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ABSTRACT

The purpose of this paper is to investigate some more classes of matrices which
will fill up a gap in: the existing literature. We have already characterized the
(c, (P), FO(,B(p)), (I (), FGB )- and (M, (p), F%)— matrices. In the present paper author

hesscerizes (v @) Fep) = (o> )= (¢ (0 Feply (0), Fep) - and ¢ o), Fi) -

matrices.

1. INTRODUCTION

Let 1., ¢ and ¢, be the Banach spaces of bounded, conver-
gent and null sequences x = {x,} with the usual norm Ix |=
sup | % |- A sequencex el is almost convergent [1]if all Banach

limits of x coincide. Let ¢ denotes the space of almost convergent
sequences. If p, is real such that p, >0 and sup p, < e , we define
(see Maddox [3], Simons [8] and Nanda [6]) ‘ ’

w(p) = {x:nt £ %, —1 [Pk — o for some I}
k=1
L ()= fxswp | | <o),

P
c(p) = {x: | % ~1 | QU o for some I,

and

~ . pk

c(p)= {x:lim [t,;(x-1e) | "= o for somel, uniformly in i}
K

where
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1 itk

t,i (x) = 1 3::_ Xm

when p, = p V k, we have w(p) = wp, 1, (p) = 1>
e(p) = ¢ and ¢ (p) = © respectively.

Quite recently M. Stieglitz [9] generalized almost convergence
by defining F(TB — converengence in the following manner: Given
a matrix sequence B = (B,) with B, = (b, (i)), the sequence
xel, is F% — convergent to the value Lim B x, if

lim (B; x), = lim ) b, (i) x, = lim B x (uniformly in i)
n n k=0

holds. The space F B of FGB — convergent sequences depends
on the fixed choosen matrix B = (B,), in case B, = (I) itis equal
to ¢ and in case B, = (B, @) it is equal to c.

We have already examined the classes of (¢, (p), FOGB(p) ) -,
I (p), FGB) -, and (M, (p), FGB) — matrices (see [5]). In this paper,
Theorems 2.1 and 2.2 generalize the results of Lascarides and
Maddox [2] and Nanda [7]. In Theorems 3.1, 3.2 and 3.3 we de-

termine the matrices (¢ (p), F %), (1 (p)- FGB) and (¢ (p)> FGB) which

generalize the results of Stieglitz [9].

2. We prove the following Theorems
Theorem 2.1. Let 0 < p < 1, then A € (w (p), F%), if and only if
(i) There axist B > 1 such that '

Q, = sup 3 max @r B"I)I/pk | e(n, k1) | <« (Vi)

D F=g T
(ii) lim ¢ (n, k, i) = oy uniformly in i, k fixed,
(i) m X ¢ (n, k, i) = « uniformly in i.

n K

where
¢ (mk, i) = 2 by (i) ay
i
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Proof. Necessity. Suppose that A (w(p), F%) Since e, and e
are in w (p), (ii) and (iii) must hold. where
& =1}0,0,.0,1,0,0,.} and e = {1, 1, 1,...}.

Now Z ¢ (n, k, i) x, converges for each n and x € w (p)
k

Therefore (c (n, k, i)), € w (p)* and
1p

Zmax(2B) k]c(n,k,i) | < oc,

for each n (see Lascarides and Maddox [2]).

Further, denote 6, (x) = T,,, (A x) = I, ¢ (n, k, i) .

then {s, .} is a sequence of continuous linear functionals on w (p)
such that hm T,.i (A x) exists. Therefore by Banach — Stein-
haus Theorem [4], (i) holds.

Sufficiency. Suppose that the condltlons (i) — (111) hold.. Then
(c (n, k, i)) and (o) are in w (p)* (see [2]).

Therefore the series Ze(n,k,i)x, and T o, x, converge for each n
o x k

and x € w (p). Put

f(n, k,i) = ¢ (n, k, i) - a.

Therefore

%c(n, l)xk-—Zockxk—I—lan, ,1)—!—Ef(n, ki)(xk—])

where 1 = lim x,. By (ii) we have

Iim % f(n, ki (x -1 = 0.
n kzko
Also since

sup Zmrax(2B) ff(n,k,i) [<2Q,

lim X [f(n, ki) |[x,~-1]= 0.
n k>k,

Hence
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lm X e(n, k, i) x, =l + T o, (x,-1)
n k k

and therefore proof is complete

Theorem 2.2 (a). Let 1 < p < o, then A & (wp, Fop ) iff
() M = Sltpri 2P TP (n,i) < oo, (Vi)

(ii) li:n ¢ (n, k, i) = «, uniformly in i, k fixed

(1) liin Zl‘; ¢ (n, k, i) = o uniformly in i.

where

TP (n,i) = (Z | ¢ (n ki) [ (p* + gt = 1)

(the summation is taken over k with 2" < k < 2™).

