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Multiplication Theorems for Strong Functional
Nérlund Summability

By
ASHOK KUMAR

Department of Mathematics, Indian Institute of Technology, Hauz Khas,
New Delhi 110029, India

1. Introduction. In [1], the author has introduced the idea
of strong functional Nérlund summability [N, p]; and has inves--
tigated some of its properties.

In the present paper, we establish some theorems concerning
strong functional Nérlund summability of the Cauchy product
of two integrals. The analogue of our Theorem 3 for functional
Nérlund summability (N, p) is [3, Theorem 6].

2. Preliminaries. Let S be the class of (complex valued)
functions a (t) of the real variable t defined for all positive t,
bounded and measurable in every finite interval (0, T), T > 0.
Let P be the class of all real valued functions p (t) defined for all
t > 0 and Lebesgue integrable in any (relevant) finite interval
such that p, (t) == 0 for all t > 0, where

t
pi(t) = j p (u) du.
0

 As pi (t), being an integral, is continuous and == 0, there is
no loss of generality to suppose it positive for all t > 0. Then
p (t) shall be called a weight function. Similar notations and
definitions will be used for other weight functions q (t), r (t)
etc. It is convenient to define all our functions to be zero if their
argument is negative. As usual we define the convolution (a*b),
of any two given functions a (t) and b (t) as
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t
(a*b), = j a (t-u) b (u) du;
0

and we shall make use of the fact that the operatlon of convolu-
tion is ‘commutative and associative.

Given two integrals

-]

jo a (u) du and J: b (u) du

with a (t), b (t) € S, we set ¢ (t) = (a*b), and call the integral

-1

jo ¢ () du

the Cauchy product of the given two integrals.

Let o (t) be the integral transform of a (t) ¢ S defined by

=]

o (t) = j a (t,u) a (u) du. 2.1)
0

The transformation (2.1) with kernel a (t,u) is said to be
regular over the set S, if a (t) - A implies 6 (t) > A ast > 0, and it
is called null-preserving if a (t) > 0 implies ¢ (t) >0 as t > oo. The
necessary and sufficient conditions for the regularity of the trans-
formation (2.1) over the set S are [2, p. 50, 601]:

(i) [ Ja@ o | du=10(), 2.2)
“0

(ii) [~ a(tu) du > 1 as t —> oo, (2.3)
°0

(iii) ( a (t,u) du > 0 as t - oo, (2.4)

for every bounded and measurable set E of u-axis. But if a (t,u)
is non-negative, then (iii) is equivalent to
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c ,
(iii") : j a(tuda >0ast—> o0 (2.5)
S 0 oo

for every finite ¢ > 0.

The conditions (i) and (iii) are necessary and sufficient for the
transformation (2.1) to be null-preserving.

The conditions (i), (ii) and (iii) are respectively-ealled the norm-,
row-, and column-condition.

Definitions.
(a) Functional Norlund Summability (N, p) (see [4]).

<

Let j a (u) du (a (t) = S ) be the given integral. Write
0
t .
a(t) = j a (u) du.
0
If
' (p*ai). -
6(t) = —>* > Aast > oo, 2.6
0 = @) @9)
we ‘say that j a (u) du is summable (N,p) to the value A,
0

and we denote this by

<o

J a(uda=A (Np) or ai(t) > A (Np).
0

If p (t) = 0, the Norlund method (N,p) is called positive.

(b) If 6 (t) = 0 (1), we shall say that j a (u) du is boun-

0
ded (N,p) and shall denote this by

j a (w) du = 0 (N,p).
0
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(¢) Strong Functional Norlund Summability [N,pla, 2 > 0.

Let p (t) be a weight function which is such that, for given
T > 0, there exists v = v (T) > 0 such that

lp@ | =>v (0<t<T). 2.7)

We describe the integralj a (u) du (a (t) € S) as strongly
0

summable (N,p) with index A > 0 to A, and write

j a@du—A[Np In
0
if

t *
[ & s pa=opw) @
0 p (v

We remark that p (t) should be assumed to satisfy (2.7) only
in the case when A > 1. For, if A > 1 and if p (t) does not satisfy
(2.7) (and even if we assume that p (t) 7 0 for all t) then we might
still have (for example ) p (1) - 0 as u - u, and the integral in
(2.8) might then diverge at u, We allow v to depend on T, since
we want to include the case of Cesaro summability (¢c,k) for which

p (1) =t k > 0).

(d) Let p (t) satisfy (2.7). We say that j a (u) du is strongly
‘ 0

bounded (N,p) with index A > 0, if

D=0 @) @9

t
; (
jip(u)ll )

P
0 P
and we denote this by

-1

j a (u) du = 0 [N,p]a
0
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(e) Let r (t) = (p*q),, p (1), q (t) € P. Then, if r (t) e P, we
call the Nérlund method (N,r) the symmetric product of (N, p
and (N,q) and write

(N, 1) = (N, p) * (N, q).

