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Characterizations of Spherical Curves in Euclidean n-Space

E. OZDAMAR H. H. HACISALIHOGLU

Department of Mathematics, Univ. of Ankara

(Received Dec. 12, 1974)

ABSTRACT:

We give the characterizations for the regular curves each of which lies on the (n-1)
~sphere S°! of n dimensional Euclidean Space E®. We express these characterizations

in the higher curvatures of the curves.
I. Basic Concepts.

Theorem I1.1: If X is parametrized curve in u dimensional
Euclidean space E® then X can always be pepara-
meirized by an arc length parameter [1].

Theorem 1.1 says that, in general, we can have the arc-length
parametrized curve X (s) with arc-length parameter s as a para-
metrized curve in E". '

Let I be an open interval in the real line |R. We shall interp-
ret this liberally to include not only the usual type of open interval
a < s < b ( a,b real numbers), but also the types of a < s (a half
line to + o), s <b (a half-line to — ), and also the whole real
line. Henceforth we denote an arc-length parametrized curve
of E? by a map X:I — E® which is a C® parametrization by arc-
length. :
We assume that at each point X (s), of the curve X:I — K7,

the derived vectors
X', X7,..., XO}

are linearly independent, where
d'X

. ax ax i
X' = s (S)a X =_(? (5)7 veon XO)= ds* (S)

d
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Therefore there exists an algorithm, called the Gramm-Sch-
midt process, for converting X', X"’ ..., X® into an orthonormal
basis

Vi, Vo, .., V3
of the tangent space Tgn (X(s)) of E" at the point X (s) ¢ E. This
system is called the Frenet r-handed (or r-frame) of the curve
X at the point X (s) [2].
If we denote the inner product (dot product) E’x E* — R
over E* by <<, > we have
<Vi7 VJ> = Sij

and then the derivatives of the frame vectors satisfy the following
Frenet equations.

V’i = —ki_1 Vi—1 + ki Vi+19 2 <i < rl
(L1 Vi = ki V,,
V.= k. V.4
where k;, 1 <<i < r-1, is the curvature, with order i, of the curve
X at its point X (s) [2]. These formulae (I.1) are called the Frenet
Formulae which give us the derived vectors V', 1 <1 < r. Then

we mention the following theorem which is importent in Chap-
ter IIL

Theorem 1.2 : Let X: I — E® be a regular curve. At the point
X (s) of it if Frenet n-frame is

{Vi, Vo, V3

then we have

P
X® = ¥ a;V;,,1 <p <n,

=1
where a; = |R.
Proof : We use the induction process:

(i) Since the curve is given by its arc-length parameter s,
X’ = V,. Therefore if p = 1 the theorem is trivial.

(ii) Let us suppose that the theorem is proved for the cases
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1 < r < n. Then we prove that the theorem is also valid for the
case p. = r+1.

Since we can write
T

X(l‘) — Z aj Vj

j:l

differentiating this, with respect to s, we obtain

X = % a/ V, 4+ 3 a VY.
=1

=t

Using Equations (1.1} this gives us

Xeth = X fay Vy + a; (k. Vi + k; Vi) |

=1

where if we write that

b, :‘al' -k, a,,
by = a5y + a;_ ko —a;, Kk, 2<j<r1,
br S ar' —|— aj_l kr—1 .

b, = a k,

r+1
then we obtain

r+1
Xh = ¥ by V;

=1

which completes the theorem.
I1. Osculating p-Spheres St and The Curvature Lines.

Definition 11.1 : The p-sphere S® in E"™ which passe sthrough
X (s) and is in contact with the curve having
p-+2 poinis in common at the point of contact

(s) is called the osculating p-sphere to the
curve at X (s).

At any given point, the curve has exactly p-th order contact
with its osculating p-sphere for p = r.
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We suppose that at the point X (s) of the curve k, , % 0
and then we will educate the osculating sphere S"72. In order to
do this we will need the following theorem.

Theorem I1.1 : Let k,_, #~ 0 at every point X (s} of a curve
X: I — E™. Then at the point X (s) of the curve
the center of (n—2)-osculating sphere S"-2 is

n—2
a= X - E m; V; + AV, , acE",

i—=2

where 2 ¢ |IR and m; = 0, m, = -1k, and

1 .
m; = {m';_, -+ m_, k_,} o 2 <i<n.
i1

Proof : Suppose that at the point X (s) there is at least one
(n-2)-osculating sphere with the center a ¢ E® and radius r ¢ |R.
In this case let define the function f: I — |R as

(11.1) f(s) = < X (s)-a, X (s)-a >-r2,
Since X (s) ¢ S“_Z; we have
f(s) = 0.

