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Acceleration Axes in Spatial Kinematics II.
by
H. HILMI HACISALIHOGLU*

Ankara Fen Fakiiltesi

ABSTRACT

In this paper we derived the geometric properties of three acceleration axes in R®.
The velocity and acceleration distributions corresponding to the axes are derived. Finally
we discuss the special cases.

1. INTRODUCTION

Acceleration axes in spherical kinematics are discussed in
the paper of Bottema [1]. In spatial kinematics, the location and
reality are derived in one of the author’s papers [2]. This paper
is a continuation of [2]. In section II geometric properties of
these axes, the velocity and acceleration distributions correspon-
ding to the axes are derived.

In section III, we discuss the special cases.
For the basic concepts and all of our notations we refer the
paper [2].
II. CONFIGURATION OF THE ACCELERATION AXES

The three acceleration axes l; are determined by the twelve
Pliicker line coordinates of

—>% — —

O T A R P
W=—=— andF = —=— (21
v ¥ v v

* Cebir-Geometri Kiirsiisii, Ankara Universitesi Fen Fakiiltesi.
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Since these coordinates must verify the relations

)

W=1, F=1
and the real and dual parts of {(3-19),[2] } the number of confi-

gurations of these axes is at most o® A configuration of axes
contains in general three skew lines. Now we shall try to obtain
some properties of any configuration of three skew acceleration
axes.

Leaving for section III the special case in which an acceler-
ation axis is orthogonal to the instantaneous axis of rotation, we
suppose that the three axes are real and distinct, and we define
the orientation of the line I; by the condition that its pesitive di-
rection shall make a dual angle

@i = ei + Ee*i
. - .
with W, such that 8, is an acute angle. With this orientation we

define the unit vector \—;i which corresponds to I;, the endpoint
being S;. We denote the dual angle between the dual vectors
— —
V; and V; by

iy = 15 + 9%y

which, therefore, denote the dual length of the side S;S; of the
dual spherical triangle S S,S,.

Since the vectors Vi satisfy {(3-19), [2]} we have

<
<)
|
..e
)

=
I

A2V, — 0, (i=12,3). (2-2)

Taking the scalar product of the left-hand-side and \—7: , the
result is ;
AP cos T ;; — Y2 cos®; cos®; ~ ¥ (\_f: x Vj) = 0 (2-3)

and adding this to the analogous equation with i and j interchan-

ged we obtain



II. ACCELERATION AXES IN SPATIAL KINEMATICS 19
(A; + Aj) cosg;; = 2cos @) cosO; (2-4)
or as real and dual parts
(A; + 2;) coso;; = 2 cosh; cosh;

(A*;+2*;) cosg; ;-2 [0*; cosh, sind ;--0*;cos8 ;sin0; ] ) (2-5)
cp*ij =

2 cotg;; cosb; cosb;
In the case of i = j, since ¢;; = ¢*;; = 0, (2-4) gives

A; = cos? 0 (2-6)
and therefore we have
2%
7\i = cos26i7 7\*i = - e*i sin 2ei or e*i = - . (2'7)
Sin29i

On the other hand from {(3-21), [2]} we may write

A+ A+ A3=1
A, + AAs + AA; = K (2-8)
AA A = Keos’y

where the first equation gives a simple geometrical meaning of
the dual roots of {(3-21), [2]} which yields the relation

3
2 cos? @; =1
i=l
3 3 (2-9)
or ¥ cos’0; = 1 and Z 0% sin20; =0
i=1 i=l1

for the angles and distances of W and the acceleration axes. The
second equation and first equation of (2-8) give another expres-
sion of k* as follows

3
Lo nt = - k* . (2-10)
i=1
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Comparing (2-10) and {(3-22), [2]} we may write

$* 1 ¢ 1 3
— e — % % (2-11)
o 2 ) 4k i=l
| *
where — is the pitch of the instantaneous helicoidal motion.

3

Hence if X 2; A*;= 0 i. e. in the cases b) and c) given before,

i=1

-
the pitch of the instantaneous motion whose axis is V' equals the
half of the pitch of the instantaneous motion whose axis is

—
¥. Also we may write

7\i )\*i - 29*'

: 3
; sin6; cos’0;.

Eventually the third equation of (2-8) gives the relation

— = 20* tga + X
k i=l A
where
= — 20% tgb,
A

1

Hence from {(3-22), [2]}, we have another expression

LI)* 1 4,* 3
_— = — [— —a* tgx+ T 0% tg0,]
¢ 2 $ i=l

for the pitch of the instantaneous helicoidal motion.

