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Polynomial Moulton Planes
Riistem KAYA

Department of Mathematies, University of Ankara
ABSTRACT

In this paper a family of affine planes is defined. Any plane in the family is deter-
mined by a triple (F, &, n) consisting of a pseudo-ordered field F, a one-to-one and order
reversing or order preserving function & of F onto itself, and an element n of the set
N,= {2x: xeN the set of positive integers} if @ is order reversing or an element n of either
of the sets N,= {2x—1 X € N} and N;= {(Zx—l)"‘:x € N} if & is order preserving. In the
case where F is a finite field of order q if n € N, then (g-1, n)=2 and the elements « and
-o are not both square or nop-square elements in the field F;if ne N, orn € N; then
(q-1, n)=1 or (q~1, n~1)=1 respectively. These planes are non-desarguesian for every
n and every F unless & (x) =ox+[3, where o € F but a¢ PV{O} oro € P according as
ne€Nyorne Nyn_Ns; 8 € F, (P is the multiplicative subgroup of index 2 of F).
For n=0 the planes in the family are the so-called Moulton planes.

1. INTRODUCTION

Early in this century, Moulton [5] gave a construction of
a non-desarguesian plane. The points of this plane are points of
the euclidean plane, that is, ordered pairs of (x,y) of the field of
real numbers. Its lines are i) ordinary lines of the form x=a, or
y=m yx-+b if m <0; ii) broken lines of the form y=mx-+}b or
y=c¢ (mx+b) depending on whether y <0 or y>0, for all m>0
and a comstant ¢, 1%¢>0. Levenberg [4] has generalized the
Moulton plane by consideration of the broken line geometries de-
fined by an arbitrary function @ between the upper and lower
half-plane angles. All of the Leverberg-Moulton planes have been
constructed by means of broken lines of the euclidean plane. Pickert
[6] has replaced the field of real numbers by an ordered skew-
field and exchanged the roles of the x and y axes in the Moulton
Construction for certain reasons. The following generalization of
the Moulton plane is due to Pierce [7]: Let F be a pseudo-
ordered field and &, a one-to-one and order preserving function on F
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such that x > @ (x) and x > @(x) -n,x, n, € F, n,<0, both carry
F onto itself. The points of any Pierce-Moulton plane are ordered
pairs (x, y), and its lines are given by the equations x=a and
y=mo x+b, where m o x denotes (m) x or mx according as x <0 or
x>0, for all a, b, m, x, y € F. For additional references pertaining
to pseudo-ordered fields see Pierce [7].In [3], I have given another
generalization for the Moulton plane by replacing the broken half-
lines with particularly chosen polynomial curves of odd degree.
In such a plane a deformed line has the equation y—=m(x-a)
or y=cm(x-a)® depending on whether y <0 or y>0, where all
a, ¢, m, X, y are real numbers with ¢>0, m >0 and n is a positive
odd integer; ¢ and n are constants for a plane.

The present paper generalizes certain Pierce-Moulton planes
[7] and the Levenberg-Moulton planes [4], and also generalizes the
planes givenin [3]in many ways. In both the Levenberg-Moulton
planes and the Pierce-Moulton planes the half-lines refracted by
an arbitrary function @ are replaced by certain curves over the
pseudo-ordered field F, which are also refracted by the same func-
tion @. However, it is not possible to generalize some of the
Pierce-Moulton planes in this way, for instance the plane on the
field of rational numbers. Generalized desarguesian and non-
desarguesian planes are determined by finding the functions @
which define them. The y-axis is taken as the refraction axis for all
planes. In the last part of the paper the fields which are used to
construct a PM(F, @, n) with n ¢ N, are determined. The
connection between polynomial Moulton planes and the other
planes known as Moulton planes are discussed.

