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Abstract 

 

In this study, the modules whose 𝑝-submodules have a complement which is a direct 

summand are explored. The module theoretical properties such as direct sums and 

summands are investigated. As opposed to direct sums, this condition does not transfer 

to the direct summands. Thus, it is examined that under what conditions the direct 

summands fulfill the property. Examples are given to demonstrate the results.  
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Belirli alt modüllerinin tümleyeni toplanan olan modüller 
 

 

Öz 

 

Bu çalışmada p-alt modüllerinin tümleyeni dik toplanan olan modüller araştırılmıştır. 

Dik toplam ve dik toplanan gibi modül teorik özellikler incelenmiştir. Dik toplamın 

aksine, bu modül özelliği dik toplananlara taşınmadığından, hangi koşullar altında ilgili 

özelliğin dik toplananlara aktarıldığı üzerinde çalışılmıştır. Elde edilen sonuçları 

niteleyen örneklere yer verilmiştir.  

 

Anahtar kelimeler: Tümleyen alt modül, genişleyen modül, projeksiyon değişmez alt 

modül. 

 

 

1.  Introduction 

 

All rings are associative with unity and modules are unital right modules. ℛ and ℳ denote 

a ring and a module, respectively. Recall that a module is extending [1], if every 

submodule is essential in a direct summand. Many authors have studied assorted 

 
* Yeliz KARA, yelizkara@uludag.edu.tr, http://orcid.org/0000-0002-8001-6082  

http://orcid.org/0000-0002-8001-6082


KARA Y. 

 868 

generalizations of extending modules [2, 3, 4, 5, 6]. A submodule 𝒱 of ℳ is said to be 

projection invariant [7], if 𝜒𝒱 ⊆ 𝒱, ∀𝜒 = 𝜒2 ∈ 𝐸𝑛𝑑(ℳℛ). A module is called 𝜋-

extending [2], if every projection invariant submodule is essential in a direct summand. 

In this trend, a module ℳ is called 𝐶𝐿𝑆 [5], if every 𝑧-closed submodule ℒ (i.e., ℳ/ℒ is 

nonsingular) of ℳ is a direct summand. Motivated by the definition of 𝑧-closed 

submodules, a submodule 𝒳 of ℳ is called 𝑝-submodule [8], if 𝒳 is projection invariant 

submodule of ℳ such that ℳ/𝒳 is nonsingular. 

 

The purpose of this study is to examine the class of 𝜋𝑝-module, i.e., whose 𝑝-submodule 

has a complement which is a direct summand. Extending and 𝜋-extending modules are 

contained in 𝜋𝑝-modules. In Section 2, fundamental properties and connections between 

the 𝜋𝑝 condition and related notions are obtained. In Section 3, we explore module 

theoretical properties encompassing direct sums and summands. The 𝜋𝑝-property is 

closed under direct sums. However, the forenamed condition does not transfer to the 

direct summands. Consequently, we explore under what conditions the module property 

transfers to the direct summands. We present examples to exhibit our results. 

 

For the notation 𝒴 ≤ ℳ, 𝒴 ⊴𝑝 ℳ, 𝒴 ≤𝑒 ℳ, 𝒴 ≤⊕ ℳ, 𝒵2(𝒴) and 𝐸𝑛𝑑(ℳℛ), we 

mean that 𝒴 is a submodule of ℳ, 𝒴 is a projection invariant submodule of ℳ, 𝒴 is an 

essential submodule of ℳ, 𝒴 is a direct summand of ℳ, the second singular submodule 

of ℳ and the endomorphism ring of ℳ, respectively. See [1, 6, 9], for unfamiliar 

notation. 

 

 

2. Preliminaries 

 

Fundamental properties and connections between the 𝜋𝑝 condition and related notions 

are obtained in this section. The first result is advantageous for the proof of our results. 

 

Lemma 2.1  A module ℳ is a 𝜋𝑝-module iff for each p-submodule ℒ of ℳ, ℒ ∩ 𝒫 = 0 

and 𝒫 ⊕ ℒ ≤𝑒 ℳ for some 𝒫 ≤⊕ ℳ.  