For the sake of brevity we write

ol

Ay = cos®; = U; = u; + eu*;.
Then it follows from (2-4) that

(2-12)

(2-13)
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s @y = (2-14)
Ui2+Uj2
and, therefore, we have
2uju; ity —uut \ v’ —u?
C0sQ;; = ——, %, = ————— sing;; = —. (2-15)
u’+u’ u’4-u’ u?+4u’

] ) J

Since U; # U, and 0; is an acute angle, ¢, ; also is an acute angle
i.e. 0 <cosg;; < 1.

From (2-15) ¢*;; = 0 implies that

(')i* tg(')j
6, tg0;

and ¢;; = 0 implies that
ei == ej.

Hence we conclude the following theorerﬁs:

Theorem 2-1.In the spatial motion H /H' the necessary and suf-
ficient condition for the intersection of any two acceleration
axes l; and I is that their minimal distances and slopes

>
with respect to the inistantaneous axis W of the motion
have an inverse ratio.

Theorem 2-2. In H/H' two acceleration axes [; and [ are
parallel if and only if their angles with the instantaneous
axis are equal.

In terms of U; there are similar expressions for the dual
angles of the dual spherical triangle S,S,S,, which ve denote by
Ai = (si + Esi*.

Then = — A, is the dual angle between common perpendiculars

Of (Vi’ VJ) and ( —‘Vti, —.‘71( ).

According to the cosine rule for a spherical triangle we may

write

COSQ 6 — COS j; COST
¢ cosA; = (2-16)

sin & ;; sing g
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Where sin &5 ,;, from (2-14), is

U2 — 072
sin® &, = — (2-17)
U2 + U2
or according to (2-14) and (2-17)
cos’A; = cos’J (2-18)
and the real and dual parts of the last equality are
cos’ §; = cos’py, (2-19)
8*; Sin 28; = ¢*;. Sin 2¢y. (2-20)
Then (2-19) implies that
O = @ 0rd; + op = 7w . (2-21)
(2-20) and (2-21) give us
= ¢% - (2-22)

Thus we have the following theorem in conclusion:

Theorem 2-3. For three skew acceleration axes there are three
skew lines such that each of them is a common perpendicular
between a pair of axes. The angle between two of these common
perpendiculars is equal to, or the supplcment of, the angle
between the two acceleration axes which have the third
common perpendicular. The minimal distance of two common
perpendiculars is equal to the minimal distance of two acce-
leration axes which have the third common perpendicular.

From (2-14) and (2-18) we conclude that the triangle S;
S,S3 is neither right angled nor isosceles, but two of its angles are
equal to, and the third is the supplement of, the opposite side.
This is also a consequence of Delambre’s analogy in the triangle
S15,S; [1]. Hence there are the following theorems:

Theorem 2-4. The angle and minimal distance between any two
of three acceleration axes are different from the angle and
minimal distance of each other pair. ‘

Theorem 2-5. Any two of three common perpendiculars to two of
three acceleration axes can not be orthogonal.
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From (2-17) we can write the following relation for the dual
angles & ;;; ’

1 4 sing,, 1 -sing,, 1 4 sianZv

. =1 (2-23)
1 -sing,, 14 sing; 1 - sing,
or
sing,, + sing,, — sinp; = sing,, sng,, sings
P 120080, + §* 0080, — 9*31c08¢3; (2-24)

=sing,, sing,; sing,

P*1200t8P 1, 0%, ,c0tgp s+ 3100t ges)
| a) The Position of the Angular Velocity and Angular Acce-
celleration Vectors ¥ and ¥ with Respect to the Accelaration
Axes f;i :
In this section at first we shall prove the two following the-

orems:

Theorem 2-6. The common perpendicular to \—f: and W orthogo-

. — —
nally intersects the common perpendicular to V; and F.

Proof: The acceleration of a point on I; is

el

J,=-¥ V,4+ (V) ¥4+ ¥xV, (22)

The orthogonal directions to I; are
V.=%x V, (2-26)

where {7: = d{;i. According to the definition of I;, the orthogonal

—_
component to !; of J, is zero. Thus

-

Ji' Vi = 0 (2'27)
or from (2-25 ) and (2-26) '
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(FxV). @ x V) = 0
or from (2-1)

Fx V)(WxV,) =0 (2-28)
this completes the proof.

