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On The Geometry of Motion In The Enclidean n-Space

H. Hilmi HACISALIHOGLU
Department of Mathematics, Univ. of Ankara
(Received 16 Dec. 1974)

ABSTRACT:
In one parameter motion,
x = Ax, + C, Ae 50 (n),

of Euclidean n-spaces we find a geometrical meaning for the rank A to be n or n-1, Thus
we give the geometrical discussions of the 274 order pole points, pole curves and the

axoids in these cases.

I. Introduction.

An one parameter motion of a body in Euclidean n-space
is generated by the transformation

X~ “A CT ™%

1 0 1 1

where A € SO(n) and x,, x, C are nxl real matrices and
SO(n) = { AcO(n): det A =1}, O(n) = {A¢|R": A=A""}.
A and C are C* functions of a real parameter t; x, and
x correspond to the position vectors of the same point X, with
respect to the orthonormal coordinate systems of the moving
space R, and the fixed spage R, respectively. At the initial
time t = t, we consider the coordinate systems of R, and R
are coincident.

In Euclidean n-space, H.R. Miiller [1] gives a treatment of
the 1** order pole points and pole curves of the motion. The same
kind of treatment about the higher order pole points and the pole

curves depends on the ranks of the derivative matrices A, A,...,

A® of A, where(.) indicates . Since we do not know anything

d
dv
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about the ranks of these matrices it is not easy to give the geometry
of the higher order pole points and pole curves.

In this paper we find a geometrical meaning for the rank
A to be n or n-1. Then we obtain, in these cases, the geometry of
the 2" order pole points and pole curves in the manner of Miil-
ler [17].
II. The Ranks of A and A.
In the motion represented by (1) since A €SO (n), the rela-
tion
ATA = A AT = T @)
holds identically with respect to t. Hence we can give the follo-
wing theorem.
Theorem 2.1:
Let A € SO (n) and n be an odd number. Then rank Ais an
even number,
Proof: Differentiating (2), with respect to t, we have
ATA 1 ATA = 0. (3)
If we write

» = ATA )
(3) reduces to
ol + o = 0
which shows that w is a nxn skew matrix. On the otherhand since

n is an odd number we have
det v = 0.

This means that rank o < n-1. If rank w=r, since w is a skew
matrix all of its r'™ order minors are rxr skew matrices and so r
must be an even number. Sinece

detowy = det AT. det A=90 and det AT= det A=1

we have det A = 0 and so

rank o = rank A
or

rank A = r.
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Theorem 2.2:
Let A € 80 (n). Then
rank A = 0 < reank A = 0.

Proof : By differentiation, with respect to t, (3) gives us

ATA + 2 ATA + ATA = 0. (5)
Since rank A = 0 A = 0 and (5) reduces to
ATA = 0. 6)
vx € R, from (6) we may write that
xTATA x = 0

or in innerproduct form
< Ax, Ax > =0
which implies that

A x =0, vxeR
or

A =0 = rank A =0.
The invers case is ocbvious. [

III. Acceleration Pole Points and Acceleration Axoids.
Derivating (1), with respect to t, we have
i =A4Ax,+C+ A%, )
where % is the absolute velocity (absolutgeschwindgkeit), A x,
+ C is the sliding velocity (fiihrungschwindigkeit) and A%, is
the relative wvelocity (relativgeschwindigkeit) of the point X
whose position vector is x.

The solution vector x, of the system
Ax,+C=0 (8)
is the position vector of the point may be considered as a fixed
point of R, and R at the same time t. These points are called ins-
tantaneous pole points at the time t. The discussion of these
solutions had been given by H.R. Miiller [1].

The velocity of a fixed point x, € R is

x = Ax, + C 9)
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and for the 2" order velocity (or the 1** order acceleration) of this
point x, € R, (9) gives us

% = A x,+ C.
The point Xe R, which corresponds to the fixed point X eR,,
derives its orbit in R, under this acceleration %. The discussion

of existency of the acceleration poles and the acceleratlon axoids
1s the discussion of the solution of the system

Ax,+C=0. (10)
The solutions of the system (10) depend on rank A.

a) Instantaneous Screw Axis (I1.S.A).

We denote the one parameter motion (1) by R,/R. In R,/ R
we will try to find the points hawing, in a given position, a velo-
city-vector with minimal norm.If n=2 this kind points are exist[2].
In the case n=2, this point coincides with the pole, in a position
corresponding to an instantaneous rotation; in a position corres-
ponding to an instantaneous translation all of the points of the
moving 2-space can be regarded as having minimal velocity.

In the case n=3, in any position of R, the locus of the points

in R, having a velocity-vector with stationary norm is a line [2].