 

Proof. Clear.   

 

Proposition 2.2  Assume the following conditions: 

 

(𝑎) ℳ is an extending module, 

(𝑏) ℳ is a 𝐶𝐿𝑆-module, 

(𝑐) ℳ is a 𝜋-extending module, 

(𝑑) ℳ is a 𝜋𝑝-module.  

 

Hence, (𝑎) ⇒ (𝑏) ⇒ (𝑑) and (𝑎) ⇒ (𝑐) ⇒ (𝑑). However, the implications are 

irreversible.  

Proof. These implications hold from definitions. 

 

(𝑏) ⇏ (𝑎). For any prime 𝑞, let 𝒜ℤ = (ℤ/ℤ𝑞) ⊕ (ℤ/ℤ𝑞3). By [5, Example 6], 𝒜 holds 

𝐶𝐿𝑆 property, but it does not fulfill the extending condition. 
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(𝑐) ⇏ (𝑎) Consider 𝒯 = [
ℤ ℤ
0 ℤ

] as a right 𝒯-module. It follows from [2, Proposition 3.7] 

that 𝒯𝒯 is 𝜋-extending which it is not extending. 

 

(𝑑) ⇏ (𝑏). Let ℤ(2) = {
𝑠

𝑡
: 𝑠, 𝑡 ∈ ℤ, 𝑡  𝑖𝑠  𝑜𝑑𝑑} and 𝒜ℤ = ℤ ⊕ ℤ(2). Then, 𝒜 does not 

hold 𝐶𝐿𝑆 property by [5, Example 15]. But, it is a 𝜋𝑝-module, as 𝒜 is 𝜋- extending. 

 

(𝑑) ⇏ (𝑐). Assume 𝒮 = [
ℱ 𝒱
0 ℱ

] = {[
𝜅 𝜔
0 𝜅

] : 𝜅 ∈ ℱ, 𝜔 ∈ 𝒱}, where ℱ is a field and 𝒱ℱ 

is a vector space with dim(𝒱ℱ) ≥ 2. Note that 𝒮 is an indecomposable 𝒮-module. Hence, 

all submodules of 𝒮 is projection invariant. Thus, 𝒮 is the only 𝑝-submodule in itself. 

Hence, 𝒮𝒮 is a 𝜋𝑝-module. Nevertheless, 𝒮 is not uniform, hence 𝒮𝒮 is not 𝜋-extending. 

 

Proposition 2.3 (𝑖) Module properties of 𝜋𝑝 and 𝜋-extending agree for a nonsingular 

module. 

 

(𝑖𝑖) Let 𝒜 be a nonsingular indecomposable module. Then 𝒜 is uniform ⇔ 𝒜 is 

extending ⇔ 𝒜 is 𝜋-extending ⇔ 𝒜 is a 𝜋𝑝-module.  

 

Proof. (𝑖) Suppose 𝒜 is a nonsingular 𝜋𝑝-module and ℒ ⊴𝑝 𝒜. Thus, there is a 

complement submodule 𝒯 in 𝒜 such that ℒ ≤𝑒 𝒯. Since 𝒜 is nonsingular, 𝒯 ⊴𝑝 𝒜 by 

[2, Lemma 2.3]. Consequently, 𝒜/𝒯 is nonsingular by [6, Lemma 5.58 (ii)]. So, 𝒯 is a 

𝑝-submodule of 𝒜. Then, 𝒯 ∩ 𝒫 = 0 and 𝒯 ⊕ 𝒫 ≤𝑒 𝒜 for some 𝒫 ≤⊕ 𝒜, by Lemma 

2.1. Then, ℒ ∩ 𝒫 = 0 and ℒ ⊕ 𝒫 ≤𝑒 𝒜. By [2, Corollary 3.2], 𝒜 is 𝜋-extending. 

Proposition 2.2 yields the converse. 

