{S}}^G$.

Corollary 4.14. Let G be a method and $\mathscr S$ be a proper stack on a set X. If each G-open set in X is also G-closed then $\sigma_{\mathscr S}^G=\tau_{\mathscr S}^G$.

References

- [1] J. Connor, The statistical and strong p-Ces ´*a*ro convergence of sequences, Analysis, Vol: 8, No: 1-2, (1988), 47- 64.
- [2] J. Connor and K. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math., Vol: 33, No: 1, (2003), 93- 122.
- [3] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., Vol: 96, (2002), 351- 357.
- [4] Á. Császár, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., Vol: 47, (2004), 91-96.
- $[5]$ H. Cakallı, Sequential definitions of compactness, App. Math. Lett., Vol: 21, No: 6, (2008), 594- 598.
- [6] H. Çakallı, Sequential definitions of connectedness, App. Math. Lett., Vol: 25, (2012), 461-465
- [7] G. Di Maio and Lj. D. R. Kočinac, Statistical convergence in topology, Topology Appl., Vol: 156, No: 1, (2008), 28-45.
- [8] F. Gürcan and A. Çaksu Güler, On connectedness via a G-method and a hereditary class, Konuralp Journal of Mathematics, Vol: 8, No: 2, (2020), 370-375. [9] R. A. Hosny, Modification of soft topology via soft stacks, Information, Vol: 19, No: 10, (2016), 4623- 4632.
-

[10] R. A. Hosny and D. Al-Kadi, Supra soft topology generated from soft topology via soft stack, South Asian Journal of Mathematics, Vol: 7, No: 1, (2017), 25-33. [11] W. Min and Y. K. Kim, Operators induced by stacks on a topological space, International Journal of Pure and Applied Mathematics, Vol: 78, No: 6,

- (2012), 887- 894.
- [12] O. Mucuk and T. Şahan, On *G*-sequential continuity, Filomat, Vol: 28, No: 6, (2014), 1181-1189.
- [13] G. Grimeisen, Gefilterte summation von filtern and iterierte grenzproesse, Math. Annalen I, Vol: 141, (1960), 318- 342.
- [14] S.Lin and L. Liu, *G*-methods, *G*-sequential spaces and *G*-continuity in topological spaces, Topology Appl., Vol: 212, (2016), 29-48.
- [15] L. Liu, *G*-derived sets and *G*-boundary, J. Yangzhou Univ. Nat. Sci., Vol: 20, No: 1, (2017), 18- 22.
- [16] L. Liu, *G*-kernel-open sets, *G*-kernel-neighborhoods and *G*-kernel derived sets, Journal of Mathematical Research with Appl., Vol: 38, No: 3, (2018), 276- 286. [17] V. Renukadevi and B. Prakash, Some characterizations of spaces with weak form of cs-networks, J. Math. Res. Appl., Vol: 36, No: 3, (2016), 369- 378.
- [18] Z.Tang and F. Lin, Statistical versions of sequential and Fr ´*e*chet-Urysohn spaces, Adv. Math., Vol: 44, No: 6, (2015), 945-954.
- [19] W.J.Thron, Proximity structures and grills, Math. Ann., Vol: 206, No: 4, (1973), 35- 62.
- [20] Y. Wu and F. Lin, The *G*-connected property and the *G*-topological groups, Filomat, Vol: 33, No: 14, (2019), 4441- 4450.
- [21] A. Zygmund, Trigonometric series, Cambridge Univ. Press, New York, (1959).

 \Box

 \Box