2. POLYNOMIAL MOULTON PLANES

Our terminology will follow in part Pierce [7]. Let N denote
the set of all positive integers. For the sake of brevity the follo-
wing sets will be used very often: N; = {2x-1:x e N}, Ny = {£2x:
x € N}, N3 = {(2x-1)-1:x € N} and S=N; N, _Nj;. Throughout
the paper F stands for both the field o freal numbers R and the
finite field GF(q) of order q, where q=p’', p an odd prime and reN.
Unless otherwise stated, P denotes the multiplicative sub-
group of index 2 of F, and P = F~(P_, {0}). Whenever a finite field

s
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is being considered it is assumed that there is a pseudo-order on
it, while R ise ordered in the usnal way. Let x, y € F. It is said
that x and y have the same sing if x, y € P or x,y € P and opposite
sings if xeP,yePory e P, x € P. A single-valued function
@ oun afield F is said to be order preserving if and only if
(2(x)-2(¥)) /(x-y) € P; and order reversing if and only if
(2(x)- 2(y)) [(x-y) € P, for all x, y € F, xv.

DEFINITIONS: Let ¢ be a one-to-one function of the field
F onto itself and n be an element of the set S.A Polynomial
Moulton construction is a collection of points and lines, in which (i)
each point is an ordered pair (x, y), x, y € F, and (ii) each line is any
one of the following sets of the points:

[a] = {(xy) : x =a, x, y € F}
[m,b] = {(x,y) :y =m % x+b, m % x= g(m)x“ if x e P and
m % x=mx if xeP_ {0}; b,m,x,yeF}.

Hereafter m and b will be called the slope and the y-intercept
of the line [m, b}, respectively. Lines having the form [a] will
be called vertical lines. A Polynomial Moulton construction will
be denoted by the symbol PC(F, z,n).

A construction PC(F, @, n) is called a Polynomial Moulton
plane if and only if its points and lines form an affine plane. If
PC(F, @, n) is such a construction, it will be denoted by the
symbol PM(F, &,n).

Let us now give the following preliminary lemmas.

LEMMA 1. If @ is a one-to-one and order reversing function
of the field F onto itself then o: x -~ @(x)-pyx, p, € P, is a one-to-
one and onto function of F.

If ¢ (x) = ¢(y) then @(x)- (yj=p, (x-y), which is impossible
unless x=y because p, € P and @ is order reversing. Hence, ¢ is
one-to-one. If F is finite then the “onto” property of ¢ follows
from the finiteness; if F=R then it can be easily shown that ¢ is
“onto”.

LEMMA 2. If o is one-to-one and order preserving funéiion
of the field F onto itself then ¥ : x -~ @(x)-n,x, n, € P, is a one-to-
one and onto function of F. ‘
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This lemma is indirectly proven for the finite case in Pierce
[7], and is obviously valid for F=R.

LEMMA 3. Let P be the multiplicative subgroup of index 2 of
the field GF(q), q=p%, p en odd prime number,r ¢ N, and let
P=GF (q)-(P_ {0}). Then the binomial equation

@ x"a=0a e P,nelN,

has a unique solution in P if and only if 1) the greatest common divisor
of n and q-1 is 2, that is, (q-1, n)=2, and ii) each x € P implies
-x e P.

Let x"-a=0 with a € P and n € N, has a unique solution « € P.
Then each a € P is necessarily an n-th power in the GF (q), which
implies that (q-1, n)=2, see Dickson [2, §. 63]. Hence, equation
(I) has exactly two roots in the GF(q), and the second root is -a
which can be in P unless i) is satisfied.

Conversely, if (q—1, n)=2 then (q-1) /2 elements in the GF(q)
are n-th powers, which are elements of P because of n € Ny and P
consists of the even powers of a primitive root of the GF(q). It
follows from ii) that only one of the two roots of equation (I) is

in P.

THEOREM 1. A4 construction PC(F, &, n) with n ¢ N, forms a
Polynomial Moulton plane PM(F, z, n) if and only if i) the function
& is order reversing ; and for F=GF(q) additionally ii) (q-1,n) = 2
and iii) each x € P implies -x € P.

A construction PC(F, @,n) with n € Ny or n € N, forms a
Polynomial Moulton plane if and only if i) the function g is
order preserving ; and for F=GF(q) additionally iiy) (q-1, n)=1if
n e Nj,or (g-1, nY)=1ifn e N,.