—_
Definition 2-7. In the moving space H, a definite line X, during
the motion H/H’, generates a surface in H’ which we call

-
the orbit surface of X.
Theorem 2-8. At the instant t, the point of striction of the orbit
— ' i
surface of V; is the intersection point of the common perpen-

diculars to \if), Vi and —F>, V

1

— —
Proof: Let us denote the common perpendicular to W and V,

by ? and the neighboring generators by V,. Then we have

Y = WxV, (2-29)
S

V=V, + ¥ (W xV) (2-30)
V.=V, + v Y.

— = —
If we denote the common perpendicular to V; and V; by Z then

—>

_Z>= V:x Vi=V.

1

=

X

(2-31)

— —

Since the intersection point of V; and Z is the striction point of
-

generator V,, in order to complete the proof we must show that

the two lines Y and Z meet at a right angle. From (2-31)
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— — — - -
Y. Z =Y. (V;x Y)

I

Y. Z =0.
On the other hand according to (2-28) the common perpendicular

— — — — -
to F and V; orthogonally intersects Y. Hence the lines Y, Z
and F x Vi meet at a right angle at the striction point of Vi
(Fig. 2-1). :

a) Interchange of W and F:

If ¥, = o; + ec*, is the dual angle between {;i and F then
from (2-28) we obtain

cos®; cosZ; = cosy. (2-32)
On the other hand according to Theorem (2-1), if W, E and S;

[ —
are the endpoints of unit dual vectors W, F and V; then the pair

of W, F is seen from S, as a right dual angle. Hence Fig. (2-2)

— —
illustrates two more unit dual vectors B, and B; which comp-
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FIG. 2-2

lete §i to an orthonormal dual system. Taking the scalar product

of the left-hand side of (2-2) and EJ the result is

PV) FB) - (V,xP)B, = A, (V,. B)
ar .
¥
cos @; sin®; = sin X, . (2-33)
\IJ'Z

If we eliminate X; from (2-32) and (2-33) we again obtain {(3-21),
[2]}, with A; = cos’®;. And we also obtain, from (2-32) and
(2-33), the following relation

Y2 cosy '
cos X; sin X; = ——— sin 0 (2-34)
gy
which is the same form as (2-33) . Hence we may express the fol-

lowing theorem:

— —
Theorem 2-9. During the one-parameter motion H/H’, W and F

may be interchanged, leaving the acceleration axes [; invariant.

A more precise proof of this theorem may be given in the sa-
me way as Bottema [1], treating everything as dual.
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b) Position of F and W with respect to lines 1, , I, , 1,:

If we subtract from (2-3) the analogous equation with i and
j interchanged, the result is
— ¥ (A - Ay cosgy; = Y. (Vix V). (2-35)
2

If we denote the dual spherical distances of W and F from the side
Si S5 by Py = pi+ ep* and Q = gy + eq*; (Fig. (2-3)) then
from (2-35) we have

FIG. 2-3

1 . ‘
— P2 (A;-A) cos g;; =7 sin g, sinQ, (3-36)
-2

or according to (2-14) and (2-17)

'LIJ‘Z
sinQ, = —- U; U,
¥
\.IJ‘Z
sinQ = —— cos ©; cos 0. (2-37)
v

And from the last equality of (2-8) according to (2-6), (2-37) beco-
mes
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sin Q. = cos Xy (2-38)
or
‘ w
O + g = —
2 | (2-39)
q* = - o%

There is the analogus formula for W: If we take the scalar
product of the right-hand side (2-2) and Vi x —\FJ the result is
v coS 5 1

cos®; sin P, sianij‘ + — cosy ( - ) =0 (2-40)
¥ cos0; cos®;

and from the last equllity of (2-8), (2-6) and (2-17) the equation
(2-40) reduces to

sin P, = cos®, (2-41)
or
T
P+ 0 = —
2 (2-42)
P* = — 0%

Hence (2-39) and (2-42) give the following theorem:

— —
Theorem 2-10. The instantaneous rotation axis W (or F) of H /H’
is at equal minimal distance from the common perpendicular

to any two acceleration axes and the other acceleration axis.
— - .
The angle of W (or F) and the common perpendicular and

the angle of W (or _1;‘) and the axis are complementary ang-

les.
Eventually, from (2-32), (2-38) and (2-41) we may write
sin P, sinQ, = cosy (2-43)
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or
sinp, sin q, = cosSa
; (2-44)
P*c cotgpy + q*c cotgqe + a* tgx = 0
and from (2-39) and (2-42) the equations (2-44) become
coso, cos B, = cosa
% (2-45)
0%, tgh + o*c tgo, — a* tgx = 0.

