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A Comparison of Gauss-Markov Estimators and Least
Squares Estimators of the Micro and Macro Parameters

BY F. AKDENIZ* and G. A. MILLIKEN**
(Received Aug. 5, 1974)

ABSTRACT

A more general linear aggregation model is considered in that we allow for colline-
arity between the independent or explanatory variables. Thus the analysis is presented
in a framework utilizing Moore-Penrose generalized inverses of singular matrices. Gauss-
Markov estimators are derived and compared with covariance structure of the micro
parameters. The efficiency is obtained of the least squares estimators of the micro para-

meters.

1. INTRODUCTION

Aggregation theory is concerned with the transformation of
individual relations (micro relations) to a relation for the group
as a whole (a macro relation). We shall confine ourselves to Linear
Relations in order to simplify the exposition.

Theil ([13], [14]) discussed certain relationships between the
micro and macro variables. Boot and deWit {3] made important
methodological contributions to the problems involved in calcu-
lating aggregation bias. The basic framework for Boot and deWit’s
study was provided by Theil’s pioneering work [13]. Theil’s app-
roach to the problem of aggregation over individuals in connection
with regression models can be briefly stated using the convenient
matrix notation introduced by Kloek [7]. The problem also
examined in [2] and [6]. Recently, Misra [9], and Liitjohann
[8] also utilized matrix notation to study the micro and macro
economic relations.

* Department of Mathematics, Univ. of Ankara, TURKEY.
** Department of Statistics, Kansas State University, U. S. A.



4 F. AKDENIZ AND G. A. MILLIKEN

Our purpose is to derive a relationship between the micro
and macro parameters when we take into account the covariance
structure of the observations, derive and compare two Gauss-
Markov estimators of the micro parameters. The relationship
between the micro and macro parameters is used to obtain esti- -
mators of the macro relationships by using the least squares
estimator of the micro parameters and the Gauss-Markov esti-
mator of the micro parameters. The final section obtains effici-
ency of the above least squares estimator of the micro parameters.

2. NOTATION AND ASSUMPTIONS

Let the economic relationship for the i-th economic unit,

say firm or household, be given by
(1) Yi - Xiﬁi + Uy, i= 19 25-"7 k

where Y is a column vector of T values of the dependent variab-
les; X;is a T x (p + 1) matrix of non-stochastic values of the

independent variables, §; is a column of unknown micro parame-

1
ters; and u,; is a disturbance vector of T random variables, and

k is the number of economic units.
The following assumptions are utilized throughout this pa-
per:
)] The matrix X, has rank r; < p + 1

ii) u; ’s have zcro means and are independent of (X, X,...,
i P
X ie, E(u; | X;)=0
O B = ")
i uwu) = ! ) i
! (o i)
The model of equation (1) may be expressed as a single model,
(2) Y* = X* g* - u*

where .
Y, "™ “X; 0...0 ~ _Bl_ o,
Y., 0 X,...0 B, u,
y* — | - Xt — .. . L I
Y, _ _0 0 ... X, _ B ) -

and
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E (u*|X*) = 0; E (u*u*) = X.
The matrix X is block-diagonal matrix, consisting of the matrices
2;; which have generally unknown elements.

In order to present the macro relations in the convenient
matrix notation define the matrices

(3) JT — IT ® J’k and Jp+1 = Ip+1 ® J,k

where I is a T x T identity matrix, jk‘a k x1 column vector
of unit elements, and 4 @ B denotes the Kroneckor product of
the matrices A4 and B (Graybill [5]).

The macro relations can be written in matrix form as

€ Y = Xg + u,

where
3 k
X=JX*Jp =3 X, and Y= J,Y* = 3 Y,
i=I =1
and we assume that the rank of X is equal to r (r < p + 1).

In model (4), Xp is defined as a mathematical expectation
of its Gauss-Markov-Estimator (GME)

(5) Xp=E (X(X' Z*7X)" X'I*' Y} = E{Xf)
where
T*=E{u-E W} u-E@}; f= (X' T7X) X)X 1Y,
and 4~ denotes the Moore-Penrose generalized inverse of A°

(Graybill [5]).

3. MICRO AND MACRO RELATIONS

It is of much importance to study the relationship between
the micro and the macro parameters, * and §, respectively.