(b). Let 0 <p < . Then A € (wy, F% )reg if and only if
conditions (i), (i) with «, = 0 and (iii) with « = 1 hold.

Proof (a). Necessity. Suppose that A € (wp, F% ). Since e, and

e are in wp, therefore, (i) and (iii) must hold. Now define for each
nandr> 0, g, (x) = Zc(n,k,1i) x,. Sequence {8.,o} is of continu-
ous linear functional in w,

Now
1/a 1/P
| gen () | < (@ e (@ ki) [ (E | ¢ |?)

< 2P TP (0, i) |x |
and

1
IimXg  (x)="T,,; (Ax) < e
n =0

Therefore by Banach — Steinhaus Theorem there exists K such
that

| Toa (Ax) | < K [x ]
Since 1 is arbitrary and if we define x € wp as in Maddox ([4],
Theorem 7) we have

¥ 2P TP (n, i) < K
=0
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Therefore by the same argument as in Theorem (2.1) we see that
(i) holds.

Sufficiency. Let us suppose that the conditions (i) — (iii) be

satlfled and x € w,. Since

ITM(AX) I<Z = [c(n, k, i) x|

Yy ’ g
< @Elemki) ) E©]x )

<M |x]. N
Therefore T, , (A x) is absolutely and umformly convergent for
each n. Since

1/ ¢
/P -
S2E [aft) <o and T apx < .

Therefore as in Theorem (2.1), A e (wp, F%) Which completes
the proof,
Proof of (b) is constructed from the proof of (a)
3. Some further Results o
Theorem 3.1 (a). A € (c (p), F%) if and only if

(i) There exists an integer B > 1 such that
Sl

Gi=supZ |c(n ki) | B <o, (V1)
n k . -
(i) lim ¢ (n, k, i) = «,, uniformly in i, k fixed

(iii) Hm X ¢ (n, k, i) = «, uniformly in i,
n K

where
¢ (n, k,i) = Z b,; (i) ay

(b) Ae(e, (p), F ) if and only if conditions (1) and (11) of
Theorem (a) holds.
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(c) A € (c (p), FUB)reg if and only if conditions (i), (ii) with
o, = o and (iii) with &« = 1 hold.
Proof (a) Necessity. Let A € (c (p), F% ). Definee = (11, ....)

and e, = (o, 0, 0, 1, 0, ...). Since e and e, are in ¢ (p), (ii) and
(iii) must hold. Put o,; (x) = T, ; (A x) = X, ¢ (n, k, i) x,. Since
(c (p), F%) < (¢, (p)s F% ), { 6q; } is a sequence of continuous

linear functionals on c, (p), such that lim 6,; (x) exists uniformly
n

in i, Therefore by uniform boundedness principle for o < 6 <1,
there exists a constant K such that o,; (x) < K for each n and
x € ¢ (p). Let us define x* = (x,") € ¢ (p) by the following:

K
< {6 /Pksgn (e (m, ki), 0 <k <r;
.=
0 , 1t < k.
Then, it follows that

" Ele@ki [Bx <K

- k=0

for each n and r, where B = § *- Therefore (i) holds.

Sufficiency. Suppose that the conditions (i} —- (iii) hold and
x € ¢ (p). Then there exists 1 such that

| x¢ =1 [P, > 0. Hence for a given € > 0,

there exists an integer k, such that ¥V k, > k

I X ._1 ka/M €

<ggc T <!

and therefore for k, > k

1
Bka | x—1] <Bu | x -1}
M/Pk
€
<(2Gi+1)
€
<3G, +1°

By (i) and (ii) we have
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1/py

Zlemki)-o |[BT  <26,.
k

Hence

Z o elki)-o)(x-1) | <ec.
k >k,

. Also

im % f(c(nki)-o)(x-1]=0
n k<k,

uniformly in i. Therefore combining the above facts we have

limZcn, ki) x, =1a+ 2o (x-1)
2k k-

uniformly in i. This proves that A € (¢ (p), F%)
(b) Since x € ¢, (p) = | = 0, therefore the proof is immediate.

(c) First we observe that o, = 0 and « = 1, proof follows imme-
diately.

Theorem 3.2. (a). A e (1, (p), F%) if and only if

(i) lim ¢ (n, k, i) = o, uniformly in i, k fixed.
(ii) sup 2 | ¢ (n, k, i) < e (Vi
n k

(iii) There exists an integer N > 1 such that
im X | ¢ (n, k, 1) — o | N _ o uniformly in i.
n ok
(b) A e, (p), FOGB) iff (i) condition (ii) of Theorem (a) holds, (ii)
1
im¥ |e(m, k, i) [ N L uniformly in i.
n k .
Proof (a). Necessity. Suppose that A € (I, (p), F%)' since e,
€1, (p), (i) must hold. Since (1, (p), F%) (c, F %)
(i) holds. If (iii) is not true then the matrix
C = (/cnk) = (ay, NI/pk yeé(l,, F%)‘ for some

integer N > 1. So that there exists x € 1
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such that B x ¢ F%. Now y = (y,) = (N”pk x)el, (p)
but Ay =Cx ¢ F P This contradicts the fact that A € (I, (p),
F %). Hence (iii) is true.