The first axiom for an affine plane is that for any two distinct
points there exists exactly one line which is on both points. Let
(uo, vo) and (uy, v;) be two distinct points of a given PC(F, z, n).
Suppose u, € P, uy € P {0}, then we have v,= @(m) u,"4b and
vy =mu; +b. By eliminating b between these two equations we
get

(II) 1] (m) - (111 /uon) m+(vl 'Vo) /uO“:O_
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If u; =0 then as @ is one-to-one and onto, m= @1 ((v,-vy) [u,").
Letu;#0. Ifn e Ny and & is order reversing, by lemma 1, (and if
n € Ny and ¢ is order preserving, by lemma 2) there exists a unique
solution m in F for equation (II). Therefore, if n € N;, then the
order reversing (or, if ne Nj, the order preserving) property of & is
sufficient to prove that only one line joins any two distinct points.
In the case where u, € P and u; € P {0}. Suppose u, € P,u; ¢ P
with u 7 uy. Then we have @(m) (u,"-u;") = v, - vq. Since u, # uy,
U -up? # 0 < (uouy1)® # Lforuguy-1 # 1« a® # 1 for every
acP,a # 1.Ifn € N; and (g-1, n) = 2 then there exist integersh
and k such that (q-1) h-+nk = 2. Hence a2 = a(3-1)h+ok= (am).
Clearyly a2 1 for a1 if and only if a #-1. But a #-1 is always
true since a € P, 1 € P and by iii) -1 € P. It follows that 1 # a2 =
(a®)k, thatis, (a®)* # 1. Therefore we have a?#1. If n € N; and
(q-1,n)=1 then there exist integers s and t such that 1=(q—1)s+nt.
Therefore 1 # a = a1t = (a")t, But 1 # (a")' =>a" # 1
Consequently, in this case ii) and iii) or the first part of ii;) are
sufficient for the the first axiom of an affine plane to be satisfied
according as n €N, orn € Nj, respectively. Clearly, in all other
possible cases the axiom is satisfied without any extra condition
for &, F and n.

Let us now verify the second axion, that is, existence of a unique
line which is on a given point and parallel to a given line. Two
lines are considered parallel if and only if they coincide or have no
point in common. It is easily seen that the lines which pass through
the given point (u,, v,) and parallel to the lines [a] and [m,b] are
[u,] and [m, v, —m % u,], respectively. Further, every pair of the
lines [a] and [m, b ] have the common point (a, m % a-+b). Ifm;#m,
then thelines {my,b; ] and [m,, by | meet at the point (x,,m;%x,+b;)
with x, = (by- b)) /(my-my) or x,° = (by - by) /(@(my) - &(my)
according as x, € P._ {0} or x, € P. In the case wheren e N; and o
is order reversing, by using lemma 3 and also the fact that ne ele-
ment in P is an even power in the GF(q), it is seen that the unique
existence of x, is equivalent to the conditions ii) and iii) of the
theorem; in the case where n ¢ N; and o is order preservihg,
(By-b2) [(mp-my) and ((b1-b,)) /( @(mo)- &(my))l/” have the same sign
and therefore if F=GI(q), then the existence and uniqueness of
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X, is equivalent to q—1 and n being relatively prime, see Dickson

[2, § 63].

Conversely if n € Ny but @ fails to reverse the order for some
mj, m, in F, m; #m,, then (m,-my) and ( g(m,)- @(m,)) could have
the same sign and therefore [m¢, by] and [mjy, b,] could have had
either no point or two points in common depending on whether
(bg-by) /(mp-my) is in P or P. It follows that the order reversing
property of @ is necessary in order that any two non-parallel lines
meet on a unique point. Similarly, if n € Ny but & fails to preserve
the order for some my and mj in F, m;#m,, then (my-m;) and
@ (my)- g (m;) could have different signs and therefore the lines
[my, by] and [mjy, by ] couldn’t meet on exactly one point, that is,
order preserving property is necessary for the second axiom to be
satisfied.