 

(𝑖𝑖) Part (𝑖), Proposition 2.2 and [2, Proposition 3.8 (1)] complete the proof. 

 

Consider Gℤ = ℤℕ be the Specker group. Then, it is not 𝜋-extending by [4, Lemma 3.4]. 

Since Gℤ is nonsingular, Gℤ does not satisfy 𝜋𝑝 property by Proposition 2.3(𝑖). However, 

the injective hull of Gℤ fulfills 𝜋𝑝 property. Therefore, the former module condition may 

not transfer to the submodules. 

 

Proposition 2.4  Suppose ℳ is a 𝜋𝑝-module and ℒ is a  𝑝 -submodule of ℳ. Thus, ℒ 

holds 𝜋𝑝 property.  

 

Proof. Suppose ℒ is a  𝑝 -submodule of ℳ and ℒ′ is a  𝑝 -submodule of ℒ. By [8, Lemma 

2.1], ℒ′ is a 𝑝-submodule of ℳ. Thereby, ℒ′ ∩ 𝒫 = 0 and ℒ′ ⊕ 𝒫 ≤𝑒 ℳ, for some 

𝒫 ≤⊕ ℳ. Accordingly ℳ = 𝒫 ⊕ 𝒫′, for some 𝒫′ ≤ ℳ. Since ℒ ⊴𝑝 𝑀, ℒ = (ℒ ∩

𝒫) ⊕ (ℒ ∩ 𝒫′) by [7, p.50]. Observe that ℒ′ ∩ (ℒ ∩ 𝒫) = 0 and ℒ ∩ (ℒ′ ⊕ 𝒫) = ℒ′ ⊕
(ℒ ∩ 𝒫) ≤𝑒 ℒ. Therefore, ℒ is a 𝜋𝑝-module. 

 

 

3. Main results 

 

The module theoretical properties such as direct sums and summands are examined, and 

examples are given to demonstrate former results. 
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Theorem 3.1  Assume ℳ = ⊕
𝜒∈𝛹

ℳ𝜒 such that ℳ𝜒 is a 𝜋𝑝-module for all 𝜒 ∈ 𝛹. Then 

ℳ is a 𝜋𝑝-module.  

 

Proof.  Suppose 𝒴 is a 𝑝-submodule of ℳ and ∅ ≠ Ψ′ ⊆ Ψ. Thus, the set  

  

ℬ = {(Ψ′, 𝒴, 𝒫) | Ψ′ ⊆ Ψ, 𝒴 ∩ 𝒫 = 0 𝑎𝑛𝑑    𝒴 ⊕ 𝒫 ≤𝑒 ℳ 

 

 𝑤ℎ𝑒𝑟𝑒, 𝒴  𝑖𝑠  𝑎 𝑝 − 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 ℳ 𝑎𝑛𝑑 𝒫 ≤⊕ ℳ} 

 

is partially ordered by  

 

 (Ψ1, 𝒴1, 𝒫1) ≤ (Ψ2, 𝒴2, 𝒫2) ⇔ Ψ1 ⊆ Ψ2, 𝒴1 ≤ 𝒴2, 𝒫1 ≤ 𝒫2.  

 

Notice that ℬ ≠ ∅. Thus, there exists a maximal member (Ψ1, 𝒴1, 𝒫1) ∈ ℬ by Zorn’s 