Moore-Penrose generalized inverse of A of order m x n is a matrix A~ of order n x
m such that

a) AAA = A b) A-AA- = A-
©) (AA- ) — AA- d) (A-AY = A-A

Such an inverse exists and is unique.
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It follows from (2) that the correct specification, based on
micro theory for the macro dependent variable Y is

©) Y = J Xt Tt

or

k k k
El Y, = i_zl X; B + E*I Ui -

The macro relations in (4) are generally different from the
true macro relations. The “aggregate” method presumably invol-
ves a specification error in (4). Essentially we are trying to desc-
ribe the vector J, X*8* in the best possible way by Xp weighted
by the respective covariance matrices. This best description is
the projection of J X*8* onto the vector space spanned by the
columns of X denoted by C (X). The projection of J X*§* onto

the vector space weighted by Z* is

(1) XB = X (X' X*IX)" X7 B+ J X*p
_ P*JTX*ﬁ*
where P* = X (X’ X*7'X)~ X’ Z*7! is the orthogonal projector

onto C (X); which is unique for any choice of the generalized in-
verse involved in (7), (see Rao [117).

Thus, the specification error u™ is in the vector space ort-

hogonal to the vector space spanned by the columns of a matrix
X, i. e.,

ut = (I - X (X' I*1X)” X' Z*70) J, X* g~

It is shown that equations (5) and (7) are equivalent. To demons-
trate the construction of the specification error, we will use a
Geometrical illustration in Figure 3.1 where

X

I
>
+
>
+
IS
%
I

Jo= (I, @ J) (k = *—rﬂl_l
r = (Ip ) (k=3 andﬂ~‘_§zs

The specification error is the vector between J;X*f* and its
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projection onto C (X). It is also called the “Aggregation bias”
of u (see [6]).

Lemma 3.1: The system of equations relating to § and g*,Xf=
P*J X*B*, is consistent [1].

cex >

C(&)

cix)
-3

R
X385

FIGURE 3.1: Geometrical representation of the ralationship between the true
macro-relations and usual aggregated macro relations.

The next section is a discussion of various properties the esti-

mators of the micro and macro parameters.

4. A COMPARISON OF TWO ESTIMATORS OF THE
MACRO PARAMETERS.

By utilizing the relationship between § and 8* two estimators

of Xf can be obtained. The GME of X8 from (4) is
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X=X (X Z*1X)" X’ Z*'Y

so that Xf is uniquely determined. But another estimator exists
by utilizing the relationship

X B = P*J X*p*

Let E* be the vector of GME of the micro parameters obtained
from (2), then an estimate of X8 is

. Xb = P*JX*B*.
The expectation of Xb is

E (Xb|X*) = E[P*J, X* (X* Z7' X¥)~ X* 27 (X*f*+u*)]
— P*JTX* (X*’ Z“l X*)‘_ X*' 2‘1 X*ﬁ*
— P*JTX*/S*
= XB.
Lemma 4.1: The two estimators of Xp, XE and Xb are equal if
and only if C (X1) = C (X2) = ... = C (Xy) = C (X), where

C (X)) denotes the column vector space spanned by the columns

of X,.

Theorem 4.1. The variances of the components of X are greater
than or equal to the corresponding variances of the components
of Xb, thus Xb is the better of the two estimators.

Proof: The proof consists of deriving the covariance matrices of

XpB and Xb and then examining the diagonal elements of the
difference of the two covariance matrices.

The covariance matrix of Xf is denoted by X, and is defined
to be
(8) Z,=E [Xg-E(Xp)] [Xp-E(XH]"
Considering (4), (6) and (7) then the macro disturbance vec-
tor u can be written as

Q) u = Ju* + ut

or

u= Ju* + (I- X (X' S*1X)" X' Z*7) J X*B%.
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This expression is then used to evaluate (8). The expectation of
XE is |
E (Xf) = E [X (X' 2*71X)” X’ £*1Y]
— E[X(X'Z*1X)" X' Z* X4 X (X'E*1X) " X'Z* Tu]
= Xp 4+ X (X' S*X)" X' =* (I - X (X' Z*1X)"
X/ 2*“1) JTX* /3*
+ X (X' Z*7IX)” X 27 JLE (u*)
— X8
Then

