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On Higher Curvatures Of A Curve

Arif SABUNCUOGLU - H. Hilmi HACISALIHOGLU*
(Received, January 1975)
ABSTRACT

The higher curvatures of a Curve in n-dimensional Euclidean space E™ are derived
by Herman Gluck [1]. In this paper we give a new method to define and calculate the
higher curvatures of a curve which is supposed a differentiable 1- manifold in E™. We

also prove that these curvatures are invariant under the rigid motions.
I. INTRODUCTION

In E" n-dimensional Euclidean space, a curve a is a diffeo-
morphic image of an open segment I of a straight line. Therefore in
differential geometry a curve of E® can be regarded as a 1-mainold.
Hengce for a curve also we can define the Riemanian metric which
is known for the submanifolds of E?. This permits us to have the
tangent space, at any point a(s) of the curve a, as an inner pro-
duct space. We can also apply the theory of the vector fields, the
vector-valued forms and the frame bundles over E®. Thus we can
accept that the properties of the equations of structure and the
cross section are known also for the curves of E”.

The Frenet frame of a curve in E"is an oriented orthonormal
frame which determines a cross section

C: ol) — %,
and hence we may consider the pull back 1-forms
C*(g) = 2%,1 <i <n
C* (zy) = 9% .1 <i,j <n,
where 9, denotes the orthonormal frame bundle over E*, &,

@;; are the conmnection forms which appear in the equations
of structure of the Lie groups.

* The members of the science Faculty of Ankara University



34 ARIF SABUNCUOGLU — H.HILMi HACISALIHOGLU

Because of the cotangent space to a(s) is spanned by ds for
all s ¢ I we may find that

a* (%) = fi(s)ds , 1 <i <n

o (%) = ky(s) ds , 1 <i,j <n
where k;; = -k;;. We also show that the functions fi(s) and k;;(s)

are differential geometric invariants of the curve ¢ under the rigid
motions.

In differential geometry‘the role of higher curvatures of a cur-
ve is importent for the higher dimensions. To show this importance
we can mention the papers [3 ] and [4 ]. The differential geometry
of higher dimensiors is about the p-forms, equations of structures
on a manifold. These needs the new techniques of modern differen-
tial geometry. So it will be very valuable to treat the paper [1] of
Herman Gluck in this new style. ‘

II. BASIC CONCEPTS

a) Tangent and Cotangent Spaces

If M is an r-dimensional submanifold of E® n-dimensional Euc-
lidean space. Then we denote the tangent space to M at its point
m by Ty(m). We consider Ty(m) as a linear subspace of the tan-
gent space T g(m) of E® at the same point m. Then, because of
T g*(m) has an Euclidean inner product, Ty(m) inherits an inner
product from T g*(m). This inner product is called the induced Rie-
manrian,_metric and denoted by ds? in classical books on diffe
rential geometry.

Let (¥, U) be a coordinate neighorhood for the submanifold
M. This means that the mapping
¥Y:U0—M
is a differeomorphism. Then
(IL. 1) W, : Te() — Ty (F()
is a linear transformation which corresponds to the Jacobian mat-

rix of ¥. We denote the adjoint of ¥, by ¥* which is a transfor-

formation
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(L. 2) P T, (W(u)) —> Tie(u)

where T*, (¥(u)) and Ti:(u) are the dual spaces of Ty (¥(u))
and Tg(u), respectively. The vector spaces T*, (¥'(u)) and Tir(u)
are the cotangent spaces at the corresponding points.

b) Vector fields and forms
Definition II. 1: ;
Let U be a Euclidean neighorhood. A 1-form w is a map-
ping ‘
w: U — UTy(x), xeU ‘
where the union is taken over all xeU, such that pow: U—-U
is the identity mapping; )

p: UTg(x) —— U, t,eTy (x),

- . P(tx) = X.
Definition IT . 2:

