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Algebraic Structure Of The Continuum And The Factorial

Representation

Orhan Hamdi ALISBAH

July 22, 1969
INTRODUCTION

In § 1 of this paper the Method of Factorial Representation
is reviewed. § 2 deals with the concept of the Abelean Cluster
A, and the Sequence of Abelean Clusters:

A {0}, A, {1/2},A,{1/6,1/3,2/3,5/6}, ......

The element
n
X=X a, e
k=1
of A, is characterized by the restrictions (1.6) and (1.7) of which
the latter leads to

A.n A, = @, for m#n.

The Sequence of Clusters represents a different version of
the Cantor ordering of the rational numbers. § 3 contains the
real and complex universe. § 4 deals with the minimal and maxi-
mal representatives of the Abelean Clusters and the Univers.
§ 5 is reserved for the approximation of the irrational numbers.
§ 6 contains the definition of the extended universe and a criterion
for transcendence related to the matrix T oo = (a,,), of infinite rank.

In § 7 certain Diophantine Systems are formulated, which
are of special interest in connection with the factorial represen-
tation. In § 8, Alef and C are symbolically described as additive
infinity: Alef = = N (I) and multiplicative infinity C = oo!. In
§ 9 the factorial representation is being brought in relation with

Dedekind Cut.
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§1

This paragraph contains certain results, which were previously
analized in a recent paper of the author?).

Throughout this article:

1
2T T
A. Every complex number z = x -+ iy satisfying
(1.1) 0 < |z | <1

has a unique factorial representation of the form

(1.2) z:x—i—iyz%° (ag + iby) e;

=

whereby
a;’s as well as by ’s
are integers subject to

(1.3) 0 <a; <)3—1and 0 <b; < 2A—1.
B. Every rational number

p

X = 1 with , =1
q [p. 4]

and subject to

(1.4) 0 < x <1

has a unique finite representation of the form

I
(1.5) x =L =% a e
q r=1

where I = Il(q) is obtained by determining the least factorial
multiple I! of q and a;’s are integers satisfying

(1.6) 0 <a; <x—1 for 1 < <1—1
and
1.7 0 <a <l1-—1 for A=1.

C. Any finite representation of the form (1.5) corresponds to
a rational number x subject to (1.4).
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D. The above defined function

I1=1(q
has the following elementary properties

(1.8) I=1(q) =q

only for q prime or q = 4.

(1.9) I (q) < max I (If;“) <q

for = I
q aet PpL

E. The inverse I (q) of (q) — with the exception of the
cases stated in (1.8) — is multiple-valued.

We denote the number of integers q corresponding to the
same [, in other words the degree of relative multiplicity of I-* (q)
with
(1.10) I=1(0.

This concept plays an important role for the measurement
of the density of the prime distribution.

§2
ABELEAN CLUSTERS

We call the set A, consisting of elements of the form

l
X = X az e
r=1

as defined by (1.5) and subject to (1.6) and (1.7) an Abelean
cluster or Simplexoid of dimension .

A. Every A, contains
2.1 NO=[—1!] .1

elements.
The statement A.. follows from (1.5), (1.6), (1.7) immediately.
B. ALn A =0 for m # n

A result which follows from (1.7).
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C. Every rational number

x=—— [a=1 0=x<1

is element of only one A, with I = I(q).
The statement C. is a simple conclusion drawn from B.

We shall refer to an abelean cluster A, whose elements are
ordered according to their magnitude as an ordered abelean
cluster A;*

In connection of B. and C. and with respect to this last
definition we can now express:

D. The Sequence
(2.2) S: A* A, oo A, L

represents a different version of the Cantor ordering of the ra-
tional elements of the unit interval.

§3
The Real And Complex Universe.
We call the set of elements of the form

©

X = X a, e,
A=1

where a,’s are integers subject to
0 <ay; <r—1
the Real Universe A o0 and consequently the set of elements of a

the form (1 .2) and subjest to (1.3) the complex Universe K 0.
Obviously

Ao © Koo
It is easy to make the following observations concerning
A; and Ao .
A. A € Aw .
l
B. S=u A;,

=1
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is an abelean group under addition mod. 1.

C. Aoo:?}° A; and Aoww = Aw .

r=1

D. A is an abelean group addition mod. 1.

E. A is isomorphic to the closed unit interval.

51

These remarks can organisally be extended to K; and Koo .

§ 4

The Minimal and the Maximal axis of A; and A .

We call
l
(4.].) ml = 2 el
r=1
the minimal axis
1
4.2) M, =% (A —1)e;
A=1
the maximal axis of A;, and
)
4.3) m =)\§1 e, = (e —2)
minimal axis and
(4.4) M =3 00—De=1
0 =1

the maximal axis of the real universe A co respectively.

We call R, defined by

4.5 Mow—M =R, =3 (n—1)e
A=l+1

the residua complement of M.
Due to (4.4) and the identity
(46) Ml + el = 1
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we observe elementarily the following property:

A.
(4.'-7) el — Rl

From the geometric point of view this result means that e,
is a maximal element of the residual space R, .

§5
Approximation of the Irrational Numbers

We call x € A with infinitely many non-zero components a
proper element of A.

A. According to A., B., C., of § 1 with the exclusion of x = 1
all the other proper elements of A are irrational bumbers, satisf-
ying 0 <x<1.

B. For every proper element x of A the following inequality
holds:

(5.l)x=§] a; e; -+ °2° alelgi azes+ R, =x, +R,.