(f) We say that the method E includes the method D if every
function summable D is also summable E to the same sum and
write D C E.

Note. Whenever we shall be concerned with strong functional
Nérlund summability, it will htroughout be assumed that the gene-
rating weight functions satisfy (2.7) and will not be stated exp-
Lcitly.

3. The Lemmas. In order to prove our theorems we require
the following lemmas.

Lemma 1. ( [1, Theorem 2. 5] ). If

t

[ 1e @ 1= 0@w)
0

then

[Noplr € [NpJu for 2 > p > 0.

In particular, conclusion holds if A > p > 0 and (N.p) is
positive.

Lemma 2. Let p (t) > 0 for all t, and (N,q) be positive and
regular. If, for » > 1,

J

a (u) du = 0 [N,p], and j b (u) du = 0 (N.q)
0 0
then

j: ¢ (u) du = 0 (N,1).

Proof. By Lemma 1, it suffices to prove the Lemma when
A = 1. Let
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X @) = m where ¢ (t) = (p*a),,

p(t)
(1*q*b), (1*r*c),
Y = _ A=t
O="=Zm =MVO=T5m
Since
(I*r*e) = (q, Y * ¢ )¢ »
therefore
W ! ’ Y d
RACH smjo @) | Y@ | e () | du

Since, Y (t) = 0 (1) by hypothesis, therefore we can find
a suitable constant K(+), so that

K t u

A\ E— 1L v vV au
ACEEE IR (f 1e @ iava

t
— J a (tw) X (u) du (3.1)

0

where

a (t,ju) = K q (t-w) pi(u) for 0 < u < t and = 0 for u>t.

rl(t)

We assert that the transformation (3.1) with Kernel a (t,u)
is null-preserving. For, the norm-condition is clearly satisfied. The
column-condition (2.5) requires that

. e
;1_1—(’5) j q (tu) p: (u) du > 0 as t > ® (3.2)
0

for every finite ¢ > 0. Now, since

j ¢ (t-u) pi(a) du < pye) {qu(t) — q@le) },
0

(£)In whiat follows KK etc. will denote positive constants which may be different
at each occurrence.
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and

~t-c
rl(t) = J Pl(t"u) q (u) du = Pl(c) ql(t'—c)’
0

therefore the left side of (3.2) is

< 4 - qit-c)

- 0as t > >
- qa(t—c)

by the regularity of (N,q); which proves our assertion that 3.1)
is null-preserving. Hence, since X (t) = o (1) by hypothesis, 3.1
gives W (1) = o (1) and so

j ¢ (u) du = 0 (N,r)
0
as required.
Lemma 3. Let p (t) > 0, q (t) > 0 for all t, and (N.q) be
regular. If, for A > 1,

©

j a(wdu =0 [Np], and j b (u) du = 0 [N,qn
0 0 ~
then

j ¢ (u) du = 0 [Ny
0
Proof. Write

Thus, we are given that

= 1 ’ F A dua = 1 3.3
a@r-;@yhp00| (@) I* du = o (1), (3.3)

=2 [ g 6@ de= o), @4
10 =g ] —om 6.

and we have to show that
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1

"0 o (1). (3.5)

]
I

t
j r(u) [H (u) *d
0

Since
r (1) H (1) = (oF * q6),
therefore, by Hélder’s inequality,

T
[x() [H(1) [ 1*< [ j p(u)q(t—u) |F(u)| [G(t-u) [du]?
0
t \ t
<[ j p(u) q(t-u) dulr-t [j p() q(t-u) [F() |* [G(t-u) [*du]
0 0

or
t

) [Hy) < j p(w) q(t-u) [F(u)[* [G(t-u) [* du.
0

Hence

1 t 1 t t-v
T30} jo ) (HE P < jo pv) EC) 1P jO

q(w) 1G(w) |* dw dv

1 t
EET0) JO p(t-v) | F(t-v) [* qu(v) n (v) dv

K t |
= 10 jo p(t-v) [F(t—v) |} qu(v) dv  (by (3.4))
K t
BET0) SO q(t-u) pi(u) & (u) du (3.6)
= o (1)

by (3.3) and the fact that the transformation defined by (3.6) is
null-preserving (cf. the proof of Lemma 2). This establishes (3.5)
and the proof is thus complete.
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Lemma 4. ( [3, Hilfssatz p. 51 ]). If (N,p) is positive and
t
regular and if [ s (1) du = s4(t), then s '(t) — s (N,p) implies
“t-1 :
si(t) > s (N,p).
Lemma 5. Suppose that p (t) > 0, q (t) >0** for all t and (N,q)
is regular. Then
@  (Np) = (Nr)
(b) [Nopla & [Nx]p for n > 1.
Proof. The first part of the lemma is [4, Theorem 2]. To