On the other hand, if X (s) is a second order contact point
of the curve and the osculating sphere S"7 for the case Vs; — s
then we have

f(s) =0
f (Sz) = 0,

where s1, s; ¢ I. Applying the mean value theorem to these equa-
tions we obtain f (s) = 0 and f'(s) = 0. Similarly, if X (s) is a n-th
order point of the curve and the osculating sphere S*7 for the case

Vs; > s
we have
f(55=0,1<j<mnys,s¢cl

f(s) =0,
and from the mean value theorem

(IL2)  f£(s) = 0, £(s) = O,..., £@-1) (5) = 0.
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Since k,_1 7~ 0 we can imagine that Frenet n-frame is exist
at the point X (s) of the curve. Hence, {V,, Va,..., V } is a basis
of tangent space Tgn (X(s)) and (X (s)-a ) ¢ Tga (X(s) ) can be

expressed, in a unique way, as
n
X (s)-a = -2‘1 m; V,, ¥Ym; ¢ R,
1I—

Replacing (I11.1) in (I1.2) we obtain
f'(s) = 2 <X'(s), X(s)-a> = 0.

On the other hand s is arc-length parameter and so V; = X'.
Hence

< Vi, X (8)-a > = 0.

and then m; = 0 so

(I1.3) X (s)-a = )3 m; V,.
=2

In Equation (IL.1) since f”’ (s) = 0 and using the Frenet
formulae we obtain that

d (< Vi, X (s)-a >)
ds

—;— 7 (s) =
and then
‘<k1V2,X(s)—a> + < V,V, > =10
ki <V, X (8)-a > + 1=0
m; = — 1/k;.
Hence the theorem is proved for the coefficients m;.
From the Equations (IL.2) one can write
£ (8) = 2 < X" (s), X (s)}-a > = 0.
On the other hand differentiating the equation
X =V
according to s and using the Frenet Formulae we obtain that
X" = ki V, o
X" =-k*>V, + k'V, + k k, V,
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Replacing the last equation in "’ (s) = 0 and using (IL.3)
we have

< - KVi+ K Vot ki k Vs, & om V> =0
=2 :
or
k'’m, 4+ k k, m; = 0.
Since m> = -1 /k; for m; we can have
m, = m, [k,
and the theorem is also proved for the case i = 3.

Suppose that the theorem is valid for the cases for p such
that 2 < p < n-1 and then we will prove it for the case p-1.

Let define a function ¥, (s) by the equation
(11.3) f®) (s) = < X® (s), X (s)-a > + ¥, (s)-
From the derivative of
f(s) =2 < X’ (s), X (s)-a >

we can see that in the expression of £® (s) the derivatives higher
than X ®) (s) do not exist, From the Theorem (1.2) we can write

P
(11.4) X® (s) = X a; V, Va; ¢ IR.
j=I1
Replacing (I1.3) and (II.4) in the Equation f® (s) = 0 we
have

p n
<EajVj,ijVj>+‘Fp(s)=O
=,

=1 i
or

P
X mya + ¥, (s) = 0.

=2
Therefore we have

1 —1
(11.5) m, = - — { 'PZ m; a; + ¥, (s)].
- p =2
Differentiating the Equations (IL.3) and (I1.4) we have,
respectively,
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fesh (s) = < X®* (s), X (s)-a >
+ < X® (s), Vi > + ¥, (s) = 0

and

p-1
X@th () = (a'y - ky a2) Vi + Ez (a’;+a;_ k;_ —a;,, k)V;
= :

+ (a,p + Ay kp—l) Vp + ap kp Vp+1‘

Hence replacing the values of X ®+" (s) and X(s) -a in
fe+h (s) = 0 we have

p=1
X (@ + a, ko -ay, k) my + (@p + a3, kp—l)mp

j___Z

+a k,m,, 4+ a + ¥ (s) =0

From the last equation, calculation gives us that the value

of m,, is

1 p=t ,
m,., — — ok, { 522 (a’; + a;_, ky_, —a;,, k;) my

+ (a'pt+a, k, ) my+a+ Tpl(s)}‘

And from the Equation (IL.5) differentiation gives us that

’ 1 P_] ’ '
my, =~ [ jEZ @+ ay ki + a, k) my

3

+(a'poytap ok, ) my  +(a,+ aD—IkD—I)mp + a, +¥(5) 1
Hence we can write

, 1
(11.6) my,, = {my+ m,_ k,, } E’

o1, from the equation f®+1)(s) = 0 the
coefficients m,, ms, ... , m, , are determinet in an equation like

