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On the Space of Matrices f; (A)
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SUMMARY

In this article A will be a fixed nxn matrix and¥'(x) its minimal polynomial of
degree m. The set of matrices f; (A), where f; (A) is a polynomial, is an m-dimensional
subspace of the n? -dlmensmnal space of all nxn matrices [1]. The set of matrices 1;(A),
where

&)Y ) = 1 and £; (x) = 1; (x) (mod ¥ (x) )

is a commutative group under matrix multiplication which is isomerphic to the group
of polynemials r; (x) under multiplication mod'¥" (x). We also characterize properties of
the matrices {; (A) in terms of properties of the polynomials f; (x).

I. INTRODUCTION

I.1. Let F be a field. By the ring of polynomials in the
indeterminate, x, written as F[x], we mean the set of all symbols

a, + arx + ...... -+ a, x"

where n can be any nonnegative integer and where the coefficient
8y, Ary oee.ns , a, are all in F.

Definition L.1. If the greatest common divisor of {(x), g(x)<F[x]
is 1, they are then said to be relatively prime and any polynomial
p(x) ¢ F[x] of positive degree is called prime (or irreducible)
over F if it cannot be expressed as a product of two polynomlals
of positive degree over F.

Definition L.2. If g(x) and h(x) are polynomials whose dif-
ference is divisible by a third polynomial f(x), we say that g(x)
and h(x) are congruent modulo f(x) and write

g (x) = h (x) (mod f(x) )
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In terms of these definitions we may obtain:
Lemma L1. If g(x) = h,(x) (mod f(x) ) and
g: () = h. (x) (mod f(x) ) then
() 209 + g9 =h(x) + hulx) (mod £ (x) )
(i) g(x) g:(x) = hi(x) h(x) (mod £(x) ) .

We designate by [g(x)] the equivalence class consisting of
all polynomials congruent to g(x) modulo f(x). We call [g(x)] a
congruence class modulo f(x) and denote by F[x] /f(x) the set of
all congruence classes [g(x)].

The binary operations for F[x] [f(x) are defined as follows [2].
Definition L3.

() [8®@] + [g:x)] = [g(x) + 8]

(i) [8)] [g:3)] = [gx) g:(x)]

Lemma L2. If f(x), g(x) ¢ F[x] and (f(x), g(x) )=1 then
there exists p(x) ¢ F[x] such that

p(x) g(x) = 1 (mod f(x))
ie. [p(x)] [g(x)] = [1]
Proof. If (f(x), g(x)) = 1, then there exists
P(x), q(x) = F[x] such that
p(x 8(x) + q) f(x) =1
By Definition 1.2 and 1.3 this implies p(x) g(x) =1 (mod {(x) )

i. e. [p(x)] [g(x)] = [1] which in turn implies the existence of a
multiplicative inverse of [g(x)].

In this way the elements [g;(x)] (i = 1,2...)

(gi(x), f (x) ) = 1 form a commutative group under the definiti-
on of multiplication given in Definition 1.3.

2.1. If A is an nxn matrix over a field F we may take the n?
elements a; (i, k = 1,2....,n) in some fixed order so obtaining
a row or column vector. In this way we see that the vector space
of all nxn matrices over F has dimension n’.
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Lemme 2.1. If E is the nxn unit matrix, the matrices

E, A, A%, A"

are linearly dependent.

2

Proof. Suppose ¢t 4+ ¢ A 4+ ..... + ¢, AY = O then we
obtain n? homogeneous equations n? + 1 unknowns. Such a sys-
tem always has a non trivial solution which completes the proof.
Thus given any nxn matrix A there is always a non-zero poly-
nomial

with f(A) = O.
Definition 2.1. A polynomial f(x) is called an annihilating
polynomial of the matrix if

f(A) = O
By Lemma 2.1. we see that a non-zero anmihilating poly-
nomial always exists.

Definition 2.2. For i, k = 1,2....,n, we denote by E; the
matrix whose (i,k) the element is equal to 1 and all of whose re-
maining elements are equal to O.