We show that, in the general case n, in any position of R,
the locus of that points in R is a line If X € R, has the coor-
dinates

(X15 X2y wov 5 Xp)

in an orthonormal frame of R then for these points we can write

8
0xy

<% %>=0, 1 <k<n, (1)

and replacing (9) in (11) we have

< (AX0)9AX0+G>:O

0
OX
or

< A ) A x4+ € > =o0. o (12)
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Since we know that

@ e 1
_6—);: Xo) - [81k] € IRn

(12) reduces to
<ALAx, +C>=0

where A, is the k' column vector of A. In the matrix notation the
last relation is

ATAx, + €6 =0, 1<k <n
or

AT (A x, + € = 0. (13)

According to Theorem 2.1, if n is an odd number then the
rank A can be n-1. Suppose that rank A = n-1, since Equation
(13) is in the form

ATY = 0,Y = Ax, 4 € (13%)

it has a solution space whose dimension is 1. Let E* be a basis of
the solution space such that

< E* E* > = L
Then all of the solutions of (13°) are in the form
Y =2 E*
and then the solutions of (13) satisfy the relation
Ax,+ C-xE* = 0. (14)
Since we suppose that rank A = n-1
rank (&, C - A E*) = n-1

is necessery and sufficient for (14) to have a solution. If A=2*
verifies this condition then we have

rank (4, C - 2*E*) = n-1.

Since E* is the general solution of the homogen part of the
system, to have the general solution of (14) we must add a special
solution of (14) to E*. For this special solution 2* can be determi-
ned from the equation
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< E*, C - »*E*> = 0
and then .
2= < C, E*>,

Therefore (14) reduces to
Ax,+ C- < ( E*> E*= 0

or

Ax, - B=0 (15)
where
B=C-<( E*> E* (16)
Hence if a solution (15) is
Xo = P (17)
then the general solution of (15) is
xo =P + 2 E (18)

where E corresponds to E* such that
ATE* = 0, AE = 0.
To verify that (18) is a solution of (15) we can replace (18) in
(15) and see that
AP+ 2E)+B=AP+ B+ 2 AE,
where AP - B=0and AE = 0.

The geometrical meaning of (18) is a straight line which
passes through P and parallel to E.

Hence we proved the following theorem.

Theorem 3.1:

Let the motion R, |R be represented by the equuvtion (1) If
rank A=n-1, at any time, the locus of the points in R, ha-
ving a velocity-vector with stationary norm is a straight line.

Definition 3.1 :

At any time t of the motion R, /R, the straight line, which
is the locus of the points in R, having a velocity —vector with

stationary, is called the instantaneous screw-axis and denoted
by L.S.A for short.
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The vector-representation of I.S.A in R is given by (18).
At the same time the vector-representation of the same line in

R is
x=AP+CL+L2rAE
which is obtained (1) and (18).
b) The Relation Between E*and E.

In consequence of (3) we have

AT — — ATA AT
and so the relation ATE = 0 reduces to
ATA ATE* = 0
or
A ATE* = 0.

Since we have that
AE=0

we can write that
ATE* = u E or E*= p A E.
On the otherhand
<E, E> = <E* E*> =1
leads to have
po=1
and then we obtain the result
E* = A E.
¢) The Velocity of the Points on I1.S.4
The velocity of a fixed point of R, is
x = A X, + C,
on the other hand if this point is on I.5.A we have
x, = P -+ 2 E

and
AE=0
then the velocity of a point on 1.S.A is
i=AP+ €

or by means of (15) and (17) since we have

(19)

(20)
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AP=-8B
and then
x=S-B
or from (16) and (20)
$=<CAE > AE (21)

which shows us that % does not depend on x, and x. Therefore we
have proved the following theorem.

Theorem 3.2:

At any time t of the motion R [R, all of the poinis of the
I.S.4 have the same velocity which is directed along the I.SA.

d) The Sliding—Rolling of The Acceloration Pole Curves
Upon Each Other.

We need the following two theorems to see that whether
the acceleration pole curves have the sliding-rolling upon each
other.

Theorem 3.3:
If A € SO (n) and rank A = n-1, then

(i) AE =0 < 0 rank A = n-1;

(i) AE £ 0 < rank A = n .
Proof : (i) By means of Theorem 2.2 we have that

rank A =£ 0.
Thus rank A must satisfy the inequality
0 < rank A < n

and then we have the following two cases:

(19). 0 < rank A < n,
or R
(2°). 0 < rank A = n.

In the first case we can find an unit vector £ € R such that
Ag =0
Therefore from (5) we may wtite

ET(ATA + 2 ATA 1 ATA) £ = 0
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or by means of A § = 0
ETATA £ = 0
AT A & =0
or in the form of inner product of vectors
< Ag, Ag > = 0.

Since the inner product is positive definite in Euclidean n-
space, the last expression induces that

or

Ag = 0.
On the other hand, since we have
rank A = n-1
we can write that
E=+E
an then
AE =0,

where E is the unit vector directed along the I.S.A. Therefore the
dimension of the solution of the system is 1. Thus according to
the theory of homogen linear system [3] we have

rank A = n-1.

