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Abstract

In this study, the modules whose p-submodules have a complement which is a direct
summand are explored. The module theoretical properties such as direct sums and
summands are investigated. As opposed to direct sums, this condition does not transfer
to the direct summands. Thus, it is examined that under what conditions the direct
summands fulfill the property. Examples are given to demonstrate the results.
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Belirli alt modiillerinin tiimleyeni toplanan olan modiiller

Oz

Bu ¢alismada p-alt modiillerinin tiimleyeni dik toplanan olan modiiller arastiriimistir.
Dik toplam ve dik toplanan gibi modiil teorik ozellikler incelenmigstir. Dik toplamin
aksine, bu modiil ozelligi dik toplananlara tasinmadigindan, hangi kosullar altinda ilgili
ozelligin dik toplananlara aktarildig iizerinde c¢alisilmistir. Elde edilen sonuglart
niteleyen orneklere yer verilmistir.

Anahtar kelimeler: Timleyen alt modiil, genisleyen modiil, projeksiyon degismez alt
modiil.

1. Introduction

All rings are associative with unity and modules are unital right modules. R and M denote

a ring and a module, respectively. Recall that a module is extending [1], if every
submodule is essential in a direct summand. Many authors have studied assorted
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generalizations of extending modules [2, 3, 4, 5, 6]. A submodule V of M is said to be
projection invariant [7], if YV €V, Vy = y? € End(My). A module is called 7-
extending [2], if every projection invariant submodule is essential in a direct summand.
In this trend, a module M is called CLS [5], if every z-closed submodule £ (i.e., M'/L is
nonsingular) of M is a direct summand. Motivated by the definition of z-closed
submodules, a submodule X of M is called p-submodule [8], if X is projection invariant
submodule of M such that M /X is nonsingular.

The purpose of this study is to examine the class of =”-module, i.e., whose p-submodule
has a complement which is a direct summand. Extending and m-extending modules are
contained in P-modules. In Section 2, fundamental properties and connections between
the P condition and related notions are obtained. In Section 3, we explore module
theoretical properties encompassing direct sums and summands. The mP-property is
closed under direct sums. However, the forenamed condition does not transfer to the
direct summands. Consequently, we explore under what conditions the module property
transfers to the direct summands. We present examples to exhibit our results.

For the notation Y <M, Y2, M, Y <, M, Y <® M, 2Z,(Y) and End(Myz), we
mean that Y is a submodule of M, Y is a projection invariant submodule of M, Y is an
essential submodule of M, Y is a direct summand of M, the second singular submodule
of M and the endomorphism ring of M, respectively. See [1, 6, 9], for unfamiliar
notation.

2. Preliminaries

Fundamental properties and connections between the 7P condition and related notions
are obtained in this section. The first result is advantageous for the proof of our results.

Lemma 2.1 A module M is a mP-module iff for each p-submodule Lof M, LNP =0
and P @ £ <, M for some P <® M.

Proof. Clear.
Proposition 2.2 Assume the following conditions:
(a) M is an extending module,
(b) M is a CLS-module,
(c) M is a m-extending module,
(d) M is a mP-module.
Hence, (a) = (b) = (d) and (a) = (c¢) = (d). However, the implications are
irreversible.

Proof. These implications hold from definitions.

(b) # (a). For any prime q, let A; = (Z/Zq) @ (Z/Zq>). By [5, Example 6], A holds
CLS property, but it does not fulfill the extending condition.
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(¢) # (a) Consider T = [g Z] as a right 7-module. It follows from [2, Proposition 3.7]
that 77 is m-extending which it is not extending.

(d) # (b). Let Z,y = {%: s,t €Z, t is odd} and Ay = Z @ Z . Then, A does not
hold CLS property by [5, Example 15]. But, it is a mP-module, as A is - extending.

(d) # (c). Assume S = [?; z ={[s ©]:x € F,0 eV}, where F is a field and V;

is a vector space with dim(Vx) > 2. Note that S is an indecomposable S-module. Hence,
all submodules of § is projection invariant. Thus, S is the only p-submodule in itself.
Hence, S5 is a mP-module. Nevertheless, S is not uniform, hence S is not -extending.

Proposition 2.3 (i) Module properties of 7P and r-extending agree for a nonsingular
module.

(ii) Let A be a nonsingular indecomposable module. Then A is uniform & A is
extending & A is m-extending < A is a t?-module.

Proof. (i) Suppose A is a nonsingular mP-module and £ 2, A. Thus, there is a
complement submodule 7" in A such that £ <, T. Since A is nonsingular, T 2, A by
[2, Lemma 2.3]. Consequently, A4 /7 is nonsingular by [6, Lemma 5.58 (ii)]. So, T is a
p-submodule of A. Then, 7 NP =0and T @ P <, A for some P <® A, by Lemma
2.1. Then, LNnP =0 and LP P <, A. By [2, Corollary 3.2], A is m-extending.
Proposition 2.2 yields the converse.