(11.6). m, = A ¢ |R is a parameter. Hl

and since we obtain m

Corollary I : At any point X (s) of a regular curve X:I - E* if
‘k,_, % 0 then all the centers of (n-2) -osculating
spheres S"7? are collinear.



116 E. OZDAMAR - H. H. HACISALIHOGLU
Proof : From the Theorem (IL.1) the center of S*-2 at X (s) is

n_t
a=X (- X mV, -2V, 2R,
i=2

where,

1
m; = -1/k, m; = {m’;_+m;_k, ,} k_
i-1
For Vs ¢ I, m;, V;, X(s) are constant. Hence a, the center of
(n~2)-osculating sphere S" 2, lies on the straight line which passes

n_t
throught the point X (s) - X m; V, and parallel to the vec-

i=2
tor V,. R
Definition (11.2) : Let X: I > E® be a given ragular curve. The
locus of the centers of (n—2)-osculating skteres
S°-2 is called the curvature line of the curve, at
the point X (s). :
Colollary I1. At any point X (s) of a regular curve X: 1 — E® if

k, , #~ O then the center of (n-1) — osculating sphere
Sh-1 s
a = X (s) - 3 m; V;
i=2
where, m, = 0, m, = - 1/k; and
1
m; = {m’;_+m;_k_,} T 2<i<n
i1
Proof: According to Definition (II.1) the point X (s) is a
(n+1)-th order contact point of the curve X and its (n-1)-oscu-

lating sphere. Therefore we have the expressions (I1.2) and also
f® (s) = 0. Hence we can repeat here the same proof of Theorem

(IL1). m
Corollary III. If Vk, | 5 0, s ¢ I, for the curve X: 1~ E" then at
the point X (s) the osculating sphere S"-1 is unique

N .
and its radius is r = ( £ mP)'%
i=2

Proof : According to Corollary II the center of (n-1)-osculating
sphere S*-1 is unique so S"-1is unique.
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At the point X (s) the radius r of osculating sphere S"-1 is
r—]aX @l

From the corollary II we have

r=llaX @ = | X m Vi

n
= ( E[ m;?)'%. W

III. Spherical Curve of E™ and Its Characterization.

In this paragraph we will give a necessary and suffiecent
condition for a curve of E® to be a spherical curve.

Definition II1.1: Let X: I~ E" be a curve and S* < E" be a
p-sphere. If X < SP then X is called a spherical
curve in E". ‘ :

The case p=n-1 is supposed in this paragraph. Because of
SP—S! nH,,,, every curve X of SP in E” lies in a (p+1)-
hyperplane H ., [3] so this case is not a special case. Since a
(p-+1) - hyperplane H,,.,, is isomorph to Euclidean (p+-1)-space
EP+1, a curve of SP can be taken as another curve of another sp-
here Sp = EP+!. Hence X < SPc E® so we can see that k0.
Therefore we can only suppose the curves of S*~! whose curvature
k, , #0.

Theorem III. 1: Let X:1 > E" be a regular curve such that

kn_liO,VsaI,mlzo,mzz—%
1

m; :{ m'y_+ m;, ki—z}k_l' »2 <i<n,
i-1
and X =S 7; where S™' is an (n—1)-sphere with the
center O. Then
< X (s), V;> = my
where { V,, V,,..,V, } is the Frenet n-frame at the
point X (s) of hec urve.
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Proof: We apply the induction process:

If i=2 and the radius of St 7' is r we can write
< X (s), X (8) > = r

and then from this by differentiation, with respect to s,
< X (8), X'(s) > =0
or
< X" (s), X () > + < X' (s), X (s) >=0
or

< X" (), X (s) > - 1=0.

On the other hand since we know that V.=X"" (s) /| X"'(s) |,
[ X (s)] = ki [2] we can have

k1<V2,X(S)>:—1

or

< V3 X () > = -1/k, = m:
which proves the theorem in the case i=2.