Lemma. Assume Ψ ≠ Ψ1. Then, there is 𝜓 ∈ Ψ such that 𝜓 ∉ Ψ1. Let Ψ2 = Ψ1 ∪ {𝜓} 

and ℳ′′ = ⊕
𝜒  ∈Ψ2

ℳ𝜒 = ⊕
𝜒∈Ψ1

ℳ𝜒 ⊕ ℳ𝜓 = ℳ1 ⊕ ℳ𝜓. Since ℳ𝜒 is a 𝜋𝑝-module, there 

is a 𝒫𝜓 ≤⊕ ℳ𝜓 such that 𝒴𝜓 ∩ 𝒫𝜓 = 0 and 𝒴𝜓 ⊕ 𝒫𝜓 ≤𝑒 ℳ𝜓 for 𝑝-submodule 𝒴𝜓 of 

ℳ𝜓. Note that 𝒫𝜓 ∩ 𝒫1 = 0 and 𝒫′′ = 𝒫𝜓 ⊕ 𝒫1 ≤⊕ ℳ′′. For  𝑝-submodule 𝒴1 of ℳ1 

and 𝒴𝜓 of ℳ𝜓, take 𝒴1 ⊕ 𝒴𝜓 ≤ ℳ′′. Observe that 𝒴1 ⊕ 𝒴𝜓 ⊴𝑝 ℳ′′ and 
ℳ′′

𝒴1⊕𝒴𝜓
≅

ℳ1

𝒴1
⊕

ℳ𝜓

𝒴𝜓
. It follows that 

ℳ′′

𝒴1⊕𝒴𝜓
 is nonsingular, so 𝒴′′ = 𝒴1 ⊕ 𝒴𝜓 is a 𝑝-submodule of 

ℳ′′. Thereby, 𝒴′′ ∩ 𝒫′′ = 0 and 𝒴′′ ⊕ 𝒫′′ ≤𝑒 ℳ′′. Therefore, (Ψ2, 𝒴′′, 𝒫′′) ∈ ℬ. 

However, (Ψ1, 𝒴1, 𝒫1) ≤ (Ψ2, 𝒴′′, 𝒫′′) which contradicts to the maximality of 

(Ψ1, 𝒴1, 𝒫1) ∈ ℬ. Therefore, Ψ = Ψ1, so ℳ is a 𝜋𝑝-module. 

 

As a consequence of above result, any direct sum of uniform (resp., extending, or 𝜋-

extending) module and any free Abelian groups fulfill 𝜋𝑝 property. The next result 

provides that 𝜋𝑝 condition does not transfer to the direct summands, in general. 

 

Example 3.2  Assume 𝑇 = ℝ[𝑥1, . . . , 𝑥𝑘] with indeterminates 𝑥1, . . . , 𝑥𝑘 over ℝ, where 𝑘 

is any odd integer with 𝑘 ≥ 3. Consider ℛ = 𝑇/𝑇𝑡 is a commutative Noetherian ring, 

where  𝑡 = 𝑥1
2 + ⋯ + 𝑥𝑘

2 − 1. Let 𝑀 = ℛ(𝑘). Thus, 𝑀ℛ is 𝜋𝑝-module by Theorem 3.1. 

Observe from [2, Example 5.5] that 𝑀 has a direct summand 𝒫ℛ which is not 𝜋-extending. 

Nonsingularity of  ℛ  yields that 𝒫ℛ is not a 𝜋𝑝-module by Proposition 2.3(𝑖𝑖).  

 

We deal with when the former module property transfers to the direct summands. 

 

Proposition 3.3 Assume 𝒱1 and 𝒱2 are uniform modules such that 𝒜 = 𝒱1 ⊕ 𝒱2. Hence 

every direct summand of 𝒜 holds 𝜋𝑝 property.  

 

Proof. Suppose 0 ≠ 𝒫 ≤⊕ 𝒜. By Theorem 3.1, 𝒫 holds 𝜋𝑝 property when 𝒫 = 𝒜. 

Assume 𝒫 ≠ 𝒜. Thus, 𝒫 is uniform, so it satisfies 𝜋𝑝 property. 

Proposition 3.4 If 𝒜ℤ =⊕
𝑖∈𝐼

𝒱𝑖, where 𝒱𝑖  (𝑖 ∈ 𝐼) is uniform, then every direct summand 

of 𝒜ℤ holds 𝜋𝑝 property.  

 

Proof. Suppose 𝒫 ≤⊕ 𝒜. By [4, Theorem 5.5], 𝒫 =⊕
𝑖∈𝐼

𝒰𝑖, where 𝒰𝑖 is uniform. Hence 

Theorem 3.1 yields that 𝒫 is a 𝜋𝑝-module. 



