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Variational Method and «-Starlike Functions (*)

Leman CELIKKANAT

Summary: In this paper o—starlike functions and meromor-
phic a-starlike functions are studied. Using Goluzin’s variational
method, variational formulas for these classes of functions are
obtained, and some extremal problems have been solved. Also
sharp bounds are obtained for x-starlike functions as:

—2(1-a) -2(1-«)
1(1+1) = |f(z) | < x(1-1) » (lz]=r<)

and for meromorphic o-starlike functions as:

2(1-a) 2(1~e)
R(1-R™) = |F(&)] = RI+R) » (1€1=R>1)

£l. A representation formula for o—starlike functions

a— starlike functions were introduced by M. S. Robertson
[5], and then investigated by Ch. Pommerenke [4] in 1962.
Definition. A function
f(z) = z+ a2 + ... 1)
is called «— starlike if it is regular and schlicht in |z | <1, and there

it satisfies the condition

Re(iff(sz)) >, (0=x<1). @)

We shall denote the class of these functions by S*(«). It is
obvious that starlike functions, which map |z |< 1 onto a star- -

(*) This work has been presented as a Ph. D. thesis at the University of Ankara,
Faculty of Science in January 1966.
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like region with respect to the origin, will form the subclass S*(0)
of S*(«).
Teorem 1. Let
f(z) = z + az + ..
be a regular and schlicht function in |z| < 1. The necessary and

sufficient condition for f(z) to be a-starlike is the existance of
integral representation

f'(z) l+e™z
zm—waa)j Lt dy(y), 3)

where y(t) is a nondecreasing function in [-x,x), satisfying the
condition y(w) — y(-x) =

Proof. Let f(z) € S*(«), then a function h(z) which is given

by
—a/(l-)  1/(1-a) .
h(z) = z f(z) (4)
will be starlike. The logarithmic derivative of (4) yields
h'(z) « 1 £'(z)
W) - T T T f Hw)
and so
zf'(z) o 1 z {'(z)
Re )~ T + i Re (z) > 0. (5)

Then by using Herglotz representation, we write

hm) r —1+e_lt dy(t)

h(z) 1-e
and considering this in (5) we get (3).
Conversly, if f(z) satisfies (3), by taking real parts of both

sides we see that Re(z (z)) > a, so f(z) e S*(a).

f(z)

Dividing (3) by z, and integrating from zero to z, we get a
representation formula for functions f(z)cS*(«) as :
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f(z) = z exp [-2(1-«) r log (1-e=itz) dy(t)] 6)

-7

where logarithm is understood. as the branch vanishing at z=0.

§2. Variational formulas for o—starlike functions

By wusing Goluzin’s variational method [1] we obtain
variational formulas for a—starlike functions. Since this method
is important we will refer to it briefly.

Let ¢(z) be an analytic function which has a parametric
representation as a Stieltjes integral

b
q(z) = j p(z.t) dy(t),

where a,b are given real numbers, p(z,t) is a given function
analytic in |z |< 1 for a<t<b, and v(t) Tuns through the set
of all nondecreasing functions in [a, b], under the condition

b
j dy(t) = y(b) - v(a) = 1.

For any two numbers t,, t,, a =< t,<t. < b, by changing
¥(t) in a suitable way in t, <t <t, and leaving unchanged outside
of this interval, he has obtained the variational formula

t,
*(2) = q(z) “L p(mt) [y(®)-c| dt (7)

1

for q(z), where 2 is an arbitrary number in [-1,1], and ¢ is a cer-
tain constant independent of t and A (but depends on the sign of
7). Next, assuming 7,, 7, a < 7, < 7. < b, be two jump points of
the function y(t), for sufficiently small 2, he has obtained another
variational formula for q(z) as:

q** (z) = q(z) + * [p(z 7) - plz )] (8)

Later, this method is improved by C.Ulucay. He gave a
general formulation of the extremal function within the class E of

)



56
' L. GELIKKANAT

analytic functions which considered by M. Goluzin, and he applied
the result in a systematic way to analytic functions with positive
real part and to typically-real functions [6].