In the above proof the case where n € N3 was skipped. In fact,
it is more or less the same with the case where n € N;. However,
the condition (q-1, n-1)=1 is also needed for the first axiom to be
satisfied, as well as for the binary operation . to be a single valued
gymbol. The presence of three noncollinear points is obvious so the
proof of the theorem is now complete.

Polynomial Moulton planes are generally non-desarguesian.
However, it is notable that a subclass of the family of these planes
satisfies the most important theorems of projective plane geometry
such as the Pappus theorem and the Desargues theorem. The fol-
lowing theorem provides us with some such planes for any n in the
set S,

THEOREM 2. A Polynomial Moulton plane PM (¥, &, n)
is isomorphic to oy, the classic affine plane over the field F, if and
only if @ (m) =um-pB, where 8 € ¥, and « € P or « € P according
asn € Ny orn € Ny UN;s.

Assume that n; and PM (F,@,n) are isomorphic and T
denotes the isomorphism between them. We can without loss of
generality assume that T maps 1) the point (x', ') of =y for x'eP
{0} onto (x, y) of PM(F, &, n), where x=x', y=y’, and 2) the
line {y’=mx’'+4b} of =y onto the line [m,b] of PM (F, &, n). Let
{y'=m;x"+b;}, m;#m;j, b;#b;, i, j=1, 2, 3, be three concurrent
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lines of mp. As T is an isomorphism it has to preserve concurrency.
The above three lines are concurrent if and only if

(I1D m; = r+ub; for some 2, p e F, p#0,i=1, 2, 3
while the images of these lines under T are concurrent if and only
if

m; = »+upb; forsome x, p e F, p#£0,i=1, 2, 3

(IV) or
@ (m;) = y+ub; for some v, e F, 4#0,i=1,2,3

according as the first coordinate x of the intersection point of the
lines is x € P._, {0} or x € P. By eliminating b; between (IIT) and
(IV) and replacing m; with m we get @ (m) = am-8, where
a=mnp"1, B=v-ypp-l. Then « € P or « € P follows from the order
reversing or order preserving property of @ according as n € N, or
ne vaNg. ‘

Conversely, let PM (T, &, n) be a Polynomial Moulton plane
with g(m) =om-+48,8eF anda e Pifn e Nyora e Pif n € Ny
N;. Then, define the transformation T from =, to PM (F, @, n)
such that T((x', y))=(x, y), where (x, y) = ((s-1x)}1", y'+Ba-1x’)
or (x', y') accordingasx’ € Porx’ e P {0}, provided thatifn e N,
then («I1x')l/" ¢ P. It can be easily verified that T is a one-to-
one correspondence between the points of n; and PM(F, &, n),
and maps the line {y’=mx'+4b} onto [m, b]; and the line {x" =a}
onto [a] or [(a—1a)l/®] according as a € P\_ {0} or a € P, provided
that («-1a)l/» ¢ P. Hence it is an isomorphism between =, and
PM(F, &, n).

COROLLARY 1. Any PM(F, @, n) with g (m) =am--fis a
pappian plane, where 3 € F, « € Pifn e N, and « € Pifn e N; UN;.

The Corollary follows immediately from theorem 2.

There exist affine transformations between the planes n; and
PM(F, @, n) with g(m) = am+8,8eF,aeP if ne N, aecPif
n € N3 N3, which map any line {y’=m’ x"+b’} of n; onto any line
[m, b] of PM(F, &, n) such that T((x', y'))=(x, y), where (x, y)=
(kx', hlx,+h2y’ + h3) or ((korle)]/n, (k@oﬁl —|— hl) x’ —I—- h2y1+h3)
depending on whether x’ € P\_ {0} or x’ ¢ P, provided that
(ke 1x')-1/" ¢ P; m = k-1 (h; 4+ hom’), b=hyb’ -+ h;, h#0,k e P,
hy, hy, hy € F. The vertical lines are mapped among themselves.
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Although the Polynomial Moulton planes have been presented
as affine planes, they can be regarded as projective planes by
adding ideal elements. Let V and (m) be the ideal points on the
lines [a] and [m,b ] respectively. Denote U=(0), and let PM(F, z,n)
denote the extended polynomial plane.