<

prove the second part, suppose thatj a (u) du = A [N,p]h
Write

* & '
M (t) = (B3 _4 and N @ = E*a) 4. 3.7

T ()

p(t)

Thus, we are given that

— 1 t M A d L ]_ ‘
) = o j0p<u) M (W) [ du = o (1)
and we are required to show
1t :
FRoY Jo r (@) | N@) 1P du= o (). (3.8)
Since

r (1) N () = ( q* pM),

therefore, using Hoélder’s inequality, we obtain

t
rOINO <[ qewp @ M@ P d
O .

(**) If we replace the assumption q (t) > 0 for all t bybthe‘weaker assumption
q(t) > 0for0 <t < 1andq(t)>> 0fort > 1, even then the conclusion of the lemma
holds, : - : : '
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Thus
1 t 1 t t-v
5 jo P IN (@) P e < o jo 1) |
p(w) | M(w) [*dwdv
1t
= i jo q (=) pi(v) v (v) dv (3.9

= o (1)
since v (f) = o (1) and the transformation defined by (3.9) can
easily be seen to be regular. This establishes (3.8) and the lemma is
thus proved.

Lemma 6. Let p (t) > 0 for all t and (N,p) be regular. Define

a(t) - A for 0 <t <1

i) = | a (t) for t > 1. (3.10

If either p (t)* 4 or p (t) § , then

< -1
j a (u) du = A [N,p]: implies s i (u) du = 0 [N,p]i.
0 0

Proof. By definition

(

t
(p*a), -A j p(t-u)du=(p*a),~A pi(t) for0<t<1
0

1
(p*a), —Aj pl-n)du=(p2)-A fp:(0)-p(-1)
0 for .

(p*a), =

Thus, for t > 0,
(p*a) = (P*a). - A () - p(-D 3 (1D
since pi(t) = 0 for t < 0.

If we write

F(t) _ (P*i)t

(*) We use the symbols 4 and | for non-decreasing and non-increasing respectively.
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then (3.11) gives

P) F(Y) = p(t) M) + Alpr) - {p,(t) - ps(+-1)} 1 (3.12)
where M(t) is given by (3.7). Also, by hypothesis,

t
j p(w) [M(u) | du = o (pi(t) ). (3.13)
0

i) If p (t) 4, then

t
m@—mWD2j”pMdu2PWD

and so (3.12) gives

p(t) F(t) < p(t) M(t) + A{p(t) - p(t-1) }.
Thus, using (3.13), we obtain

t
jzmn?@ldugo@ﬁn+|M{mmwwu}

0
= o (p:(t)) (3.14)
since (N,p) is regular.
(i) If p (t) §,then {p,(t) — pi(t-1) } > p (t) and so the
second term on the right side of (3.12) is < 0. Thus, again using

(3.13), we find that (3.14) holds. Thus, in any event, (3.14) holds
and hence

©

J i) du = 0 [Npl
0

as required.

Lemma 7. Assume that p (t) > 0 for all t and (N,p) is regular.
Define ‘

T
A ai(t) = ai(t) — ay(t-1) where ay(t) — J a (u) du. (3.15)
0 .

If either p (t) 4 or p (t) | , then
J a(u) du = A[N,p], impliesj Aau) du — A[N;pl..
0 0
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Proof. If we write

_ o Tfor 0 <t <1
q<t)_%0for t > 1,
then
t
(F*a), = j a (u) du = Aai(o),
t-1
t
() = (p*d) = j p (@) du = pi(t) — pi(t-1),
t-1
t t
i, = F (u) du = {u) du 3.16
O=f tow=| o (3.16)
and
(t*a); = (p*q*a), = (p*Aai)- (3.17)

It follows from footnote (**) to Lemma 5 that [N,p]: <
[N,i]: and thus
j a (u0) du = A [N,i]u. (3.18)
0

If we write

M () = (P*A3)e 4 4na N (t) = (:*(‘3‘ ~ A, (3.19)

then (3.18) implies

t
j i) IN (@ | du = o (5()) ). (3.20)
0

Now, because of (3.16), f,(t) = pi(t,) for suitable t, between

t-1 and t, therefore r(t) is asymptotically equivalent to p (t). So
(3.20) becomes

t /
j P @ | N @ | da= o (pift) ). (3.21)
0 .
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Now, from (3.17) and (3.19), we have
P() M(®) = (proa) - Ap (1)
= (1) N (1) + A [{pO)-p-D}pO)]  (3.22)
(i) Ifp (t) 4, then (3.22) gives
t

t
| e M | du < | w0 N 1 aw = o (i) (323)
0 0

by (3.21).
(i) If p (t} § , then from (3.22) we have

t
| b M@ 1du <0 (pu(®) + 1A THp1) - pa(0) } (by (321))
0
= o (p())

since (N,p) is regular.