A vector field is a function

X : U — UTy(m)
such that )
peX :U— U

is the identity mapping and
p: UT (x) — T,
P(tx) =X, tXET(X)t

Let x = (XI’_...,);“) be a Euclidean coordinate system in E®
s D .0 ; . R , .
then {-— ..., — 1! 'isa basis of the vector space %, of all the
0x, ox,

parallel vector fields on E™ and {dx, ,..., dx,} is the dual basis of‘
dual space Q of x,. Let M be a r-dimensional submanifold of E®
with local coordinates (u,, ..., u,) given by

x; = x; (45e51n) ,1 <i <n
Then a 1-form on M has the analytic expression

nr axi o

i u, i

where @ denotes the tensor product.
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¢) Vector-Valued Forms
.Definition I1.3 :

Let M be a submanifold of E® and W be a q-dimensional
vector space. A vector-valued form on M with values
in W is a mapping A defined as

linear

A(m) : Ty(m) ———— W.

According to Definition II. 3 the 1-form w in the definition
II. 1 is a vector valued form. Now we need the following theorem

[2]:
Theorem I1.1:

Let A be a vector-valued form on M with values in
W, and let w, ,..., W, be a basis of W. Then, there
exists a uniquely determined ordered set of q 1-forms
0, ..., Qq on M such that

(IL. 4) A= 3 0, ®w

i=1

which is defined by

(ILS)  Aft,) = = <t,0,(m)> w; , ViaeTy(m).
i=1 R

d) Reparameterization of a Curve in E®

Let a: [a, b] —— E®, where [a, b]is the intervala <t < b,

. . 2
be a parameterized curve with parameter t such that a, (—6-5-)4:0

for all te[a,b] i. e. ¢ is an immersion.

Definition II. 4:

Let a: [a, b] —— E™ be a parameterized curve with
parameter t. Let [a’, b’ ] be an interval with parameter
s, and let

1/ a

[a',b'] s [a,b]

where v has a nonvanishing Jacobian. Then, aoy is a
parameterized curve with parameter s. The curve
ao is called a reparameterization of the curve a.

- En,
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Definition I1. 5:
Let a: [a,b]

parameter s. The parameterization of ais called the arc-

— E™ be a parameterized curve with

lenth parameter if a"‘(-i—) has length one in Ty(x(s))

foralla <s < b.

Now, we can give a well-known theorem [2].

Theorem I1I. 2:

A parameterized curve can always be reparameterized
by an arc-length parameter.

e) Equations of Structure for %,

Let %, be the orthonormal frame bundle over E™. If (x,, ...,x,)
is a Euclidean coordinate system for E", we will choose f %,

2 7
fo—(-éx—l Io,..., éx_n ’0,0) .

- Let r denotes a rigid motion in E”, then r has the matrix represen-
tation

’ g = [gyl»

where g is an orthogonal n X n matrix and a is a translation i. e
n X 1 matrix .

Let f = 1(f) = (e oo, €, 5'2)
where

A vector field X; over 7, is defined by
X; (f) = e,.
Then a vector-valued form defined by

(IL. 6) dX; = T ® Xy

k

1 e

can be expressed in the form [2]
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(1L 7) dX = k% 7, ®X,
=1
where 1 <i,k <n
(IL. 8) dX; = I g, ®X,
k=1
(421 = T g, A g,
s=1
(I1.9) | dg,, = o, A @, 1<isj<n,
. L ESS
l Qij == - gji'

Formulas IL.6, II. 7, I1.8 and I1.9 are called the equations of
‘structure of %, :

II1. HIGHER CURVATURES OF A CURVE IN E®
a) Frenet Frame Along A Curve.

Let (a, S) be a local coordinat system for an arc-length curve
-of E™ with the arc-length s as parameter, such that S is an open
interval, i. e,

S = {s: a <s <b,seR}.
We further restrict our attention to curves

a: S — En
which are immersions, i.e, whieh satisfy a, (a—as—) £ 0. Then

clearly a has the property that

0
Il e, (—5;) I =1 R ngS.
Let define the vector field X, as follows
(I1L.1) X, = «, (-
: ! *\os )

Then X, is the unit tangent vector to the curve a in the direction
of increasing s. '
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If a(s) = (x,(s) ,..., x4(s)) is Euclidean coordinate system

of E® then from [2, Theorem II. 6. 4] we have that

dx; @

=t ds ox;