Suppose that the theorem is proved in the cases p < n. Then
we can write

<X (), V,> = m,
which gives us, by differentiation, with respect to s,
< Vi, Vp> + < X (s), V,> = m/,
in this last equation, replacing the Frenet Formulae (I,1) we have
, 1
< X (s)y Vo > = {m',+ m,_k,  } R
P
< X (s) Vpiy > = my,

which completes the theorem. B

Theorem II1. 2: Let X:I-E" be a given regular curve such
that k,_, 7 0, Vsel. If X< S ! then all the (n-1)-
osculating spheres of the curve X coincide with S>'.

Proof: Suppose that the center of (n-1)-osculating sphere
at the point X (s) of X is a. From the Corollary II of Theorem
1I.1 we have
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a=X() - 5 mV,

=2

1
where m;= 40, m; = - 1/k1, m; = {m,i—l + mi—zki~2} k—’

2 <i<n and{Vi, V2,...,V,} is the Frenet n-frame at X(s) of X.
According to Theorem III.1 the expression of a can be write as

a=X@E)-3% <X (s)V,>V,
j:l

Since {V,,V, ..., V} is a basis of the tangent space Tga (O)
we can have
X() =2 <X V>V,
- =1

and then

a = X (s) - X (s)
or

a=20
which shows that the centers of S and (n-1)-osculating sphere

at X (s) of X coincide. On the other hand since d (X (s), O) = r
we see that the theorem is completed. B

Corollary 1. If """ < E™ is an (n-1)-sphere and the curve
X is X < S;27! then (n-1) — osculating sphere at
the point X (s) of X is S 7%,
The proof of this corollary can be given in the light of the
fact that “The spheres with the same radius are isometric”.

The radius of an (n-1)-osculating sphere of a curve X depends
on the center X (s) of the sphere. The following theorem makes
clear this dependence.

Theorem I11.3: Let X: I — E” be a given regular curve whose
k, 70 for Vsel and let m  £0 (see the
Corollary II of Theorem IL1). The radii of
(n-1)-osculating spheres at X (s) of X are
constant for Vs ¢ 1 <> The centers of the (n-1) —
osculating spheres are the same point.

Proof: We need the following calculation:
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As we know, let a (s) and r (s) be, respectively, the center
and the radius of (n—1)-osculating sphere at X (s) of the curve X.
Since X (s) is a point of the (n-1)-osculating sphere we have

< X (s)-a (), X (s)-a (s) > = (r (s) )2

which gives us, by differentiation with respect to s,

(IIL1) < Vi, X (s)-a (s) > - < 3‘: (s), X (s)-a (s) >
dr
= r (s). I (s)-

According to Corollary II of Theorem II.1 we have
<V, X (s)ra(s) > =0

and replacing this in (III.1) we obtain

(®).

(IIL2) < g: () X (s)a () > = —r (s). g:

Now we can give the proof:

(Necessity): Suppose that at every point X (s) of the curve
X the radii r (s) are constant. According to Corollary II of Theorem
II.1 the radius of (n-1)-osculating sphere at X (s) is

r() = ( X my)
i=2

r (s) = constant = dr/ds = 0
and

(I11.3) Y m'm, = 0.

i=2
From the corollary IT of Theorem II.1 since we have
mi=-k_m ; + km;,,, 2 <i<n-1.
Equation (II1.3) reduces to

(IIL.4) mom’,+- "g: m,[ - k_m,_, + km,, ] + mm’, = 0

or replacing m’, = m;k; in (II11.4)
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m,m k,— o k. m; m;} Z kmm; 4+ mm’ =0

or after some cancellations
(IIL5) m, (m',+ k,_m_ _) = 0.

Then acording to Theorem II.1 we have

(s) = V- T m, V-2 mV,

i=2 =2

where replacing (I.1) and (II1.4) we obtain

da ,

(L)  —- = (m't kym,) V,
From the Equations (II1.5) and (IIL.6)
. da

'Tis— = 0, ‘VS el
and so

a (s) = constant.
(Sufficiency): Suppose that a (s) = constant, Vs ¢ I. Then —j—: =0
and according to (III.2)

da
<—d—S—,X(S)—a(S)>: 0

r (s) (s) = 0.