(i) Part (i), Proposition 2.2 and [2, Proposition 3.8 (1)] complete the proof.

Consider Gy = ZN be the Specker group. Then, it is not m-extending by [4, Lemma 3.4].
Since G is nonsingular, G5 does not satisfy P property by Proposition 2.3(i). However,
the injective hull of Gy fulfills P property. Therefore, the former module condition may
not transfer to the submodules.

Proposition 2.4 Suppose M is a m?-module and £ is a p -submodule of M. Thus, £
holds P property.

Proof. Suppose £ is a p -submodule of M and £" isa p -submodule of £. By [8, Lemma
2.1], £ is a p-submodule of M. Thereby, L'nP =0 and L' P P <, M, for some
P <® M. Accordingly M =P @ P’, for some P’ < M. Since L 2, M, L=(LN
P)YD (LNnP")by[7,p.50]. Observe that L' Nn(LNP)=0and LN (L' DPP)=L D
(L NP) <, L. Therefore, L is a t?-module.

3. Main results

The module theoretical properties such as direct sums and summands are examined, and
examples are given to demonstrate former results.
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Theorem 3.1 Assume M = @ M, such that M, is a 7P-module for all y € ¥. Then
XEW

M is a mP-module.

Proof. Suppose Y is a p-submodule of M and @ = W' < W. Thus, the set
B={¥,YP)|VS¥Y, YnP=0and YPP<,M

where, Y is ap — submodule of M and P <® M}

is partially ordered by

LY, P) S (W, Y, P) @V, S W, Y Uy, P <P

Notice that B # @. Thus, there exists a maximal member (¥;,Y,,P;) € B by Zorn’s
Lemma. Assume W # W,. Then, there is Y € ¥ such that Y ¢ ¥;. Let ¥, = ¥, U {y}

andM"' = @ M,=@ M, O My, =M; D M,. Since M, is a rP-module, there
X €¥; XEY,

is a Py, <® M, such that Y, n P, = 0 and Yy, B Py, <, My, for p-submodule Yy, of
M. Note that Py, n P, = 0 and P"" = P, @ P, <® M". For p-submodule Y, of M;

and Yy, of My, take Y; ® Yy, < M". Observe that Y, ® Yy, <, M and —=-

Y1DYy =
M I, . .
2 @ =% 1t follows that ——— is nonsingular, so Y"' = Y, @ Y, is a p-submodule of
Y1 Yy Y1DYy

M". Thereby, Y"'nP"=0 and Y" P P" <, M". Therefore, (¥,,Y",P'") € B.
However, (¥;,Y;,P;) < (W,,Y",P") which contradicts to the maximality of
(W1, Y., P;) € B. Therefore, ¥ = ¥;, so M is a mP-module.

As a consequence of above result, any direct sum of uniform (resp., extending, or m-
extending) module and any free Abelian groups fulfill =P property. The next result
provides that 7P condition does not transfer to the direct summands, in general.

Example 3.2 Assume T = R[xy,..., x;] with indeterminates x,, ..., x;, over R, where k
is any odd integer with k > 3. Consider R = T /Tt is a commutative Noetherian ring,
where t=x?+--+x2—1. Let M = R®)_ Thus, My is mP-module by Theorem 3.1.
Observe from [2, Example 5.5] that M has a direct summand P% which is not -extending.
Nonsingularity of R yields that Py is not a =P-module by Proposition 2.3(ii).

We deal with when the former module property transfers to the direct summands.

Proposition 3.3 Assume V; and V, are uniform modules such that A = V; @ V,. Hence
every direct summand of A holds 7? property.

Proof. Suppose 0 = P <® A. By Theorem 3.1, P holds 7P property when P = A.

Assume P # A. Thus, P is uniform, so it satisfies P property.

Proposition 3.4 If A; =@ V;, where V; (i € I) is uniform, then every direct summand
i€l

of Az holds P property.

Proof. Suppose P <® 4. By [4, Theorem 5.5], P =@ U;, where U; is uniform. Hence
i€l
Theorem 3.1 yields that 2 is a mP-module.
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Note that a module fulfills SSP provided that the sum of two direct summands is a direct
summand.

Proposition 3.5 A = A; @ A, for some A;,A, <A such that A, is projection
invariant. If A is a mP-module with SSP, then A, a m?-module.