Replacing (2-45) in (2-13) we obtain another expression for the
pitch of instantaneous helicoidal motion H/H’ as follows:

A 3
= — [—— + 20*tgx - X o* tga;]. (2-46)
¢ 2 i=1

This is the same form as (2-13); it follows that W and F may be
interchanged, leaving the pitch of instantaneous helicoidal mo-

tion H/H'.

b) Some' Remarks about Common Perpendiculars to Pairs of

the lines €V>, F, V.

i

Let us define fi, ’Fi, —f‘i as follows:

— — — . — —
'Ly =V, xV, is the common perpendicular to V; and Vy;
T; = Wx(V;x V,) is the common perpendicular to W
i j k perp
—
and L;;
—_ —_ — — . —
I' = Fx (V; xV,) is the common perpendicular to F
-
and L;.
— . — .
Hence W is the common perpendicular to three lines T;, T,, Tj
- —_ = —
and F is the common perpendicular to three lines I';,I',, T's.
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Taking the 8calar product of i‘: and Fi the result is 0. Thus

- —>
the lines T; and I'; orthogonally intersect each other. Since the
i — — —
common perpendicularto T; and I'; is L; we conclude that the

— —
lines T;, TI'; and _L: form a rectangular trihedron. For i = 1,2,3
in space H there exist three such trihedrons (Fig. 2-4).

FIG. 2-4

On the other hand if W, is the projection of W on S;S; then

— >

(Vi x—\;j) . ﬁfk = 0, W, . W = cosPy

and sinee o~ o~
S, =0, WW, =P,

W i
A~
for the dual angle WS, in the dual spherical triangle WS,W; the
cosine rule gives us

-~ cos®,
cos W;S, =

cosPy
or from (2-41)
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S~ cos0,
cos WS, =

sin®,

and, therefore, we obtain that
o~ . :
cos2 W;5, = sing,, .
The same method for the triangle WW183; gives us
L ;
cos2 W;S; = —sing,; .

Hence we have the following relations for W:

o™ T 1 oo T 1

WS, =—-—g,,; WiS3 = — 4+ —g,,
4 2 4 2

o= T 1 o~ T 1

WS = —--—gu; WS =-— 4 —azy
4 2 4 2

P 7‘ 1 o~ T 1

WSy = —-— 9,5 WS, = —+ —a,
4 2 4 2

31

(2-47)

(2-48)

(2-49)

And in the same way if Fy is the projection of F on S;S; we have

following relations for F:

—~ © 1 —~ T 1

FlSz = — 4+ D3 B8 = — - — D
4 2 2 2

—~ T 1 —~ I 1

FS = —4+— 235 FS = —-—gy
4 2 4

P T 1 o T 1

S = —+— 9,5 FS, =—- ZP%
4 2 4 2

Comparing (2-49) and (2-50) we conclude that

P o~ o~ w
Wisj = F;5, Wisj + Fisj =
: 2

(2-50).

(2-51)
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and therefore,

Wi . Fi = 0 . (2"52)

- —> —
Since the common perpendicular to W; and F; is L; we conclude

that the three lines VVi,_f‘i and fi also form a rectangular thri-
hedron.

Now we are going to show that these two rectanglular tri-

hedorn {L;, T}, nli} . {—I:i, \_{71, fi} are coincident, Since we have

- — o~ Py —>
El Wl = COSPI W + cosW182 Vz -+ cos WIS::, V3

&, W, = cosP, W 4 cosW,S; Vi 4 cosW,S; V;

=> - 2N o N o
a3 W3 = COSP3 W -+ COSW3SF1V1 -+ cos W3Sz V2

where &; (i=1,2\,3) are dual coefficients; according to (2-41) we
have also

gl G’/’lx fl = sinﬁl ﬁ)/‘ X ]T:l = WI X fl = i‘)l
£, G’zx i; = sinf, VTV)X fz = szfz = 'i‘: (2-54)
a3 %@X _I_:3 = sin63 ?W? X i:a, = ﬁbfg, X 1)3 = :.]—i:,

- . - . . <
Thus, the lines T; are the common perpendicular to the lines W;

and L;. The same property exists for F'; and L; whose common
—
perpendicular is I';.
Therefore (disregarding the orientation of trihedrons) we
" have

— —
Wi = Fi
and . (2-55)

¥
I
=
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- — —> =

—_
ThiS menas { Li’ Ti’ Fi } = { Li’ Wi’ Fi} .
Hence, if the configuration of acceleration axes is given,the

distributions of W and F are (disregarding a change of time unit)

completely determined.