We now give various results concerning the matrices

Ey (i, k = 1,2,..n).

Lemma 2.2. The matrices E;; (i, k = 1, 2,...., n) are line-
arly independent.

Proof. Suppose SIS ¢y B = O. It follows at once from
k==t

the definition of the matrices E;; that ¢;, = O (i, k =1, 2,...,n)
and the result follows.
Lemma 2.3. (i) E?; = E,; (idempotent)
(T e
(i) By By = Euo i J '
0,ifj #r

Proof. This follows at once from the definition of the matrices

Eik .
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3.1. A given matrix A has several annihilating polynomials.
For example it follows from the Cayley-Hamilton theorem that
every matrix satisfies its own characteristic equation. Among
all the annihilating polynomials is a monic one with least degree
called the minimal polynomial. Every annihilating is divisivble
by the minimal polynomial.

So further our study of matrices f(A) we need the following
lemma in polynomials.

Lemma 3.1. The greatest common divisor of f(x) and g(x)
is d(x) 7 1 if and only if there exist non-zero polynomials p(x)
and q(x) such that
p(x) f(x) = q(x) g(x)
deg p(x) < deg g(x), deg q(x) < deg f(x)
Proof. Let the g. c. d. of f(x) and g(x) be d(x) % 1, then
f(x) = d(x) fi(x) and g(x) = d(x) g(x)
where deg f(x) < deg f(x) and deg g,(x) < deg g(x).

from this, we have

g(x) f{x) = £i(x) g(x)
Thus, taking g.(x) = p(x) and f,(x) = ¢(x) we have
p(¥) fx) = q(x) &)
Conversly suppose f(x) and g(x) relatively prime and

p(x) f(x) = q(x) g(x) holds. Then there exist polynomials h(x)
and k(x) such that

h(x) f(x) + k(x) g(x) = 1

Then using p(x) f(x) = q(x) g(x) we have
P = () h(x) f(x) + p(x) k(x) g(x)
p(x) = (h(x) q(x) + p(x) k(=) ) gx)

and g(x) divides p(x). But this impossible. Hence f(x) and g (x)
cannot be relatively prime, i.e., d(x) == 1.

Theorem 3.1. Let ¢ (x) be the minimal polynomial of a mat-
rix A over F, and let g(x) be a polynomial over F. Then g(A)
is non singular if and only if g(x) is relatively prime to ¢ (x).
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Proof. Let g(x) and { (x) be relatively prime. Then there
exist polynomials p(x) and q(x) over F such that

p(x) 8(x) + q(x) ¢ (x) =1
is identically satisfied.
Hence
p(A) g(A) + q(4) ¢ (A) = E, i e,
P(A) g(A) = g(A) P(A) = E
from which we see g(A) is non-singular.

Conversly, let g(A) be non-singular but suppose g(x) and
{ (x) are not relatively prime. Then by Lemma 3.1. there are
polynomial h(x) and k(x) with

h(x) g(x) = kix) § ()

Thus
h(A) g(A) = k(A) {(A) = 0
h(A) g(A) = 0

i.e. h(A) =0

since g(A) is non-singular. But degh(x) < deg {(x) and this
contradicts the definition of the minimal polynomial. Hence
(g(x), U(x) ) = 1.
Theorem 3.2. Let J(x) = (x-x,)™ (x—x,)™2.. (x-x4)™®
m = E} m;, be the minimal polynomial of a matrix A. If the
i=1
polynomials f(x), fi(x),... are relatively prime to { (x) and
fi(x) =1 (x) (mod { (x))

(i) m(A) r(A) = 1 (A) 1, (A), (hk = 1,2,...)