BAUN Fen Bil. Enst. Dergisi, 23(2), 867-872, (2021) 

871 

Note that a module fulfills 𝑆𝑆𝑃 provided that the sum of two direct summands is a direct 

summand. 
 

Proposition 3.5  𝒜 = 𝒜1 ⊕ 𝒜2 for some 𝒜1, 𝒜2 ≤ 𝒜 such that 𝒜2 is projection 

invariant. If 𝒜 is a 𝜋𝑝-module with 𝑆𝑆𝑃, then 𝒜1 a 𝜋𝑝-module.  
 

Proof. Let ℒ be a 𝑝-submodule of 𝒜1. Thus, ℒ ⊴𝑝 𝒜1 and 𝒜1/ℒ is nonsingular. Observe 

from [2, Lemma 4.12] that ℒ ⊕ 𝒜2 ⊴𝑝 𝒜 and 𝒜/(ℒ ⊕ 𝒜2) ≅ 𝒜1/ℒ which give that 

ℒ ⊕ 𝒜2 is a 𝑝-submodule of 𝒜. Then there is a 𝒫 ≤⊕ 𝒜 such that (ℒ ⊕ 𝒜2) ∩ 𝒫 = 0 

and (ℒ ⊕ 𝒜2) ⊕ 𝒫 ≤𝑒 𝒜. Note that 𝒜1 ∩ [(ℒ ⊕ 𝒜2) ⊕ 𝒫] = ℒ ⊕ [𝒜1 ∩ (𝒜2 ⊕
𝒫)] ≤𝑒 𝒜1. Since (ℒ ⊕ 𝒜2) ∩ 𝒫 = 0, ℒ ∩ [𝒜1 ∩ (𝒜2 ⊕ 𝒫)] = 0. Moreover, 𝒜2 ∩
𝒫 = 0 and 𝒜2 ⊕ 𝒫 = 𝒜2 ⊕ [𝒜1 ∩ (𝒜2 ⊕ 𝒫)] by modular law. Then, 𝒜2 ⊕
𝒫 ≤⊕ 𝒜 by 𝑆𝑆𝑃 condition. It follows that 𝒜 = 𝒜2 ⊕ [𝒜1 ∩ (𝒜2 ⊕ 𝒫)] ⊕ 𝑇 for some 

𝑇 ≤ 𝒜. Hence, 𝒜1 = [𝒜1 ∩ (𝒜2 ⊕ 𝒫)] ⊕ [𝒜1 ∩ (𝒜2 ⊕ 𝑇)] by modular law. 

Therefore, 𝒜1 ∩ (𝒜2 ⊕ 𝒫) ≤⊕ 𝒜1 which yields that 𝒜1 is a 𝜋𝑝-module. 
 

A ring is said to be Abelian if every idempotent element is central. 
 

Corollary 3.6 Suppose 𝒜 is a 𝜋𝑝-module and 𝐸𝑛𝑑(𝒜𝑅) is an Abelian ring with 𝑆𝑆𝑃. 

Then every direct summand of 𝒜𝑅 fulfills 𝜋𝑝 condition.  

 

Proof. Observe that 𝐾 ⊴𝑝 𝒜 when 𝐾 ≤⊕ 𝒜 and 𝐸𝑛𝑑(𝒜𝑅) is Abelian. It follows from 

[10, Corollary 2.4] that 𝒜 has 𝑆𝑆𝑃. Thus, the proof is a consequent of Proposition 3.5. 
 

Lemma 3.7 Let 𝒜 = 𝒜1 ⊕ 𝒜2 for some 𝒜1, 𝒜2 ≤ 𝒜. Then 𝒜1 is a 𝜋𝑝-module iff for 

all 𝑝 -submodule 𝒴 of 𝒜1, 𝒜2 ⊆ 𝒫, 𝒫 ∩ 𝒴 = 0 and 𝒫 ⊕ 𝒴 ≤𝑒 𝒜 for some 𝒫 ≤⊕ 𝒜. 
 