—> — e
When V; are given L; can be constructed and T; =F; also accor-

ding to (2-50) can be erected; ‘1:1 is the third orthogonal line of

-

the rectangular trihedron {I—;, —’f‘i, i}

T
The common perpendicular to the three lines T, T,, T is

—

W and to the three lines 'y, T

-

- -
20 F3 is F.

Eventually, at the instant t, let us chose in the space H all

- — —
lines X = x + ¢ x* which cut the three acceleration axes

—

Vi, V,, {7)3. Then we have the following relations for the six

Pliickerian line coordinates of —}Z

—
Since X is a unit dual vector

-2 —
x =1 and x . x*=0.

. — — — —
Since X cuts the axes Vi, V,, 3

Vx4 vhx =0 (i=1,23).

—
Thus we can express the lines x by one real parameter t as fol-
lows:

X=X (r) = ;(t) + < x* (t)

and let us suppose that X=X (t) is differentiable. Then it is
a ruled surface.
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MI. SPECIAL CASES

A. The case of « = 0 and a* = 0:

In this case the determinant D wvanishes; in other words

Y and ¥ are linearly dependent. Therefore W and F corres-
Yy P

pond to the same line I in the space and the points of I have no

acceleration. Hence for the locus of points with zero-acceleration

the velocity is a constant vector, therefore according to {(3-10),
—
[2]} if the corresponding unit dual vector is A, we may write

dA

o

dt

—_
where V is a constant dual vector, and by integration we obtain
— —> —>
A = Ay + Vo (t-to)
— — — . — — "
A =a + cap*+ (-t) (vo + evp*)

;; 4+ (t-tg) ‘—’(: + ¢ [;;0 + (t-tp) :’)*o] (3-2)

>y
|

— —
where A, is the initial constant vector and where A is a unit dual
vector: ‘

A= 1. (3-3)

-
The unit dual vector A with a real parameter t represents a
differentiable family of straight lines in the three dimensional
fixed space H’. This means the locus of points with zeo-accele-

—
leration is a ruled surface. The lines A (t) are the generators or
rulings of the surface and at the instant t of the motion H /H’ this
unit dual vector corresponds to the line I

Now we are going to discuss the properties of the orbit sur-
face of I (ruled surface of I). During the motion H/ H’ the unit
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dual vector X draws a curve as its dual spherical representation
on the unit dual sphere. If the dual arc length of this curve is
dS then

dS = ds + eds* ' (3-4)

and

ds? — (4,A)

dS? = (Vo) 2= (vo + ev,*)?
\

dS* = vg + 2cvp. v,* (3-5)

the “drall” of the ruled surface A — A () is

1 ds ds*
- = (3-6)
d ds?
and according to “(3-5) the drall is
1 Vo - %
_— (3-7)
d -2
Vo

Therefore we conclude that the ruled surface (I) has a constant
drall. Hence we have following theorem [3].

Theorem 3;1. In the motion H /H', at the instant t the line which

has no acceleration is included in a square line complex
of H.

As a special case if {7)0 is a unit dual vector then :0 . ::*0 =0
1

and — = 0. Therefore, the ruled surface (I) itself is develo-
d

pable. In this case the dual spherical representation curve has

‘the real arc length dS=ds‘b. On the other hand A (t) and its neigh-

boring A (t-+dt) meet on the edge of regression of the ruled sur-
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face (1), i. e. the tangent lines of the edge of regression are the lines

A. Thus we have the following theorem:

Theorem 3-2. If the lines A of H generate a developable surface in

H’ then A is included in a special square line complex
which is identical to the complex of the tangent lines of

orbits of o* points of H.
B. The case of o = 0, o* # 0:

. —
In this case also the determinant D vanishes, so that ¥

-.—> . . —_ —_ .
and ¥ are linearly dependent, but the lines W and F are just
parallel, they are not coincident; their minimal distance is a* #0.
. 3 . > =>
Since the corresponding unit dual vectors are W and F,

—> —>
the accelerations of the points on W and F are zero so the ve-

locities of these points are constants. Hence denoting the dual

— —
constant velocity vectors by V, and Y, we may write

awv
dt
(3-8)
4F
=Y,
dt J
and therefore by integration we obtain
W = W+ Vo (t-tg)
(3-9)

Fo+ Yy (tt) -

=y
I
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If at the instant t a line X of the moving space H intersects the
—> —>
lines W and F then we have
= — — —
w. x¥ + w¥. x
(3-10)
fox 4 . x=0

In the space H we can find co? such lines SZ and these lines )_() form

- —
a linear line congruence. W and F are the principal directions of

this linear line congruence.