%, = E [XB - XB] [Xf - XBY
= X (X' Z*7'X)” X’ Z*IE (un) T*7IX (X' Z*1X)°X,

-

where

(10) E (uu)=[I-XX Z*'X) X' Z*' 1 ww [I - z*!
X (X' 21 X)" X' + Jp 2Ty

and
k
W = J X*8* = 2 X8
=1
Thus, X, becomes

Xk
(1) %= P, S/ PY = P [Z 3, ] P

=1
The covariance matrix of Xb is
(12) Z, = E (Xb - XB) (Xb - XB)
— E (P*JTX*’;’* _ P*JTX*ﬁ*) (P*JTX*E* - P*JTX* Ig*)l
= P*J X* (X* X7IX*)” X¥ J,/ P*.

To compare the two estimators, we examine %, — X, or

13) =i - %, = PHJ, (T - X* (X* X% X*) J P*.

In order to substantiate the theorem, it is sufficient to show that
%, - X, is a nonnegative matrix. Since X is positive definite, it
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can be written as £ = A A’ where A is a nonsingular matrix.

Thus (13) becomes

-3, = P*J A [I-A7X* (X*¥ A7 ATIXH) ™ XY
AT AN TS PE
= P*J A I -V (VV) V1A J/P¥
= P*JLA MA J/P¥,
where V = A7 X* M =I-V (V'V) V' and X = (A")"" AL
It is well known that M is positive semi-definite, then it may

be written as

M = BB'.
Thus,
%1 -2, = P*J,AB (P*J,ABY)

is positive semi definite (or nonnegative). This completes the proof.

The above theorem implies that the better estimator of

the macro relations is via the equation expressing the relationship
between § and p*.

5. THE GAUSS-MARKOV THEOREM

Suppose, as above, Y* = (Y'y, Y'3, ..., Y}') is a Tk-dimensi-
onal observation vector, f*' = (82, ..., fi’) a (p + 1) k — dimensi-
onal parameter vector, and X* == diag { X1, X3, ..., X }a
Tk x (p + 1) k non-stochastic matrix of rank

5 r; < (p+ 1) k. Let
i=1

(5.1) E (Y*) = X*p*
and

(5.2) E (Y* - X*g%) (Y* - X*6%) = %

where X is a Tk x Tk positive definite covariance matrix. We
call X*B* the regression functionof Y* on f* and u*=Y*-X*p*
disturbance vector.

The fundamental problem is to find the “best” estimate of
the parameter vector 8* based on the observables Y1, Y3, ..., Yy
It is well known that
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(5.3) GY* = X* (X¥ Z7IX*)” X¥ XTY* = X*E*
is the BLUE of X*5*. The least squares estimate of f* is given by
(5.4) b* = X*"Y*.
The estimate X*b* is also a linear unbiased estimate (LUE)
of X*B*, On the other hand we have the following expression Xb
— XX~ J, X*B*, where X} is an estimate of X in model (4).

Thus the variance covariance matrix of the GME of XX~ J X*g* is

(55) W,=E {Xb-E (Xb) } { Xb-E (Xb)
= E {XXJ,P*Y* - XX J, X*p*} { XX J, P*Y*
— XX J X"B%)
= E (Bu*u*'B’)
= BXP,
where
B = XX7J . X* (X* Z7' X*)~ X¥Z7! = XX J; P*.
The variance-covariance matrix of XX J . X*b* is given by
(5.6) W, = XPX*™ X (X*)” P'X’
where P = X7 J, X*. Since X*E* is BLUE of X*B* we conclude
that
(5.7 W.- W, = XP [X* X (X*) - (X¥ Z7IX*)7] PX’
or

= XPX* [£-X* (X¥Z' X% X*¥](X*)” PX’
is nonnegative definite by theorem 4.1. The next Lemma gives
necessary and sufficient conditions for the estimator from (5.4)
to be equivalent to the estimator from (5.3).
Lemma: The estimate X*b* defined from (5.4) equals the esti-
mate X*g* defined from (5.3) if and only if
h
2 rank (X'} P;j) = rank (X}); (=1,2,..,k)
=1

i=
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where the covariance matrix X, in (iii) has h distinct characteristic

roots hyj, Ay, -y Apy With multiplicity m, , m,, ..., m, and corres-

1§° 19
ponding orthonormalized characteristic vector sets Plj, P, ..,
Py,

The T x T matrix P; = (P, Py, ..., Py;) is an orthogonal

J
matrix, P;; is T x m,,

h
2 m; = T.