(i) For each h there exists a p(A) matrix
such that

then

m (A)p(A) =p(A)r, (A) = E

Proof. (i). Since f;(x) = r;(x) (mod { (x) ) we have the follow-
ing



70 E. KAYA

fo(x) = qi (%) 4‘ (x) + r(x)

and
f(x) = qu(x) ¢ (%) + ndx) -
Being f(A) = r (&) and i (A) = 1 (A) we get
r(A) r(A) = nfA) ry(A)
(ii) Since the polynomials f,(x) and { (x) are relatively prime,
there exist p(x) and q(x) polynomials.
such that
Wp(x) £fu(x) + qx) Ux) =1
is identically safisfied.
where deg p(x) < deg ¢ (x) and deg q(x) < deg f,(x).
On the other hand, if we use fy(x) = ry(x) (mod ¢ (x) ) or
f(x) = k(x) § (x) + ry(x) on the above relation, we get
P(x) [k(x) ¢ (x) + 1(x)] + a() 4’. (x) =1
p(x) 1 (x) + [p(x) k(x) + q(x) [ (x) =1
p(x) r(x) =1 (mod ¢ (x)
This means
(2) p(A) 1,(A) = 1,(A) p(A) = E

From (1) and (2) we have shown the existence of inverse of ry (A)
matrix.

Comparing the results, we have
P(A) £,(A) = £,(A) p(A) = E and p(A) ry(A) = 1,(A) p(A) = E
m(A) p(A) £,(A) = =,(A) p(A) £4(A)
E£,(A) — 5,(A)E
fo(A) = ry(A).
This shows that the uniqueness of the inverse of r,(A) matrix.

4. We seperate the polynomaials fi(x) ¢ F [x], (i=1, 2,....)

into three sets.

(i) We denote the set of polynomials with f; (x) =0 (mod {(x))
by M. If For each f(x) ¢ M, we have.
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£(x) = q(x) d(x)
fi(A) = q(4) § (A) = 0, f;(A) = 0
This means that M contains all annihilating polynomials of A
and minimal polymnomial of matrix A.

(i) Let (f(x), ¢ (x) ) = 1 and f,(x) = r,(x) (mod ¢ (x) )
This set will be shown by N. If for any f;(x) € N. fi(x) = q;(x) $(x)
+ ri(x) and (fi(x), ¢ (x)) = 1, then we have
(), d () = (@@ &)+ 14 E) =0, IE)) =1

p(x) 1i(x) + a(x) ¢ (x) =1

P(A) ri(A) = r(A) p(A) = E
According to the Theorem 3.1. and 3.2., the matrices which are
in the set N form a commutative group. Using Definition 1.2,
1.3 and Lemma 1.2 we see that this commutative group and
ri(x) (mod § (x) ) are isomorphic.

(iii) Let (f(x), §(x) ) = di(x) % 1 and

fi(x) = r,(x) (mod ¢ (x) ). This set will be shown by Q. For
any f;(x) ¢ Q we have (f,(x), { (x) ) = d;(x) as it is done similarly
in (ii). Hence

P 1(x) - ax) ) — dx)
P(A) 1,(A) = r,(4) p(A) = d;(A)
On the other hand, since the degrees of each polynomials p(x),

r;(x) and d;(x) are less than degree of minimal polynomial { (x).
We have

Pi(A) # 0, r(A) £ 0, dy(A) #= 0
In addition; being deg h(x) < deg { (x) and by Lemma 3.1.,
we get
h(x) r(x) = k (x) ¢ (x)
h (A) r; (A) = r; (A) h(A) = 0
A non-zero square matrix is a divisor of zero if and only if

its is singular. In this case, for any polynomial fi(x) the r;(A)
matrices are singular in the set Q.
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OZET
Bu ¢aligmada A, nxn mertebeden bir matris ile bunun m ninei dereceden't” (x) mini-
mal polinomu gz éniine ahmyor. n? —boyutlu f; (A) matrisler uzaymnda

€ 0T (x)) = 1vef x) =1 (x) (mod¥ (x))

olan biitiin f;(A) matrislerinin m-boyutlu alt uzaymnda r;(A) matrislerinin r;(x) (med ¥'(x)
polinomlarina izomorf bir komutatif grup teskil ettigi gosterilmis ve ayrica bu
uzayin f; (A) matrislerinin sifir, singiiler ve singiiler olmamasina gére f; (x) polinomlarmmn
bir tasnifi yapilmagtir.
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