If we denote the exponent in (6) by ¥(2) and apply formula (7),
we obtain

etz
| Y(t)_c | dtv

t, .
* (z) = —on(1- ez
¥ (2) — W(z) - 20(1-) j -
1
then denoting the corresponding function in the class S*(x)
by f*(z), and expanding this to a power series at A=0, we get

t, sa—it
£(z) e | 7(t)-o] dt + 002),  (9)
ty

£4(2) = £(z) — 20(1—) j

(where 0(3%) is uniform with respect to z).

On the other hand by applying variational formula (8) to
Y(z) we find
1- e—iT2

3T
I-e¢e 'z

Z

W** (z) = ¥ (z) + 27(1-a) log

If we denote the corresponding function in the class S*(a) by
£**(z), for small values of A we find

£44(z) — £(z) + (1) £(z) log %‘# +002)  (10)

The formulas (9) and (10) are the two variational formulas
for functions f(z) ¢ S*(«).

In general, if y(t) is a step function with n jump points.
Ty Tan v Tps —T=71 <70 <... <7 <m and 3 isits
corresponding jump at 7, , i.e.,

e = y(te+0) — v(t,-0), (kzl =1, 220)
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then f(z) has the form

fz) = — St 2(l-a)hg D
% (1-e z)
k=1

§ 3. Solution of some extremal problems in the class S*(o)

To solve some exiremal problems in the class S*(«) we shall
use variational formulas which are obtained in the previous
paragraph.

Theorem 2. For a given entire function ¢(w) and a given
point z in |z | <1 either of the functionals

fz)

Z

Re [o(log o lolog i) ()

‘attains its extremum in the class S*(«) only for a function of the
form

Z

f(z) = (B real)

i 2(1—0() ’
(1- " 2)

Proof. Here we don’t consider the case in which for the

f(z)) — 0 (*)

extremal function we have ¢’(log
z

The theorem asserts that , for every function f(z)eS* (o)

(l—el‘g z)
and
| o(log f(_zf)_) | £ max | @(log—.‘l’zm)l'

i

(1-e" 2)

(*) Kirwan [2] has proved, in 1966, that this restriction can be removed by a suitab-
le transformation.
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Since S$*(«) is compact, there exists a solution of the prob-
lem and, it is enough to solve the problem only for one of the

functionals (12). Because a function which gives maximum or

minimum for | ¢ (log fgﬂ also gives the same thing for

Re [eiy} o(log z) )] with a suitable chosen 7, which is not dif-

Z

ferent than the first functional of (12).

Denoting

I, = Re [o(log ~2)]

z

and f(z) being an extremal function, using variational formula(9)
we get

ollog ) = ¢ flog[ "2 (101 |

1e¢e Z

. |y (t)-c|dt)+00(:2)]} .

t, . it
z t,

—e

Expanding this to a power series at A=0, and then taking real
parts we get

o)) 272 | (ool ar+00)

1__ e-——it

. t. ¢
I, — I, 2\(1-«) Re j o' (log

t, z

Since f(z) is an extremal function, the coefficient of A must be
zero, i.e., v

t Pt
2 f(z e
Re [cp'(logﬁ)i_—f]w(t)_u dt =0 .
t, z " l-e'z
This implies that: If
i€ z

1_ e—lt Z

f(z
F(t) = Re [¢'(log (T)) ]=0, (13)
has no root in the interval (t,, t.), then along this interval y(t) —¢
must be zero, i.e., v (t)=c (constant). But if it has a solution,
then y (t) may have discontinuities at the points t corresponding
to the roots of (13). Since (13) is a quadratic equation with
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respect to e, then y(t) will be a step function with one or two
jump points in -7 <t <.

Now, assuming that y(t) has two jump points, say 7, , T}
by using variational formula (10) we may write

) g (tog X2 (14-20(1-2) log 5% )+ 0691}

].—C

o(log ——

Expanding this te a power series at A=0, and taking real parts,
we get
’ ( ) ]-_ iT 2
Lo = I + 2M1-«) ¢'(log ) log + 0(»?).