Proof. Let £ be a p-submodule of A,. Thus, £ 2,, A, and A, /L is nonsingular. Observe
from [2, Lemma 4.12] that £L & A, 2, A and A/(L D A;) = A, /L which give that
L @ A, is a p-submodule of A. Then there isa P <® A suchthat (L @ A,) NP =0
and (LD A, DP<,A. Note that A; N[(LD A, ®P]=LD[A; N (A, D
P)] <e Aq. Since (LD A,))NP =0, LN][A; N (A, D P)] =0. Moreover, A, N
P=0and A, PP =A, P [A,N(A, BP)] by modular law. Then, A, H
P <% A by SSP condition. It follows that A = A, @ [A, N (A, D P)] @ T for some
T<A. Hence, A =[AN(A, PP DB[A, N(A,DT)] by modular law.
Therefore, A; N (A, ® P) <® A, which yields that A, is a mP-module.

Aring is said to be Abelian if every idempotent element is central.

Corollary 3.6 Suppose A is a mP-module and End(Ag) is an Abelian ring with SSP.
Then every direct summand of Ay fulfills P condition.

Proof. Observe that K 2, A when K <® A and End(Ag) is Abelian. It follows from
[10, Corollary 2.4] that A has SSP. Thus, the proof is a consequent of Proposition 3.5.

Lemma 3.7 Let A = A, @ A, for some A, A, < A. Then A, is a mP-module iff for
all p -submodule Y of Ay, A, S P, PNY=0andP Y <, A for some P <® A.

Proof. Let A, provide P condition and Y isa p-submodule of A,. Hence, Y N P; = 0
and Y @ P, <, A, for some P, <® A,. It follows that P; @ A, <® A. Note that
A, CPL DA, (PLDA)NY=0and P, DA, B Y <, A. Conversely, suppose
A, fulfills the property. Take £ as a p -submodule of A,. Then, A, € P, P'NL=0
and P’ @ L <, M for some P’ <® A, by hypothesis. Observe that P’ n A, <® A,.
Thus, LN (P'NnA)=0and LD (P'NA,) =A, N (LD P <, A, Therefore, A,
is a rP-module.

Theorem 3.8 Let A = A; @ A, is amP-module for some A,, A, < A such that A,
is projection invariant. Suppose D @ A, <® A, forall D <® A with D n A, = 0.
Then A, is a mP-module.

Proof. Assume L isa p-submodule of A,. Note that L & A, 2, A by [2, Lemma 4.12].
Moreover,

o = % is nonsingular, so £ @ A, isa p-submodule of A. Consequently,
2

PN(LDA)=0, POLDA, <, A for some P <P A. Thus, Lemma 3.7
completes the proof.

Theorem 3.9 A is a wP-module iff A = Z,(A) @ P for some P < A, where Z,(A)
and P hold ? condition.

Proof. Let A satisfy =P property and W = Z,(A). Observe that A /W is nonsingular,
so W is p-submodule of A. Hence, WNP =0and W @ P <, A for some P <® A.
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Thus, W = Z,(A) = Z,(P) @ Z,(P") forsome P' < A. AsW NP =0, Z,(P) = 0.
Then, W = Z,(P") <P’ which implies that W<, P, as WHP <, P @ P.
Therefore, P’ /W is singular, so W = P’ gives that A = W @ P for some P < A.

It is clear from Proposition 2.4 that W holds P property. Consider the projection map
m: A — P. Then W n L = 0 for some p-submodule £ of P. Observe that W & £ 2, A

by [2, Lemma 4.12], and %& = % which implies that W @ L is a p-submodule of A.

Hence, DN (W@ L) =0,DD (W D L) <, A, for some D <® A. Moreover, W =
Z,(A) = Z,(D) @ Z,(D"), where A =D @ D' for some D' < A. Hence Z,(D) = 0,
so W=Z,(D)<D' and D'=WH (D' nP). Thus, A=DPD' =DPWD
(D'NP), so WHD <P A. Clearly, WD =W @ n(D) for m(D) <® P. Since
LOr(D)DW <, A, we have LD (D) <, P. Therefore, P is a mP-module.
Theorem 3.1 completes the converse.

We end up this section by the following example which exhibits Theorem 3.9 and the
essential extensions of the ”-modules.

Example 3.10 (i) Let G = G, @ G,, where G; and G, are Abelian groups with G,
divisible and G, = Z/Zq°® such that q is a prime, s is a positive integer. Note G; =] @
J', where J is torsionfree, J' is torsion. Thus, G = ] @ J' @ G, and Z,(G) =]' @ G,. By
Theorem 3.1, G = Z,(G) @ ] provides =P condition.

(ii) Consider a principal ideal ring B which is not a complete discrete valuation ring. By
[3, Theorem 19], there is a B-module A such that A is indecomposable torsionfree with
rank 2. Thus, U, @ U, <, A for some uniform U, U, < A. By Theorem 3.1, U, @ U,
is a mP-module. However, Az is not a mP-module by Proposition 2.3 (ii).
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