(I11.2) X, =
and the corresponding vector-valued form is

(ITL3) X, = % d(i’_‘.i) &

=1 ds X4

where ® denotes the tensor product. By means of Theorem II.1
we may write that

) n @ dx, 2 2

X, (“* (a_» =2 <“*(a—s>’d(x) (a_) > 5%
n 0 d*x; ] -8

= 5 % (7) el (—a“) ~ %

1

or since we have that ds (—;—:—) ==

Il

Ms

A

[~]

*
AN
%’l ®

d?x; 0
)’ & - im

or since we have that

o (o (£)) - o5 (2) )

and a* is a linear transformation

o n Fj d*x 0
— — %) -1 —_— ———i
Xm<as> £ (@) <a (as> ,

n 2
(IIL4) dX, — % (%) X g5 g 2
=

v ds? ox,
From (II1.4) we that

(0 (2)) = (Lo Srael) (w (L))
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n d*x; 0 o
— %Y _1 i o
o ;21 (a*) ds? ds ( G ( 08 ) ) ox;
o A Ly b ¢
= FEer e (D)) =

a 2 and (a*)-! (ds) are dual basis for each other we have that
*\ os

@) @) (o0 () ) = 2

and so
0 n dix, 0
(I1L5) axX, ( a, (a—s) ) - P e
. dX .
The vector field L along the curve a is completely deter-

ds

mined by the curve and the concept of parallel displacement in
Er,
If we let

(111.6) Y:(a(s) = dX, (“* (—js'“) )

Y, is a vector field on a(S) and then by means of (II1.5) we have
that

B dZXi 7}
(IL7) Vilal) =2 < 6 7o Iy -
Let Y; be defined by
(IT1. 8) vy, =& 2 15 <n

J i=1 de 5)_(-1_
Then we suppose that the system
{Xi, Yo, Y3
of vector fields is linearly independent. Since Tga(a (s)) is an inner-
product vector space with a basis {X,, Y, ,..., Y}, there exists an
algorithm, called the Gram-Schmidt process, for converting

{X1, Yy, ., Y} into a coherently oriented orthonormal frame
{X1, Xz ey X} which is an orthonormal basis of Tga(a(s)).
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Since i— eees _6_ 2 is also another positive oriented ort-
X 7%, 5 ‘ o
o
honormal basis of Tga(a(s)) these two bases {X;} and ? T §are
related by Xi

'

(IIL. 9) X, = K, =2

G 1 <i < n.
- hoxy

We have thus proven the following theorem.

Theorem II1.1:

Let a be a curve in E® with arc - length parameter s and

Xy = a, (1) I X, _ dx., (-76—) #0, where dX,is
as ds s

the vector - valued form determined by the vector field X, and

Euclidean parallelism, at any point of a, we have a positive orien-

ted orthonormal frame X ,, X ,, ..., X, at each point of a.
Definition III. 1:

Using the above notation, { X, ..., X} is called the Fre-
net frame along a.

b) Frenet Formulas And The Higher Curvatures.
Definition III. 2:

A mapping
defined by

Cela(s)) = (Xulals)), < Xyla(s)) 5 als)) € Fo
is called the Frenet cross section.

If 4 @5, 1 < i, j< n, are the 1-forms defined on

then the 1-forms defined on S are
(Cf)* (gij) = ngij
(CY* (2y) = o«

The basis of the vector space of all 1-forms on S is {ds}.
Therefore there are differentiable functions

(I11. 10)
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tij . S —_—> R
such that
(I11.11) a*(z;,%) = tyds , 1 <1,

On the other hand from (I1.8) we have that

IA

n.

(I1I. 12) X, = £ %X, 1 =i =n.
i=1

Replacing (I11.11) in (IT1.12) we obtain that

(IIL. 13) dX; = X (a%)-' (t; ds) ® X,
i=t

and so applying the same computation for (II1.5) we obtain from
(IT1.13) that

i MB

ty (s) X,.