—e 'z

Since f(z) is an extremal function, the coefficient of A must be zero.
This yields the condition that

-~

( Re [¢'(log %z—)—) log (1-¢2)]

has the same value at the points t=r,, t=7, . But in that case,
by Rolle’s theorem, its derivative with respect to t, which is F(z),
would be zero at a cetain point 1, in the interval (i, 7.). Then the
equation (13) would have more than“two solutions in the interval
-n < t < = which is impossible. This contradiction proves that
y(t) must be a step function with only one jump point say fe[-m,x).
Hence, by using formula (11) we see that, extremal function f(z)
will have the form

f(z) = ” 30=e) (8 real) (14)
(1-e" z)

Application. Let us consider the functional

o(w) = e + b . (a, b constant)
f (2)
) |

By theorem 2, we know that the functional |¢(log

attains its maximum in the class S*(x) only for a function of
the form (14).
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1

For a:—m,

b = - 1, we find

alog(f(z) /z)
+

le

f(z) -)—1 /2(1—0()

b= ( “1i= 1Pz~ 1] =2

So, for any function f(z) £ S*(«) we have

7y 1/2(1-w)
(X2, “ll=r (Jz|=r<0)

z
which yields the bounds

—2(1-a) ~2(1-a)
r14n) @)= ).

Theorem 3. For a given entire function ¢(w) and a given point
z in |z| <1, either of the functionals

Re [o(log £'(z)] or [q(log f'(z))| (15)

attains its extremum in the class S*(x) only for a function of
the form

f(z) = d ,  (16)
.. 6(1- . 2-0) (1-«
(l—elﬂ z)( ) (1-¢" z§ ) (1=2)

where, 06 < 2, and B, v are real.

Proof. Here also we don’t consider the case ¢'(log f'(2)) = 0,
and by the same argument as in theorem 1, we shall prove this
theorem only for the first functional of (15). Let

I; = Re [g(log f'(z)],

and assume that f(z) is an extremal function. By using formula
(9) , we form ¢(log f'*(z)), then expanding this to a power series
at A=0, and taking real part, we get

(*) These bounds were obtained by M. S. Robertson [5] in a different way.
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t .
2 "(logf'(z)) d iezf(z)
I, = I,-2)(1-a) L Rei ¥ ﬁ(z)) o T ([ v(D-e]dt

+ 00%). (17
The extremal property of f(z) implies that the coefficient of A
must be zero, that is.

T "(logt'(z ie~it z f(z
jt, Re g 2 (lf,gézf)( ) sz- .f( ) %ly(t)—c | dt=0.

l1-eit z

This implies that , if

o'(logf'(z)) d ie itz f(z)

F(t) = Re § f(z) dz 1o+ 2 % =0 (18)
has no root in (t,, t.), then in this interval y(t)-c must be zero,
i.e., y(t)=c (constant). If (18) has a solution in that interval,
then y(t) may have discontinuities at the points t, corresponding
to the roots of this equation, Since (18) is a fourth degree equation
with respect to ei*, then y(t) will be a step function , with at most
four jump points in —w<t<'z. Let us denote these points by
7 (k =1, 2, 3,4). Since y(t) is a step function, by using variational
formula (10) we get

A _e_iTer 7
o(log £'**(z))= rP§ log [f'(z) (1-2A(1-a) f’l(z) d_dz 1

l—e—i’rk 7
0 (m]g , (k=1, 2, 3).

Then expanding this to a power series at A=0 we obtain

' 4 _ —iTpepr
T =1, -21 (1_“)R,eg o'(logf'(z)) d [£(7) log 1-e .T z 1
le

() p o +0(23).

The extremal property of f(z) implies that

1T

which means

Re§ ¢’ (lofg/(le)(z)) :Z [f(z) log .(1__ et z)] g
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has the same value at each points of discontinuities. But in that
case, its derivative with respect to t, which is F(t), would be
zero at a certain point t in each interval (7., , 7, ). If vy(t) has
more than two jump points, the number of roots of (18) would
exceed four, which is impossible, Hence we conclude that v(t)

must be a step function with only two jump points, say £ and 7.
Then by formula (11), f(z) has the form (18).

Theorem 4. For a given entire function ¢(w) and a given po-
int z in | z|<1, either of the functionals

Refplog )] or | ollog S 21,

attains its extremum in the class S*(«) only for a function of the

form (16)

Proof. Here also we neglect the case for which ¢(log f'(z)) = 0.
It is sufficient to investigate only the functional

I = Re[gllog T2 ) |

By using the variational formula (9) we get

kfl* Ja—it
B0 S gy 2

o(log f(z )k [ f(z )k
[y(t)—c|dt) + O()\Z)]g

for small values of A, the real part of this is

¢(log Z'—:(Z)(:)) 4 e a(a)

f'(z) dz l-ei'z le(t)_c e -
+003). (19
The only difference between (19) and (17) is the appearence

t,
I, = I- 27\(1—oc)j Re
t

of the factor o "(lo f( instead of ¢’(log f'(z ), and since we
g f( z)k g
x{
Z (z)) 0

exclude from consideration the case for which ¢’(log )~
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and ¢’'(log f'(z)) = 0, then the same result remains true also for
these functionals.