Proof.  Let 𝒜1 provide 𝜋𝑝 condition and 𝒴 is a  𝑝-submodule of 𝒜1. Hence, 𝒴 ∩ 𝒫1 = 0 

and 𝒴 ⊕ 𝒫1 ≤𝑒 𝒜1 for some 𝒫1 ≤⊕ 𝒜1. It follows that 𝒫1 ⊕ 𝒜2 ≤⊕ 𝒜. Note that 

𝒜2 ⊆ 𝒫1 ⊕ 𝒜2, (𝒫1 ⊕ 𝒜2) ∩ 𝒴 = 0 and 𝒫1 ⊕ 𝒜2 ⊕ 𝒴 ≤𝑒 𝒜. Conversely, suppose 

𝒜1 fulfills the property. Take ℒ as a 𝑝 -submodule of 𝒜1. Then, 𝒜2 ⊆ 𝒫′, 𝒫′ ∩ ℒ = 0 

and 𝒫′ ⊕ ℒ ≤𝑒 𝑀 for some 𝒫′ ≤⊕ 𝒜, by hypothesis.  Observe that 𝒫′ ∩ 𝒜1 ≤⊕ 𝒜1. 

Thus, ℒ ∩ (𝒫′ ∩ 𝒜1) = 0 and ℒ ⊕ (𝒫′ ∩ 𝒜1) = 𝒜1 ∩ (ℒ ⊕ 𝒫′) ≤𝑒 𝒜1. Therefore, 𝒜1 

is a 𝜋𝑝-module. 

 

Theorem 3.8  Let 𝒜 = 𝒜1 ⊕ 𝒜2 is a 𝜋𝑝-module for some 𝒜1, 𝒜2 ≤ 𝒜 such that 𝒜2 

is projection invariant. Suppose 𝒟 ⊕ 𝒜2 ≤⊕ 𝒜, for all 𝒟 ≤⊕ 𝒜 with 𝒟 ∩ 𝒜2 = 0. 

Then 𝒜1 is a 𝜋𝑝-module.  

 

Proof. Assume ℒ is a  𝑝-submodule of 𝒜1. Note that ℒ ⊕ 𝒜2 ⊴𝑝 𝒜 by [2, Lemma 4.12]. 

Moreover, 
𝒜

ℒ⊕𝒜2
≅

𝒜1

ℒ
 is nonsingular, so ℒ ⊕ 𝒜2 is a  𝑝-submodule of 𝒜. Consequently, 

𝒫 ∩ (ℒ ⊕ 𝒜2) = 0, 𝒫 ⊕ ℒ ⊕ 𝒜2 ≤𝑒 𝒜 for some 𝒫 ≤⊕ 𝒜. Thus, Lemma 3.7 

completes the proof. 

 

Theorem 3.9  𝒜 is a 𝜋𝑝-module iff 𝒜 = 𝒵2(𝒜) ⊕ 𝒫 for some 𝒫 ≤ 𝒜, where 𝒵2(𝒜) 

and 𝒫 hold 𝜋𝑝 condition.  
 

Proof. Let 𝒜 satisfy 𝜋𝑝 property and 𝒲 = 𝒵2(𝒜). Observe that 𝒜/𝒲 is nonsingular, 

so 𝒲 is  𝑝-submodule of 𝒜. Hence, 𝒲 ∩ 𝒫 = 0 and 𝒲 ⊕ 𝒫 ≤𝑒 𝒜 for some 𝒫 ≤⊕ 𝒜. 
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Thus, 𝒲 = 𝒵2(𝒜) = 𝒵2(𝒫) ⊕ 𝒵2(𝒫′) for some 𝒫′ ≤ 𝒜. As 𝒲 ∩ 𝒫 = 0, 𝒵2(𝒫) = 0. 