THEOREM 3. Every PM(F, ,n) is a (V, UV) —Desargues
planel.

Let A=(a, x), A’=(a, x’) on [a] and B=(b, y), B'=(b, y")
on [b], a#b. First let us examine when AB, A’B’ and UV are

concurrent.

Suppose a, b € P. Then the slope of AB is
m= g1 ((x-y)/(a"-b?)) and the slope of A'B’ is
m’'= g-1((x"-y’)/(a®-b")). By theorem 1,if AB, A’B’, UV are
concurrent then m=m’. As ¢ is one-to-one and onto, m=m’ if
and only if x-y=x'-y'.

Suppose acP,beP. Then m satisfies z(m)-(a /b") m=(x-y) /b?,
and similarly m’ satisfies @ (m')-(a /b?) m’'=(x"-y’) /b". It follows
from lemma 1 and lemma 2 that m=m’ if and only if x-y=x"-y".

The case where a € P, b € P is the same as the preceding one;
and obviously if a, b e P_ {0} then m=m"'if and only if x-y=x"-y".

Let C= (¢, z) and C'= (¢,z') on [c], b # ¢ # a. Then the triangles
ABC and A'B’C’ are perspective from V. Since any two of the
equalities x-y=x'-y’, x-z=x'-z’, y-z=y’-z’ imply the third the
triangles are also perspective from the line UV. Thus, PM(F, g, n)
is a (V, UV) —Desargues plane.

LEMMA 4. Any PM(F, &, n) is isomorphic to a« PM(F, ¥, n)
with ¥ (0).

Let T be a coordinate transformation on PM (F, &, n) such
that T ((x,y)) = (x,y’), where (x’, y) = (x,y-(0 %* x)) if xe P
and (x,y") =(x,y) if xe P_{0}. Then T ([a]) = [a], and
y= @(m)x"+b x € P is mapped onto y'= ¥(m)x""+b, x' € P,
where ¥(m)= g(m)- z(0). The function ¥ is one-to-one, onto and
roder reversing (or order preserving) on F if and only if & has the

1 For the definition of the (V, UV) —Desargues plane see Pickert [6, p.74].
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same properties. Further ¥(0)=0. Hence, ¥ can be used to define a
Polynomial Moulton plane PM (F, ¥, n) isomorphic te PM (F, &, n).

THEOREM 4. Any PM (F, ¥, n) with ¥(0)=0is a (U, UV; V,
OU) —Desargues plane?if and only if ¥ (m) = um,«c PorueP
according as n € N, or n € Ny\_Nj3, where 0=(0, 0).

If ¥(m) =am with « € Pandn e Nyor « € Pand n e N;\_UN3,
by Corollary 1, the plane PM (F, ¥, n) is desarguesian. Thus, the
condition is sufficient. Let ¥(0)=0. Then PM (F, ¥, n) has lines
of the form {(x, y): y=b; x, y € F} _ {(0)}. The following special
case of the (U, UV; V, OU) —Desargues configuration will provide
us with the necessity of the condition. Let A=(u, o), A'= (u’, o),
B= (v,b), B’= (v/, b), C= (v,b’) and C'= (v’,b") such thatu, v e P,
w,v eP,b,beF,u # v,u # v and b # b'. Clearly
BCNB'C’=V. The lines AB, A’‘B’, UV are concurrent if and only
if ¥(b /(v'-u’))=Db /(v"-u?); AC, A’C’, UV are concurrent if and only
if ¥(b'/(v'-u’))=Db’/(v"-u"). Either of these two equalities implies
the other for all b, b’, u, u’, v, v’ with the above conditions if and
only if x/¥(x)=y/¥(y), where x=b/(v'-u’) and y=Db'/(v'-u’).
Since always x#y, then ¥(m)=am, « € F-{0}. The function ¥
reverse or preserve the order if « € P or « € P respectively.

COROLLARY 2. Any PM(F, &, n) is desarguesian3 if and
only if g(m)=uwm+8,BeF,aecPifneN,and « e Pifn e N UN;.