Thus, in any case, (3.23) holds and hence

j Aau) du — A [Np],
0

as desired.

4. Main Results.
Theorem 1. If p (t) > O for all t, p (t) 4,2 > 1,

«© -]

j a(u) du = 0 [N,p]s and j b(u) du is absolutely conver-
0 0
gent, then

-]

j c(u) du = 0 [N,pl
0

When A = 1, the condition “p (t) 4 may be dropped.

Proof. If we write

pc)t
TO=5%®m



196 ASHOK KUMAR

then
p (1) J (t) = (p F*b)..
Using Holder’s inequality, we find
t t
® 150 13 < ([ pw) bew | IR P du )
‘0 0
p(u) | b(t-u) | du }r-1. (4.1)

==}

Since by hypothesis p (t) 4 and j b(u) du is absolutely
0

convergent, therefore (4.1) gives

t
wumnngmwwmlwwnm
0

When ) = 1, the second term on the right side of (4.1) does
not appear and so we need not assume that p (t) 4.

Now

t t t-v
j p(w) () P du < K j p(v) | F(v) A j b(w) | dw dv
0 0 0

t
<K, | o) 1F) 1 av, (4.2)
0

(-~
since j b(u) du is absolutely convergent. By hypothesis, the
0

right side of (4.2) is = o (p,(t) ), and hence

t
j p(u) 1J(u) [* du = o (pu(t) )
0

so

<

j o(w) = 0 [Np]a
0

as required.
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Theorem 2. Assume that p(t) > 0, g{t) > 0 for all t, (N,p)
and (N,q) regular, and either p(t) 4 or p(t) § . If, for x > 1,

}' a(u) du — A [Nip]» and j b(w) du = B (N,q)
) 0 o
then

j " o(w) du = AB (N,
0

Proof. By Lemma 1, it suffices to prove the Theorem for the
case A = 1. If A = 0, the result is an immediate consequence of
Lemma 2. Suppose A £ 0. Define a (t) by (3.10). Let

¢ (t) = (a*b), , 43
h = ¢ (t) -= A {bi(t) - b,(t-1) },
t
by(t) = [ b (u) du.
20

Now anocther application ¢f Lemma 2 yields

J % (u) du — 0 (N,) (4.4)
0
since, by Lemma 0,
j 3w du— 0 [N,p]s. (4.5)
0

Further, since (N,q) < (N,r) by Lemma 5 (a) (with p,q interc-
hanged),

j b (u) du — B (Ny).
0
Now, since b,(t) -~ B (N,r), we have
' t

j:} by(u)-bi(u-1) } du — j by(u) du

t-1
- B (N,r)
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by Lemma 4. In other words

j {by(u) - by(u-1) } du = B (N,n). (4.6)
0

Hence, since
c(t) = ¢ (t) + A {by(t) - b(t-1) },
it follows from (4.4) and (4.6) that
J ¢ (W du — AB (N
0
which completes the proof.

Theorem 3. Suppose that p (t) > 0, q (t) > 0 for all t, and
(N,p) and (N,q) are regular. Further suppose that either p (t)
4 or p (t){ and also that either q (t) 4or q (t){ . If

J a() du — A [Npl. andj b(u) du — B [Nql,
0 0

then

=]

j o(u) du — AB [N,r]..
0

Proof. If A = B = 0, the result follows from Lemma 3.
Suppose that A =0, B = 0. Define i (t) and ¢ (t) as in (3.10) and
(4.3) respectively. Again, by Lemma 3, since (4.5) holds, we have

-]

j S(u) du = 0 [Nyr],. (4.7)
0

Since, by hypothesis and Lemma 5 (b) (with 2 = i and
p-q interchanged),
j b(u) du = 0 [Nx],
0 R
therefore, from Lemma 7 (with a; and p replaced by b; and q
respectively) it follows that
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j Ibi(u) - by(u-1) } du = 0 [Nyr].. (4.8)
0 |

Hence, since
c(t) = ¢(t) + A Iby(t) - bi(t-1) },
from (4.7) and (4.8), we obtain

j: c(u) du = 0 [N,r],

as desired.

Finally, when A = 0, B 5 0, we define b (t) similar to & (t)
and a similar argument yields
j c(u) du = AB [Nr],.
0
This completes the proof.
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