1

(ITL. 14) X, (a, (_6%)) -

If we have the notation

(e () - x

according to Herman Gluck, the expressions (III. 13) and (II1.14)
are the Frenet Formulas. Since we know [1] that

X'i(s) = = ti4(8) X y(8)Fti(s) Xipyls) o 2 <i <nl

X'(s) = - tn—1(S’) Xn—1(s)
then the matrix [t;;] has the form

J

(I1L.15) g

0 t. O 0 o0 0
“t 0t 0 0 0
(111.16) 0 —t,, 0 0 0 0

0 ... Ty thop 0 Ty
. 0 0 Y 0 ta-pa
The 1-forms o*(z;;% ) have the expressions [I, pp: 105,
formula V7]:

ds .

n d
(III.17) a* (Q“Cf) = )\21 k7\] a5

Equations (III. 11) and (II1.17) give us that
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(II.].S) t” == X k)\
A

Definition 111.3:

43

Using the. above notation the coefficients t;; are called the

higher curvatures of the curve a.

. ¢) Special Case:‘

If n = 3 then the matrix (II1.16) becomes

0 t, 0
_tlz 0 tzs
0 —t,; 0

where t,, is from (III.18)

t.= 2 k
12 N 22 dS

On the otherhand, from (IIL.2), we may write that

3 0 3 dX;\ 0
Xi= E k; — = X : —
o1 b 5D s o
and from (IIL.8).
3 0 1 3 A%y
X, = T k =
=1 P a0 s

Thus we can write that
1 dx,  dix,
1 Y] dsz  ds?

_ 1 (Eﬁ)’
Y]] o1 \ ds?

3
t,. = z
A=

te = [|Y,]
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Then t,, is the first curvature of the curve. In a similar way we
see that

(TIL.20) | t.. | = ||dx3( ay ( :S ) ) =1 X5 |

and so t,, is the second curvature (torsion) of the curve.

d) The Invariance Of The Curvatures t;;.

The curvatures t;; of the curve a are invariant under the rigid
motions of E".

The distance-preserving mappings of E® are called rigid

motions. The set of all rigid motions of E® will be denoted by
R(n).

Let reR(n) and the Frenet frame of the curve r(a(S)) be the
frame {X*,X",,..., X", }. Thus Equation (II1.14), for the curve
r(a(S)), becomes

’ T a 3 r r
(I11.14) dX7 (a* (—US—) ) = =ty X,

We want to show that t;; = t7; .

Let the local coordinat system of r{a(S)) be (roa, S) . Then
for this new curve (III.1) reduces to

(IIL1) X, = (roa), ( :s )

Indeed || X*, || = 1. To show this we use the fact that

(roa), = r,oa,

and so since we know that reR(n)

X 0= 0ee (e () ) 0= () 1=t

Since reR(n) has the matrix form

as we see in the paragraph II we may have that
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and so

Y,
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n
= ) -
i=1 ds’ 28
dix 2
n n
=l Z 2 g .)\ -
i=1 A=1 D dsi X

(X X)) = (ry (X2)porr T, (X))

45

Definition ITI.2 gives us the following Frenet Cross section
for the curve r(a(S)):

€% : (roa) (8) —— T,

which is defined by

Cri(s) = (ru(Xi(5))rer (X a(5)); rlals))).

Hence Equation (II1.11), for this new curve, reduces to
(II1.11)" (roa)* (@icjf' ) = a* (r*(ggf‘ ) = t7;ds.

And finally as a similar way for Equation (II1.17) we have

A L, k)
(roa)* (zl) = E (2 g k. _‘L:_lﬁ.__w____ ds
’ Al t=1 At I

: 3 L%

k. = ds
=1 t=1 Exe Y y_zlg)%’- ds

£k Ee g 5

t==1 TN

B

dky,
ki 3 i

ds
1 LI 7} ds

-
i
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= dkti
— tEI ktj _d_.s__ dS

(IIL21)  (rea)* () = a* (e ).
Using the Equations (II1.11), (II1.11)’ and (II1.21) we have that
iy =ty

which completes the proof.
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OZET

n-beyutlu Oklid wzaynda bir egrinin yiiksek mertebeden egrilikleri Herman Gluck
tarafindan hesaplanmigtir. Bu ¢alismada aym egriliklerin hesaplanmasiigin yeni bir metot
verilmektedir. Ayrica bu egriliklerin kata hareketler altinda degigmez kaldiklar: da bu yeni
metodun bir sonucu olarak gosterilmektedir.
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