The second case does not hold because of the hypothesis
AE=0. (i) If A E £ O then rank A does not satisfy the inequality

0 < rank A < n
and so we may have .
rank A = n
in this case. i

As a consequence of Theorem 3.3 we have the following one.
Theorem 3.4:
If A € SO (n) and rank A = n-1 then:
(i) The direction of the 1.S.A is stationary <
rank A = n-1;
(ii) The direction of the 1.S.A is not stationary <

rank A = n.
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Proof: (i) For the unit vector E directed along the I.SA

we know that

AE =0
and
<E, E> = 1.
From these equations we obtain, respectively,
AE 4+ AE=0 (22)
and )
< E,E > = 0. (23)
Sinece E is stationary we may have that
EF=090
and then (22) reduces to
AE =0
which means that
rank A =n-1.

Conversley, rank A = n-1 implies that

AE = 0.
and then (22) becomes
AE = 0.
On the other hand we have that
AE =0
Therefore we may write that
E = AE.
Thus (23) reduces to
<E,2E> =0

or . .
r<E, E> =0
or X
<E, E> =0
E = 0.

(ii) If E is not stationary then
E#£0
E # a E.

which means that
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Therefore A E 7 O and so, from (22),
A E # 0.
Thus by means of Theorem 3.3

rank A = n
in this case. B

Now we can give the following theorem.

Theorem 3.5:

If A €SO (n), rank A —= n-1 and 1.S.A is not stationary then
in the motion (1): A (A= €} + C = 0 « The acceleration

pole curves roll, without sliding, upon each other.

Proof: In this case by means of the Theorem 3.4 rank A
== n, and so the motion (1) has an only one instantaneous point
JeR whose sliding velocity is zero. The point J corresponds to
another instantaneous point J e R, which is the solution of the
system

A x, + C=0
and so R (24)
J, = - A7t C.

The equation of acceleration pole curve (moving) in R is (24).
From (1) and (24) the expression of the point JeR is
J=A]J, +C (25)

During the motion (1) the point J has an orbit which is the
acceleration pole curve (fixed) in R.

The sliding acceleration of J, at any time t, is

AJ, +C=o0.
Therefore the relation between the orbital velocities
J = jJt and J, = C;J:
is
J=AJ,+C+A],
or

J=A@ATG + €+ AJ,. (26)
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If we have

ARG +C=0 27
then (26) reduces to
J=A17J,
which gives us that
ds = | J | dt = |J, | dt = ds,, (28)

where ds, and ds are, respectively, the arc elements of the accele-
ration pole curves (24) and (25). Hence we can say that under the
condition (27) the curves (24) and (25) roll, without sliding, upon
each other.

Conversely if (24) and (25) roll, without sliding, upon each
other then we have (28) and so
J=aAlJ.
By means of this, (26) gives us the condition (27). Il

In the case that the 1.5.A is stationary we can give the follo-
wing theorem.

Theorem 3.6:
A € SO (n), rank A = n-1 and the L.S.A is stationary then,

in generally, the accerleration oxoids are not tangent to each

other.

Proof: In this case since Theorem 3.4 gives us that rank
A = n-1 the solution systems of (10) are not unique. The rank
of the generalized matrix (A, C) of (10) is, generally,

rank (A, C) > n-1, det (A) = 0.
Therefore the homogen part of (10)

has an 1- dimensional solution space V. The space V is spaned
by E. In the fixed space R as we see from (20) that
E* = A E.
Thus we can say that
V = (IS.A).
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C has the two parts: one is parallel to V and the other is U
perpendicular to V:

C=U-+V, (29)

where
V=) E, <U, E> = 0. (30)

Therefore since

rank (A, U) = rank A = n-1
the system
Ax+ U=0 1)

is a solvable system. At an instant t of the motion, the solution
vectors of (31) span a space B, which we called the acceleration
axis space of the motion. In the moving space the position vector
of any point of B, is

X = ¢, + A E (32)
where q, is a special solution vector of (31), i.e.
Ag, +U=o0, (33)

The parameter 2, in (32), is a rectangular coordinat. During
the motion (1) we obtain an one parameter family of these 1-di-
mensional spaces B, in the moving space R,. These spaces formed

the acceleration axoid M, = {B,}. B, corresponds to another
acceleration axis spaces B, in R, and so M, also corresponds to
another acceleration axoid M = {B} in the fixed space R.

The Positions M, and M Upon Each Other :

Expression (32) can give us the positions of these axoids M,
and M, relative to each other. Eq. (23) has two parameters t and ).’

In the fixed space R, by means of (1), Eq, (32) corresponds
to the following equation
x=4q+ »AE (34)
where q = A q, + C.
At an instant t, for M, and M, to be tangent to each other,

we must have that

s NAE=Ax%x, A AE (35)
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where A denotes Grassmannian product [4]. According to (32)
and (34), the relation (35) needs to have the condition

Ag4+C=0

which completes the proof of the theorem.
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OZET
n-boyutlu Oklid uzaylarmn
x=Ax 4 C,A eS80 (n

ile verilen hareketinde rank A nin n ve n-1 olmasiun geometrik anlamlarnt bulduk.
Baéylece, bu hallere kargilik gelen ikinei mertebeden pol noktalarimin, pol egrilerinin ve

aksoidlerin geometrik irdelemisini vermek miimkiin cldu.
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