=1 A=n-+1 A=1
Hence:
C.
(5.2) x—x, <R,

or according to (4.7)
(5.3) X — x
We call

A
o

n
Xy = % a, e,
A=1

of (5.1) the proper n-th representative of the irrational num-
ber x.

D. Due to (1.6), x, is the largest element of A, satisfying

(5.4) 0 <x, <x.
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The concept proper n—th representative can also be applied
for

(5.5) y=2X aze,,yeEA .
r=1

For n <1 we call
(56) Yo = > ay [:F}

correspondingly the proper n-th representative of y. (5.3) remains
also valid for this interpretation.

§ 6

The extended Universe and The Criterion of
Transcendence

We call the sequence
(6.1) E:en,ey ooy 5 0o

the fundamental base of the Universe and the sequence

(6.2) Y: vy, Yoo oo s Yaos oo
introduced by

®
(6.3) yan= 2 by, e for n = 1, 2,
A=1
the regular base of the Extenden Universe U _  provided the
infinite matrix of the transformation
(6.4) T = (by), (n, 2) = 1,2, ...

is of infinite rank and the components are finite complex numbers.
Obviously:

. < .
A A, K, < U
We refer to x as a transcendental element of U 0 whenever
°
the power sequence

(6.5) P: X, X% ... 4 X", ...

is a regular base of U .
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Examble 1. the power sequence
(6.6) E, : em:°z°‘ m’ e; ,
A=0

with the infinite matrix :

6.7) T , = (m%
m=12 ...;x=012, ...

is a regular base.

Examble 2. The power sequence

(6.8) E:(e—2),(—2)...,(—2)"...

is a regular base.

Remark.
(6.9) (e — 2)" = I (A") (— 2)m-4.et
A=0

is a linear combination of
(6.10) 1, e, ..., e" .

B. If x is transcendental with repect to U  then x — [x]
is trascendental with respect to A. [x] is the integral part of x.

We call (¢; z%) — ¢ and z complex — local contraction
and ¢, the A — th contractor.

@
C. If f(z) = X ¢, z* ey
A—0

is analytic over lz | <R < «
then f(z) € U, -

§ 7
Certain Diophantine Systems

A close study of linear independence of the fundamental
and regular bases leads to certain mathematical questions, which
are attractive for their own sake.
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The following Diophantine System is a typical example of
this kind:

m
(7.1) s. (A—1) =2 t ag
k=1
A=1,2, ... ,n, ...
where t,” s are integers and a.;’s are integers subject to

(1.2) 0 < ay <ir—1

(7.3) m < o .

o
Examble 1. x = X a,; e; € Aoo A=
and x +y =1 =1 ’

T8

laQ;_ e; € AOO

s=1,t,=t,=1,m=2anda,; +a,;=1r—1.

Examble 2. Fore —2 =x, + 1, ,n = 1,2, ....
the residual sequence

SR S

is a regular base and
ty, =1fork =1,2, ... ,n, ...
ag = lfor x > kand a; = 0for 2 < k

§8
Symbolic Interpretetion of Alef and C
A. The power of the countable set

(8.1) Alef = 3 N(\) (additive infinity)
A=1

and in connection with (1.2) and (1.3).

B. The power of the Continuum

(8.2) C=1.2.3..... n.... = o (mutiplicative infinity).
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§9
The Dedekind Cut and Factorial Representation

For every x € A | we wecall the finite or infinite sequence
9.1) A , A, , ..., Ax_,
which is obtained from the sequence
(9.2) AL A, o LA,

by the omission of those clusters A, in which there is no-repre-
sentative of x, The Reduced Sequence of the Representatives of
x. Obviously (9.1) might as well be identical with (9.2).

A. Every x € A is a Dedekind Cut represented by the finite

or infinite sequence
(93) Xkl . sz 5 e e o an Py

X € A 0 and maximal relative to x.

B. x = @ (Ay) is the relative choice function of Zer-

melo.

C. Every subset of (9.3) has a maximal element, x is a maximal
element (Zorin ° s Lemma).
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OZET

Continuum’un Cebirsel Yapisi ve Faktsryel Temsil

Bu makale aslmda bundan énce Orta Dogu Teknik Universitesi Temel ve Uy-
gulamal Bilimler Dergisi Cilt 1, Say1 2, y1l 1968 Sayfa 71 de yayimlanan bir aragtir-
manin devamudir. § 1 de temel konuya deginilmistir. § 2 de Abel Kiimeleri tanimlanmigtir.
Diizenlenmis Abel Kiimeleri yardimyle rasyonel sayilarmn siralanabilirlii Cantor me-
todundan farkh bir gekilde gosterilmistir. § 3 de reel ve komplex universe tanimlanmus,
§ 4 te Abel Kiimelerinin ve universe’in minimal ve maximal eksenleri ifade olunmustur.
§ 5 irrasyonel sayilarm yaklagik degerlerinin hesaplanmasi ve hata tahminine dairdir.
§ 6 da genellestirilmig universe tammlanmakta ve bir transcendence kriteri verilmek-
tedir. Aym paragrafta e ve (e-2) ornekleri incelenmektedir. § 7 de faktoryel temsil ile
bazi Diophant denklem sistemleri ve o tipten iki 6rnek irdelenmektedir. § 8 de sembolik
olarak Alef = 3 N (I), C = 0o ! esitlikleri ileri siiriilmektedir. § 9 da faktoryel temsil
Dedekind kesiti ile karsilastirilmaktadur.
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