§ 5. Meromorphic o-starlike functions

These functions are introduced by Ch. Pommerenke [3]
in 1962. In this paragraph we shall form the variational formulas
for meromorphic x-starlike functions, then using these formulas
we shall obtain some sharp bounds for these functions.

Definition . Let

W—F@) = &+ by + by £ + ..

be an analytic and schlicht function in [<[|£ [< 0, F(£) is called
meromorphic o-starlike if for every £ in 1< ¢ |<{o0o

F(§)

Re & )

)= o (0=a<)
is satisfied.

We shall denote the class of these functions by S(«). It is
obvious that the meromorphic starlike functions form the

subclass S(0) of S(«)
Theorem 5. Let
F) =&+ b+ b &'+ ...

be analytic and schlicht in 1<|£|< co. The necessary and
sufficient condition for F(£) to be meromorphic «-starlike is the
existance of integral representation

PO _, 4 | e
o Te L: e B (20)

Where v(t) is a nondecreasing function in [-7, ©t), subject to the
condition v(w) — y(-w) = 1.

Proof. Condition is necessary: If F(£) e S(a), a function
H(%) which is defined by
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1/(1-«) ;
H() — (%) (21)

is meromorphic starlike. Since the logaritmic derivative of (21)
gives

H(E) o« 1)
0E) ~ T T Tw ° T 22)

which shows that

Re (z%%) > 0.

Hence we may write

H'(E) _ r 14t £

HE) . ToetET dy(t) (23)

and using this in (22) we get (20).
Condition is sufficient: Since real part of the last term in (20)

is not negative, then Re (£ —g((—g’)L) > o . ie, F(§)eS(a).

Dividing (23) by £ and integrating it from zero to £ we obtain
the representation formula

2 f:r log (1-€'t £71) dy (t)
H(E) =te (24)

for meromorphic starlike functions . By replacing (24) in (21) we
.get a representation formula for meromorphic a-starlike functions
as: ’

2 (1-0) [ _log (1-¢ £ dy (1 (25)
F(g) =¢&e

Now, by the use of Goluzin’s variational method we obtain two
variational formulas for meromorphic a-starlike functions, then
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by using these formulas we shall solve some extremal problems
in the class of these functions and obtain some sharp bounds.

Let E; denote the class of meromorphic functions represen-
ted by a Stieltjes integral

b
Q) = j G (2,9 dy (1),

where a, b are given real numbers, G(£, t) is a given function analy-
tic in 1<{|§|<{o0, for a < t < b, and y(t) is any nondecreasing
function in [a, b] satisfying y(b) — y(a) = 1. By the same way
as of § 1, we get variational formulas

Q*() = Q) + 2 j G5, 1) | y(De] dt (26)

t,

and
Q**(&) = Q) + AG(E ) -G (E )] (27)
for functions Q(£) ¢ Eg.

Writing (25) as F(§) = ¢ elF(E) and applying variational
formula (26) to this exponent we get

P () = ¥ (2) - 20(1- «)j 1l (o] at.

elt E—l

If we denote the corresponding function in S(x) by F*(£) , and
expand this to a pover series at A=0 we get

F*(&):F(&)—zx(l—a)j F() lelf’g_llY(t) o] dt 4 002). (28)

If 7, and 7, —x < 7; <1. <m, are two jump points of v (t),
applying formula (27) to (&) we get ¥**(£). Then expandmg
the expression

F**(§) = Zexp[¥**(¥)]

— exp[ W(E) + 2 (1-0) log 5=
1-e 28!

to a power series at A==0 we get F**(£) as:
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1- ITIEI

F**(€) = F(§) + 2M1-0) F(£) log + 0(%). (29)

l—e

In general, if y(t) is a step function with n jump points 7,
T s Ty T = T < T <...< 71, <m,and A is its jump at
the point 7, i.e. , A =v(7+0) —y(r,—0), then it is easy to
see that F(£) will have the form

n it 2(1—0())\1( n
F(§) = £ X (l-e *&7) =0, X2 =1).
k=1 k=1
§ 6. Solutions of some extremal problems in the class S(a).