The discriminant of this linear line congruence is
D=(ww*) (£ 19 - (w.£* + w* £2. (3-11)
Since &7 and _].; are unit dual vectors the result is

D <0 . (3-12)

Thus this congruence is a hyperbolic congruence {[4]; p. 248} .
C. The case of o« = —, oa* = 0:
In this case from {(3-17), [2]}
D——- %2 ¥z (3-13)

— —

The lines W and F meet at a right angle, the accelerations of
the points on these two orthogonal lines are not zero. For the ac-
celeration axes, {(3-21), [2]} reduces

A3 - A2 L+ KA =0 . (3-14)
And therefore
Ay =0,

hence , the cubic curve f = 0 in the (k, cos’x) — plane becomes



38 f#. miLMi HACISALIHOGLU

f=5k (4k-1) = 0 (3-15)

1
and it shows that there are two parallel linesk = 0 and k = —.

4
The cusp point and the asymptotes of (C) have disappeared. The

condition of reality of the acceleration axes is, from {(3-29), [2]},
f=k(4k-1) <0 . (3-16)
In the configuration, A; = 0 and (2-6) give
cos’®; = 0 (3-17)
and therefore from (2-14) we obtain

cosg,, = cosgyz; = 0 . (3-18)

This means that the acceleration axis Kf)l isthe common perpen-
dicular to three lines VZ, i’; and W.On the other hand the eq-
uality (2-32) gives

cosX, = cos¥y; = 0 . (3-19)

— — —
This means that the common perpendicular to V, and V; is F.

— —
Thus the lines V, and F are coincident, i. e:

Vl = _I:‘ .

From (3-19) and (2-38) the result is
sinQ, = sinQ; = 0 (3-20)

and since F — Vi i e % — 0,
sinQ; = 1 . (3-21)

[ —— —
Hence we conclude that the lines F,, F; and ¥ are coincident
. > e . -
and the lines F; and F meet at a right angle. Thus the lines
= YV, is the common perpendicular to the four lines V,, Vj,

F
{{7 and F:.



II. ACCFLERATION AXES IN SPATIAL KINEMATICS 39

From (2-41) and (3-17) we obtain that
sinP, = 0 .
This means that the lines 6{7 and ‘T{/'l are coincident.

The illustration of configuration Fig. (2-4) reduces to Fig.
(3-1).

[
or'h
il
=4
1t
it}

s
L2
FIG. 3-1
- =
Ll = I‘;
— > —
L, is the normal of the (V;, F) — plane;

f3 is the normal of the (Vz, F) — plane;

—>

— —>
F; is the normal of the (L;, W) — plane.
Hence, in this special case, when the configuration of the
. — —
acceleration axes is given, the common perpendiculra V, and V;
= — —
is Fand W = W,.

Hence we may express the following theorem in conclusion:
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Theorem 3-3. In the motion H /H’ if the lines W and F meet at

>
a right angle, then ¥ is coincindent with the linesV;, L;,
= = . . . » 3

. and it is the common perpendicular to the six lines

?

-

F., F,
f Vj_). —> - —

i » Vi, Ly, Ly, W.
T
D. The case of « = — , a* # 0:
2

In this case also D verifies the equation (3-13). From {(3-21),
[2]} we have

Al = 0 or COS@] = 0,

and according to (2-37) and (2-41) it follows that sinQ; = 0 and
sinP; = 0 respectively. Since cosy = —ea* # 0 these two reusults
do not satisfy the equation (2-43) so this special case does not
exist.

Thus we see that the lines —‘5()7 and. —1;‘ specially can bhe coin-
cident, parallel and can intersect orthogonally but they cannot
be skew orthogonal.
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O0ZET

Bu cahigmada genel olarak, ivime eksenlerinin geometrik ozelikleri ve bu eksenlere
karsibk gelen hiz ve ivme dagilimlan ele alindi. Ayrica reel kiiresel halin diginda kalan
ozel haller de elestirildi.
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