In the last equation if r (s) = O then from Corollary III
of Theorem II.1 we have

i m2, = 0

=2
which gives us m; = 0, 2 <i < n.
On the other hand
m; — — l/klc

Since k, = || X"'(s) |/ ]| X’ (s) | [2] the case m, = 0 implies
that | X' (s) | =0or | X" (s) | —> oo. In the case | X' (s) | =0
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the curve is not regular. Then we must have | X’ (s) | 7 0 and in
E® | X" (s) || can not be infinitive. Therefore we must have

dr
ds (s) =0

and so r (s) = constant. |l

A characterization of a curve in E* to be an (n-1)-sphere
can be given by the following theorem.

Theorem II1.4: Let X: T — E® be a regular curve such that
k,_, 70, Vs eI and m (s)7£0. The curve X lies
on a (n-1)-sp- here <> The centers of (n—1)-
osculating spheres of the curve X are all the
same point.

Proof : (Necessity): Suppose that X lies on S,"*. Then accor-
ding to Corollary I of Theorem III.2, for Vs ¢ I at the points X (s)
of X, (n-1) — osculating sphere is S,""' whose center is a fixed
point.

(Sufficiency): Suppose that, at the point X (s), the center of
(n-1)-osculating sphere of X is a fixed point b. Then Theorem
IT1.3 says that, at every point X (s) of X, the radii of (n-1)-
osculating spheres are also equal. Hence for Vs ¢ I at every
point X (s),

d (X (s), b) = r = constant

which means that X is a spherical curve. For Vs ¢ I the curvature
k,_, 7 0 implies that this sphere is S;"'. |

Another characterization of a curve in E® to be on a (n-1)-
sphere can be given in terms of its curvatures by the following
theorem.

Theorem II1.5: Let X: I > E" be a regular curve such that
forvselLk, #0,m,% 0, m= 0, m
= 0, m,= -1/k, and for 2 <i <n,

, 1
my={m'_ + m,k,} k.
i-1

The curve X lies on a sphere S"™* <> m’, +
k,,=0. ’ '

m, ,
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Proof: (Necessity): According to Corollary II of Theorem
I1.1 the center of (n-1)-osculating sphere at X (s) is

J J

(IL7)  af) =X () - = mV,

On the other hand according to Theorem IIL.4 it is necessary
that a (s) is a fixed point for the curve X to lie on a (n—1)-sphere.
This implies that

da/ds = 0 .

Hence from Equation (II1.7), by differentiation with respect
to s, we have

da
ds

which completes the necessity of the theorem.

(I11.8) = (m'y+ m,_ k,_)V, =0

(Sufficiency): Suppose that for a curve X we have
m',+ m, k_ = 0.
Replacing this in (II1.8) we obtain
' dajds = 0

which implies that
a (s) = constant.

Thus jointing this result with Theorem III.4 we see that X
is a spherical curve and for Vs ¢ I, since k, , 7 0 this lies on a
(n-1)-sphere of E". B

IV. Specil Cases.
1. The Case n=3.

In the case that n—=3 the formulae in Theorem I11.5 reduces
to

(IV.1) m’; + kym, = 0,
where replacing ms;=m’,/ k, we have
(mlz/kz)' + m; kg =S 0

Since m,= -1 /k; the last equation gives us
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1 1y 1Y\
e [(T«T) E_) =0,

where replacing

= 9, ! = gand k; = 1

k:

1
ki

we obtain
(IV.3) Y14+ ® o) =0

which is well-known, in the books on elementary differential
geometry, characterization for spherical curves.

On the other hand in the case n=3 the function f in [4] can
be taken as f = —m,. Similarly, taking n=3 in Corollary III of
Theorem III.1, the radius of the sphere can be obtained as

r = (m’+ m}?)!?

= [(&) ]

which is the same value in [4]. Hence, for n=3, Theorem L1 in
[4], can be obtained as another special case from Theorem IIL.5.
Since f = -mj; are, respectively, '

or

m;k, = m’, , m’; -+ kom, = 0

which can be obtained from Theorem IIL.5, for n—3.

On the other hand since Theorem 1.2 in [4] is deduced from
(IV.2) we can say that it is also another special case of the Theorem
IIL5,
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Ozer:
E® n-boyutlu Oklid uzaymda S°—! (n-1)-kiire iizerindeki regiiler egriler icin karakte-

rizasyonlar verdik ve bu karakterizasyonlar:, ele alman egrilerin yiiksek dereceden
egrilikleri cinsinden ifade ettik.
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