Suffciency. Suppose that the conditions (i) - — (iii) hold. Choose
an integer N > max (1, sup | xi "% ). By (ii)
|Z(emkd-m)x | <Z e ki -n | NP
By (i) and (iii) we have
lim E.c(n, k,i) x, = E O Xy

uniformly in i. Hence proof is complete.
proof of (b) is obvious if we take o, = 0.

Theorem 3.3 (a) A € (c (p), Fg) if and only if
(i) conditions (i), (ii) and (iii) of Theorem (3.1) hold.

sey 10 : 1P
(ii) hfnik:' Izj by @ (ap = agupy) = (o~ aey) [BF =0

(b) Ae(é (p), F%)reg if and only if conduitions (i), (ii) with
o = 0, (iii) with « = 1 and (ii) of (a) hold.

Proof (a) Necessity. Let A € (c(p), FGB). Now by cirture of
the fact (N(B,) < ©, A:c(p) —> F% and Theorem (3.1) follows

all the conditions of (i). To prove condition (ii), let us define a
matrix G = (g,,) with

’ n = ka
gnk — 3 — ]. n = k —I—' ].,
0 otherwise,

and the matrix By with B, = (b (i)), 0 < i,j < o we see that
it is easy to prove the following conditions:

(iii) G:l, (p) — ¢, (p)
(iv) G(E'x)=x with G = (g
(_1)_{1 o <k < n,

8nk 0 otherwise.
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—1 -—
(v) N[G (I-By)]=k
Let us choose x €1 (p). Then by (iii), G x € &, (p) and
AGx)=Dxe F% ie D: 1 (p) — Fop . Thus by
Theorem (3.2), contidion (ii) follows immediately.

Sufficiency. Suppose (i) and (ii) holds and x ¢ (p). We have
to show that A x e FGB. Since x € ¢ (p) implies
| ty,; (x~1e) ]pk——> 0, n — co for some 1, uniformly in i.
Where

1 i+n

n,x( ) n+1 kz
Hence for a givene > 0 3 k, > O such that V k < k,

Py /M =
~le) 747 < 3B(Z |°‘kl+2lein(ek)|+1)
Sk

' 1:n,i (X

therefore Bk [ ¢, (x —1e) | <BWr |t,,(x —1le) |

(=
3(k2|ock|—|—§ [Tialed ) °

<

where
T, (x) = (B; (A x)),. Now we have
Tm (X) - 2“k (Tm (ek)) Xk + (Tm (e) - E Tm (ek)) (c - lim X)

By given conditions, we have

lim T;, (e,) = o, and
lim T}, (¢) = « uniformly in i.

And hence 3 n, > r with

8 T €
Fﬂ%*MM”< 3(2]e-limx [+ 1)
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e
| a—Tiple) | < 3(|e-lmx |+ 1)

which is true for alli > o and n > n,. Now by Banach — Steinhaus
Theorem L; € ¢'(p) (continuous dual space of &(p)), where

Lix=2X(L;e) x + (L e—-Lje) (¢ - lim x)
k
=3 o %, + (@~ Z ) (€ - lim x)
k k

= L x.
Therefore
| Lx~T, (x| = | (2 - Ty (e)) (¢ - limx) + E (o — Tin (ex))

(ta,i (x-Te)) |

ko
< Ja=Ti (e)) | é- limx | + 2 |é—limx|k§D | o = Tin (e4) |

ko <k<®

4 sup [t (x=le) | (2 |+ I |Tiled |)
k=k0+1 k=k0+1
<e+e+4+ e=c¢e
3 3 3

Hence A € (& (p), FGB).

Proof of (b) is immediate if we observe that o = 0 and o
= 1 in (a).

Finally the author is grateful to Dr. Z. U. Ahmad for his

suggestions and guidance.

OZET

Bu ¢alismada amacimiz, bngiine dek ortaya atilmg olan matris simflardaki
bir boslugu dolduracak matrisler simflarim incelemektir. Daha énca (¢, (®), Fogy (P)),

1 (p), F%) ve (M, (p), F%\ matrislerinin karekterize etmistir, Bu aragtirmamizda

(W (P)s F%)a (Wp> F%)’ (c (P)7 F%)s (loo (p): FGB) ve (c (P): FQB) matrislerini

karektorize edecegiz,
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