The corollary is an immediate consequence of Corollary 1
Lemma 4 and Theorem 4. Clearly if F=GF(q) we assume that q >
9 for this corollary and the preceding theorem.

Our last theorem will be about determination of the field F=
GF(q) which was used to construct a PM (F, &, n) in the case where
n € N,.

THEOREM 5. Letn € N,. The field GF(q), q=p", p an odd pri-
me number and r € N, can be used to construct a PM (F, &, n) if and
only if i) (q-1, n)=2, ii) p=3 mod 4, iii) r € N;.

Proof will be obtained by combining some theorems. The
ondition (q—1, n)=2 appeared in Th.1. Clearly the condition that

2 For the defioition of the (U, UV; V, OU) —Desargues plane see Pickert [6, p.80].
3 Carlitz showed in [10] that order preserving (or reversing) polynomials over a

p
finite field should be of the form @ (m)=a mP b with 0-<j<r. This shows that the set
of non-Desarguesian polynomial planes is not empty. .
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each x € Pimplies -x € P, in the same theorem, is equivalent to-1¢P.
But -1 € P shows that -1 is not a quadratic residue of p in GF(p),
and therefore p=3 mod 4, see Hardy [9, p. 69, Th.82]. On the
other hand -1 is also a non-square element in GF(p’) if and only
if r € Ny, see Dickson [2,§. 62].

The connection between the plynomial Moulton planes and
the other Moulton planes can be summarized as follows:

1. Any plane PM (F, », n) with F=R, n=1 and g an order
preserving function is a Levenberg-Moulton plane [4] under the
coadition that the roles of the coordinate axes are exchanged.

2. Any plane PM (F, @, n) with n=1 and ¢ an order preser-
ving function is a Pierce-Moulton plane [7].

3. The plane originally given by Moulton (see Pickert [6, p.
93]) isa PM (F,»,n) with F=R,n =1 and g(m) = km or m
according as m << 0 or m > 0. Where k is a positive constant.

4. Each generalized Moulton plane given in Kaya [3] is a
PM (F, &, n) with F=R, n € N; and g(m)=cm or m according as
m << 0 or m > 0 under the condition that the roles of coordinate
axes are exchanged. Where ¢ is a positive constant.

Furthermore, a PM(F, @, n) with n=1 and g(m)=m is the
classic affine plane defined over the field F.
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OZET

Bu makalede klasik Moulton diizleminin K.Leverberg, W.A.Pierce ve R.Kaya ta-
rafindan verilen cesitli genellestirilmigleri yeniden daha da genellestirilmektedir. Bunun
i¢in verilen pseudo-sirali bir F cismi ile bu cisim iizerinde birebir drten bir & fonksiyonu
ve N, = {2x—l: X € N}, N, = {2x: X € N}, N; = {(2 x-1)": x € N} ciimlelerinden
herhangi birinin bir n elemanindan meydana gelen her (F, &, n) iicliisii i¢in bir afin
diizlem tamimlanir: Béyle bir diizlem igin.

1) v € Nyiken & nin siralamayi ters ¢eviren bir fonksiyon olmasinm; ayrica F =
GF(q), g = p%, iken (q-1,n) = 2,p = 3 mod 4, r € N, sartlarmm saglanmasimn
gerek ve yeter oldugu,

2) n € N)\UN iken & nin swralamay: koruyan bir fonksiyon olmasiun; ayrica
F = GF(q), ¢ = p" iken ne N, yada n e N, olmasina gére sirayla (q-1, n) = 1 yada
(-1, n7") = 1 gartinin saglanmasmin gerek ve yeter oldugu ispatlanir. Bu tip her afin
diizlemin projektif diizleme genigletilmisinin daima (V, UV) —Desargues diizlemi oldugu
gosterilir. o, n € N, iken F nin tamkare olmayan bir eleman1 ve fakat n € N;\_/N; iken F
nin bir tamkare eleman olmak iizere & fonksiyonu & (x)=0x [ seklinde ise bunun yar-
dimiyle tanimlanan her diizlemin Desargues diizlemi oldugu gosterilir.
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