The similar teorems to 2-4 are easily proved for functions

F(&) = S(o)-

Theorem 6. For a given entire function ®(W) and a given
point & in 1<} £[< 0, either of the functionals

Re[wog T8 o e Ty,

attains its extremum in the class S(«) only for a function of the
form

i [3 2(1—'(1)

F(§) = &(l-e"¢7)

Proof. Here we also neglect the case in which ®'(log
for extremal function. Denote by J; :

F(E),_
g )=

Je = Re[ @ (log ")

and assume that F(£) is an extremal function, using the varia-
tional formula (28) and following the same proceedure as in the
proof of theorem 2, we get

Jo, =J.—2A(L-n)Re| " ©'(log F(‘i)) iet

ToeTET |Y(t) c | dt 4+ 0(»2).
i,
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The extremal property of F(£) implies that y(t) is a step function
which may have discontinuities only at the points t correspon-
ding to the roots of

F(z) ieit g—l
@’ —— 1 =0.
Re [@(og ") 1505 1 = 0 (30)
Since equation (30) is a quadratic equation with respect to ',
1(t) may have at most two jump points, say 1., 7., in (30),
-7 =t <. In that case by using variatonal formula (29), for
small values of A we get

/

Tren = Jo + 20 (1-0)Re[@'(log T 10g 1 2571 4 o),
g l-e 1E!
Since F(£) is an extremal function.
Re [ @'(log F(é)) log (1-¢€t £71)] (31

must have the same value at the points t=r,, t=1,. But in that
case, the derivative of (31) with respect to t would be zero at a
certain point 7, in the interval (7,, 7.), so the number of roots of
(30) would be more than two, which is impossible. Hence y(t) is a
step function with only one jump point, say 7,in -7 < t <.
This implies that F(£) has the form

it 2(1-0()
F(&) = &(l-e &7 .
Application. Let us consider the functional

O(W) = eV + b . (a, h.constant)

F(¢)

E )1
attains its extremum in the class S(«) only for a function of the
form

By theorem 6, we know that the functional | ®(log

e 2(1-0)
F)=¢&(-e £

Let || =r, for a= and b=-1, we get

1
2(1-a)
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1
2(1-=) )
| O(log F(E Py 1= ¢ F(‘i)) 1) = l-eiT g 1] = R

So, for any function F(£) € S(o) we have the bounds

2(1-) 2(1-a)
R(1-R™) <|F¢E) = RQ + R

These bounds have also been found by Ch . Pommerenke [3] in
a different way.
Finally we shall state two theorems but without giving their

proof, since they are similar to the theorems 3 and 4.

Theorem 1. For a given entire function ®(W) and a given
point £ in 1< | &| < oo, either of the functionals

Re [®(log F'(£))] or | @(log F'(8))]

attains its extremum in the class S(«) only for a function of the
form

o B(1-a) . (2-6) (1-0)
F(£) = £(1-ef £) (1-¢ £

where 0 < 6 <2, and § , v are real numbers.

(32)

Theorem 8. For a given entire function ®(W) and a given
point £ in 1<| € |< oo, either of the functionals

5 (3] EF(E)
Re [d)(l‘ “FoF )1 or | (D(IOgT(E’)r|

attains its extremum in the class S(«) only for a function of the

form (32).

I would like to express my grateful thanks to Prof. C. Ulugay
for his help and valuable advice on preperation of this paper.
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OZET

Bu galismada a—yildizil fonksiyonlarla meromorfik o—yildizil fonksiyonlar incelen-
migtir. Goluzin'nin varyasyon metodu kullamlarak bu smmflardaki fonksiyonlar icin

varyasyon formiilleri elde edilmis ve baz1 ekstremal problemler ¢ozitlmiistiir.

Aynea o-~yildizil fonksiyonlar icin

~2(1-) ~2(1-o)
r(l-+r) = @)= (1) »(Jzl=r < 1);
meromorfik o—yildizil fonksiyonlar i¢in ise
- 2(1-o) 2(1-o)
RO-RY S [FOISRA+HRY L (E[=R>D

kesin smirlan elde edilmigtir.
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