Then, 𝒲 = 𝒵2(𝒫′) ≤ 𝒫′ which implies that 𝒲 ≤𝑒 𝒫′, as 𝒲 ⊕ 𝒫 ≤𝑒 𝒫′ ⊕ 𝒫. 

Therefore, 𝒫′/𝒲 is singular, so 𝒲 = 𝒫′ gives that 𝒜 = 𝒲 ⊕ 𝒫 for some 𝒫 ≤ 𝒜. 

 

It is clear from Proposition 2.4 that 𝒲 holds 𝜋𝑝 property. Consider the projection map 

𝜋: 𝒜 → 𝒫. Then 𝒲 ∩ ℒ = 0 for some 𝑝-submodule ℒ of 𝒫. Observe that 𝒲 ⊕ ℒ ⊴𝑝 𝒜 

by [2, Lemma 4.12], and 
𝒜

𝒲⊕ℒ
≅

𝒫

ℒ
 which implies that 𝒲 ⊕ ℒ is a  𝑝-submodule of 𝒜. 

Hence, 𝒟 ∩ (𝒲 ⊕ ℒ) = 0, 𝒟 ⊕ (𝒲 ⊕ ℒ) ≤𝑒 𝒜, for some 𝒟 ≤⊕ 𝒜. Moreover, 𝒲 =
𝒵2(𝒜) = 𝒵2(𝒟) ⊕ 𝒵2(𝒟′), where 𝒜 = 𝒟 ⊕ 𝒟′ for some 𝒟′ ≤ 𝒜. Hence 𝒵2(𝒟) = 0, 

so 𝒲 = 𝒵2(𝒟′) ≤ 𝒟′ and 𝒟′ = 𝒲 ⊕ (𝒟′ ∩ 𝒫). Thus, 𝒜 = 𝒟 ⊕ 𝒟′ = 𝒟 ⊕ 𝒲 ⊕
(𝒟′ ∩ 𝒫), so 𝒲 ⊕ 𝒟 ≤⊕ 𝒜. Clearly, 𝒲 ⊕ 𝒟 = 𝒲 ⊕ 𝜋(𝒟) for 𝜋(𝒟) ≤⊕ 𝒫. Since 

ℒ ⊕ 𝜋(𝒟) ⊕ 𝒲 ≤𝑒 𝒜, we have ℒ ⊕ 𝜋(𝒟) ≤𝑒 𝒫. Therefore, 𝒫 is a 𝜋𝑝-module. 

Theorem 3.1 completes the converse.  

 

We end up this section by the following example which exhibits Theorem 3.9 and the 

essential extensions of the 𝜋𝑝-modules. 

 

Example 3.10 (𝑖) Let 𝐺 = 𝐺1 ⊕ 𝐺2, where 𝐺1 and 𝐺2 are Abelian groups with 𝐺1 

divisible and 𝐺2 = ℤ/ℤ𝑞𝑠 such that 𝑞 is a prime, 𝑠 is a positive integer. Note 𝐺1 = 𝐽 ⊕
𝐽′, where 𝐽 is torsionfree, 𝐽′ is torsion. Thus, 𝐺 = 𝐽 ⊕ 𝐽′ ⊕ 𝐺2 and 𝒵2(𝐺) = 𝐽′ ⊕ 𝐺2. By 

Theorem 3.1, 𝐺 = 𝒵2(𝐺) ⊕ 𝐽 provides 𝜋𝑝 condition. 

 

(𝑖𝑖) Consider a principal ideal ring ℬ which is not a complete discrete valuation ring. By 

[3, Theorem 19], there is a ℬ-module 𝒜 such that 𝒜 is indecomposable torsionfree with 

rank 2. Thus, 𝒰1 ⊕ 𝒰2 ≤𝑒 𝒜 for some uniform 𝒰1, 𝒰2 ≤ 𝒜. By Theorem 3.1, 𝒰1 ⊕ 𝒰2 

is a 𝜋𝑝-module. However, 𝒜ℬ is not a 𝜋𝑝-module by Proposition 2.3 (𝑖𝑖).  
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