=1

The proof is given by Styan [12].

6. EFFICIENCY OF LEAST SQUARES ESTIMATOR

The existing criteria for determining efficiency of estimation
is for full rank models. Thus, in order to investigate the efficiency
problems, we first reparameterize the original model (2) to a
full rank model. Following Graybill [4] we note that there exists
a non-singular matrix R such that
s o
R'X*X*R —=

0 0

where S is non-singular of rank

x
q= 2.
=1
If welet R = [R; | R:] where Riisk (p + 1) x qand Ry is k
(p+ 1) x {k(p+ 1)~ q} it follows that

R'X*X*R, =S, X*R, = 0.

Defining
s
T — R*1 _ !

T

where T*,is qxk(p + and T*,is [k (p+ 1)~ q]lxk(p + 1),
we get the following relationship :

X*ﬂ* — X*RT*ﬁ* — X*RlTl* ﬂ* — Z*ﬁ*.
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The model (2) can be equivalently expressed as a full rank model
in terms of Z*u* as

Y* — X*ﬁ* __*__ u* — Z*a* _}__ u*.
where Z* = X*R, is Tk x q of rank q and a* = T|*f*isaqx 1
vector of parameters. By the construction of Z*, then X* and
Z* have the same column space thus it follows that X*b* = Z* 5 *
and X* (X* X*)™ X* = Z* (Z%'Z*)"'Z*', where b* is any solution
to the normal equations X* X*b* = X*'Y* and o * is the soluti-
on to the normal equations Z*'Z* 5 * = Z*'Y*, Thus the variance
covariance matrix of P*J X*b* can be written as

V, = E {P*J.X*b* — P*JX**} {P*J X*b* — P*J X* g*V
= E {P*JTZ*; *—P*JTZ*a*} {P*JTZ*& % _ P*JTZ*a*}’

= P*J ZWZ¥Z¥)ZVS Z* (Z¥Z*)t Z¥ J, P

Now, consider the variance-covariance matrix of GME of P*J,
X* B*:
VZ — E {P*JT X* (X*’ Z—IX*)— X*’ 2_1 Y* _ P*JTX*ﬂ*}
{P*J X* (X* Z7IX*) ™ X* Z7IY* - P*J X*8*})
= E ({P*J,Z* (Z% X7'Z¥)~Z* Z7'Y* - P*J Z*x*}
{P*JTZ* (Z*' Z—IZ*)—I Z*’ E_lY*_P*JTZ*“*}’
— P*JTZ* ( L Z‘IZ*)_I Z*' JT’P*’

where

w* = (2% TTIZ%)7 Ze SOy
is GME of o*. Since.
X* (X% BTX*)T XV TUIY* = Z* (2% £7'Z%)7 2% SOy
are the BLUES of X*g* and Z*a*, respectively, we conclude that
Vi- V= P*J Z* [(Z¥Z%) 1 Z* 5 Z* (Z*' Z*) " - (Z* S7'Z%)71]
(P*J,Z*¥)
= P*J,Z2* (Q, - Q) (P*J,:Z%)'.

Since Q1 — Q2 is a nonnegative matrix, then V; — 7, is a nonnega-
tive matrix (see Rao [10]). Thus, we define the efficiency of the
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least squares estimator «* as compared to the GME «* as

det® (Z*'Z*%)
det (Z* % Z*) det (Z* =-127)

Eff (a*) =

_ det? (R’ X* X*R,)
™ det (R X* TX*R) det (R X* T ' X*R)

Since a* consists of a set of linearly independent estimable

functions of f*, then the efficiency of a* measures the efficiency
of b*.
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O0ZET

Aciklayier degigkenler arasinda dogrudaglik olmas: halinde daha genel lineer agg-
regation problemi diisiiniildii. Boylece singiiler matrislerin Moore-Penrose inversi kulla-
nilarak analiz yapildi. Mikro parametrelerin Gauss-Markov tahmin edicileri belirtildi,
kovaryans yapist géz oniine ahnarak karsilagtinldi ve en kiiciik kareler tahmin edici-

lerinin elverisliligi incelendi.
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